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This is normal
(p =0 .93)
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Explainable Model Interface

This is abnormal
because of

• Why and why not?
• Can I trust it?
• When it fails?
• When it succeed?

• I know why
• I know why not
• I’m clear when it 

fails
• I can trust it
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A semantic factor controls the eye-
glasses of a human facial image. Can we decompose time series?

Variational Inference of Disentangled Latent Concepts 
from Unlabeled Observations, ICLR 2018
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▌Sequential data structure introduces complex
temporal correlations;

▌Sequential models suffer from KL vanishing problem;

▌Interpretable semantic concepts for time-series often
rely on multiple factors instead of individuals.

Data Structure

Model Property

Hierarchy
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Individual Factor Disentangle
Latent semantic variables are 
independent if the change of the 
variable are relatively invariant 
to others.

Provide interpretations as fine-
grained individuals

Provide interpretations as
coarse-grained factors

Group Segment Disentangle

All the pairs of latent 
segments are independent.
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Step 3: Disentangle

Step 1: Time series

Step 2: Representation Step 4: Generation



Texas A&M University

3. The model would generate time-series without

making effective use of the latent codes;

4. Latent variables will become independent of the

observations when the KL-divergence collapses to zero.
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1. Generative models (decoders) often have strong expressiveness;

2. The reconstruction term in the objective

dominate the KL-divergence term;

Information Preference

ℒELBO x =−𝐷𝐾𝐿 𝑞𝜙 𝑍|x1:𝑇 ||𝑝(𝑍) + 𝔼𝑞𝜙 𝑍|x1:𝑇 log𝑝𝜃 x1:𝑇|𝑍
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▌The lower bound to the log likelihood of vanilla VAE:

▌Beta-VAE attempts to learn a disentangled representation by optimizing a

heavily penalized objective with 𝛽 on the KL term:

▌However, pushing Gaussian clouds away from each other in the latent space 

becomes meaningless if latent distributions are unhooked with the 

observation space.
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heavier penalty

ℒβ−ELBO x = −𝛽𝐷𝐾𝐿 𝑞𝜙 𝑍|x1:𝑇 ||𝑝(𝑍) + 𝔼𝑞𝜙 𝑍|x1:𝑇 log𝑝𝜃 x1:𝑇|𝑍

ℒELBO x = −𝐷𝐾𝐿 𝑞𝜙 𝑍|x1:𝑇 ||𝑝(𝑍) + 𝔼𝑞𝜙 𝑍|x1:𝑇 log𝑝𝜃 x1:𝑇|𝑍
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▌ELBO Total Correlation-Decomposition:

▌A new perspective of KL vanishing:

⚫Heavier penalty on the ELBO tends to neglect the mutual information between Z and x;

⚫Mutual information becomes vanishingly small;

⚫Increasing 𝛽 may intensify the mutual information vanishing problem: better quality of

disentanglement companion with heavier penalty on the mutual information;
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Can we alleviate the mutual information vanishing?

𝐷𝐾𝐿 𝑞 𝑍|x1:𝑇 ||𝑝(𝑍) = 𝐷𝐾𝐿 𝑞 𝑍, x1:𝑇 ||𝑞 𝑍 𝑝(x1:𝑇) + 𝐷𝐾𝐿 𝑞 𝑍 ||ς𝑗 𝑞(𝑧𝑗) + σ𝑗 𝐷𝐾𝐿 𝑞(𝑧𝑗 )||𝑝(𝑧𝑗)

(i) index-code mutual information (ii) total correlation (iii) dimension-wise KL
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▌To encourage the model to use the latent codes, we add a MI-maximization

term as:

▌Compare with the TC decomposition, we found:
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Play the same role, but the optimization directions are contrary!

To enforce the model to 
preserve the disentangle 
property while alleviating 

the KL vanishing, we have:

ℒELBO x = −𝐷𝐾𝐿 𝑞𝜙 𝑍|x1:𝑇 ||𝑝(𝑍) + 𝛼𝐼𝑞𝜑 x1:𝑇;𝑍 +𝔼𝑞𝜙 𝑍|x1:𝑇 log𝑝𝜃 x1:𝑇|𝑍

𝐷𝐾𝐿 𝑞 𝑍|x1:𝑇 ||𝑝(𝑍) = 𝐷𝐾𝐿 𝑞 𝑍, x1:𝑇 ||𝑞 𝑍 𝑝(x1:𝑇) + 𝐷𝐾𝐿 𝑞 𝑍 ||ς𝑗 𝑞(𝑧𝑗) + σ𝑗 𝐷𝐾𝐿 𝑞(𝑧𝑗 )||𝑝(𝑧𝑗)

index-code mutual information

ℒELBO x = −𝛽𝐷𝐾𝐿 𝑞 𝑍 ||ς𝑗 𝑞 𝑧𝑗 − 𝛽 σ𝑗 𝐷𝐾𝐿 𝑞(𝑧𝑗)||𝑝(𝑧𝑗 )
+(𝛼 − 𝛽)𝐷𝐾𝐿 𝑞𝜙 𝑍 ||𝑝(𝑍) +𝔼𝑞𝜙 𝑍|x1:𝑇 log 𝑝𝜃 x1:𝑇|𝑍
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▌Goal: to learn decomposed semantic segments that contain batches of latent 

variables.

▌Solution: Gradient Reversal Layer (GRL)

▌Transferable Anomaly Detection from different domains as a concrete example,

the empirical errors are:
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𝑧𝑚

𝑧𝑛
𝑧

task m relevance

task n relevance

anomaly detector
detector hypothesis

domain classifier
classifier hypothesis

error on source

error on target

𝔼m 𝜑𝑦, 𝜃𝑚, 𝜃𝑛 = 𝔼 𝐶𝑚 𝑧𝑚; 𝜃𝑚 ,𝑦𝑚 − 𝜆𝔼 𝐶𝑛 𝑧𝑚; 𝜃𝑛 , 𝑦𝑛

𝔼𝑛 𝜑𝑦, 𝜃𝑚, 𝜃𝑛 = 𝔼 𝐶𝑛 𝑧𝑛; 𝜃𝑛 ,𝑦𝑛 − 𝜆𝔼 𝐶𝑚 𝑧𝑛; 𝜃𝑚 , 𝑦𝑚

𝜃𝑓, 𝜃𝑦 = arg min
𝜃𝑓,𝜃𝑦

𝔼 𝜃𝑓, 𝜃𝑦, 𝜃𝑑

𝜃𝑑 = arg max
𝜃𝑑

𝔼 𝜃𝑓, 𝜃𝑦,𝜃𝑑

𝜖𝑆 ℎ = 𝔼𝑧𝑦∼𝒵𝑆 𝐶 𝑧𝑦 − ℎ(𝑧𝑦) + 𝔼𝑧𝑑∼𝒵𝑆 𝐶 𝑧𝑑 − ℎ(𝑧𝑑)

𝜖𝑇 ℎ = 𝔼𝑧𝑦∼𝒵𝑇 𝐶 𝑧𝑦 − ℎ(𝑧𝑦) + 𝔼𝑧𝑑∼𝒵𝑇 𝐶 𝑧𝑑 − ℎ(𝑧𝑑)
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Target detectionaccuracy for time-series domainadaptation
(from source to target) betweendifferent participants.

Problem No 
Adaptation R-DANN VRADA CoDATS DTS Train on 

Target
HAR 2 → 11 83.3 80.7 64.1 74.5 84.3 100
HAR 7 → 13 89.9 75.3 78.3 96.5 98.1 100
HAR 12 →16 41.9 35.1 61.7 77.5 72.9 100
HAR 9 → 18 31.1 56.6 59.8 85.8 89.8 100
HAR 18 →23 89.3 78.2 72.9 86.2 94.9 100
HAR 6 → 23 52.9 79.1 78.2 94.7 94.9 100
HAR Average 69.2 70.2 70 88.4 93.5 100
HHAR 1 →3 77.8 85.1 81.3 93.2 93.7 99.2
HHAR 3 →5 68.8 85.4 82.3 95.6 95.9 99
HHAR 4 →5 60.4 70.4 71.6 94.2 94.9 99
HHAR 3 →8 77.8 82.8 82.2 93.4 94.7 99.3
HHAR 5 →8 95.3 82.5 87.5 97.1 97.9 99.3
HHAR Average 64.8 68.7 68.3 88.3 89.9 99
WISDM AR1 → 11 71.7 55.6 55 71.7 91.7 98.3
WISDM AR4 → 15 78.2 69.2 82.7 81.4 82.9 100
WISDM AR2 → 32 60.1 49 66.7 67.3 70.7 100
WISDM AR1 → 7 68.5 44.8 63 70.9 72.7 96.4
WISDM Average 56.8 48.3 61.2 70 81.7 98.5
uWave 3 → 5 82.7 63.7 32.4 93.8 95.6 100
uWave 2 → 7 85.1 53.9 12.2 91.4 98.9 100
uWave 3 → 7 95.5 64 30.4 92 98.9 100
uWave 4 → 5 83.3 35.4 12.8 99.1 96.7 100
uWave 7 → 8 95.2 49.7 12.5 93.8 96.7 100
uWave Average 91 48.4 19.7 94.3 97.7 100

▌ Each dataset (HAR, HHAR, 

WISDM AR and uWave) 

contains sequential 

accelerometer data from 

different participants. 

▌ DTS boosts the performance 

by obtaining domain-

invariant transferable 

components as common 

knowledge.
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Latent traversal plots from DTS on ECG. All figures of latent codes traversal each 
block corresponds to the traversal of a single latent variable while keeping others 
fixed. Blue and green denote two time-series with different sequential patterns. 
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