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Interpretable Representation for Downstream Tasks
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Decomposition: A Generalization of Disentanglement
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infer disentangled latent

A semantic factor controls the eye-
glasses of a human facial image. Can we decompose time series?

Variational Inference of Disentangled Latent Concepts
from Unlabeled Observations, ICLR 2018
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Challenges

How to represent time series with interpretability
and expose semantic meanings?
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Overview of DTS

Step 1: Time series
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Step 2: Representation
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Step 4: Generation

Group Segment Disentangle

All the pairs of latent
segments are independent.

Provide interpretations as
coarse-grained factors



Individual Factor Disentangle: KL-Vanishing Problem

1. Generative models (decoders) often have strong expressiveness;

the objective

dominate th Lergo(x) = DKL(CI¢>(Z|X1:T)||P( +@T) [logpe (x1.7]
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3. The model would generate time- ser4es without _
Information Preference
making effective use of the@

4. Latent variables will become independent of the

observations when the KL-divergence collapses to zero.
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Individual Factor Disentangle: beta-VAE

I The lower bound to the log likelihood of vanilla VAE:

Lgigo(x) = @(zhﬁzﬂ llp(Z) [Eq¢(Z|X1:T) [logpe (x1.712)]

I Beta-VAE attempts to learn a disentangled representation by optimizing a

heavily penalized objective with  on the KL term:

Lg—g180(X) =@I¢(Z|X1:T)||p(z ) + Eq 4 (z1x,) 1080 (X1:712)]

heavier penalty

I However, pushing Gaussian clouds away from each other in the latent space
becomes meaningless if latent distributions are unhooked with the

observation space.
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Our Individual Factor Disentanglement Strategy

I ELBO Total Correlation-Decomposition:

Dx1(q(Z)|x1.7)|1p(2)) = Dk (q(Z, x1.70)19(Z2)p(x1.7)) + DKL(q(Z) || Hj CI(Z])) + Zj DKL(q (Z])l |p(Zj) )

(i) index-code mutual information (ii) total correlation (ii) dimension-wise KL

I A new perspective of KL vanishing:
® Heavier penaltyon the ELBO tends to neglect the mutual information between Z and x;
® Mutual information becomes vanishingly small;

® Increasing [ may intensify the mutual information vanishing problem: better quality of

disentanglement companion with heavier penalty on the mutual information;

Can we alleviate the mutual information vanishing?
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Our Individual Factor Disentanglement Strategy

| To encourage the model to use the latent codes, we add a MI-maximization

Le180() = ~Dici(p @i IP(D)) + Kl (132D

I Compare with the TC decomposition, we found:

D (@(Zx1:)Ip(2) =Tag(q(Z, %) 19(2)p (1 DF

index-code mutual information

term as:

+Eq¢(ZIX1:T) [logpe(x1.712)]

Dii(a(DIN11;9(2)) + X Dri(a(z)1p(z) )

Play the same role, but the optimization directions are contrary!

To enforce the model to

preserve the disentangle Lego () = —=BDy(q(2)]| I1; CI(ZJ)) —BX; Di.(q (z)llp(z) )
property while alleviating +(a = B)Di1 (a4 (DN1P(2)) +Eq (z1x,.1) [10g Po(x1.7|2)]
the KL vanishing, we have:
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Latent Group Segment Disentanglement

I Goal: to learn decomposed semantic segments that contain batches of latent

variables.

Zm task m relevance
I Solution: Gradient Reversal Layer (GRL) /\/ , task n relevance

n

Ern (9y, 0 02) = E(Con(Zm; On), Yim) — AB(Cp(Zim; 62), v) (05,8y) = arg min E(6;,6y,604 )
Yy

En (9y, 6, 6n) = E(Co(zn; 00), Yn) = AB(Cn(20;60), Ym)  Oa = arg max E(Fy, 0y, 6a)
d
I Transferable Anomaly Detection from different domains as a concrete example,

the empirical errors are:
error on source es(h) = IEZyNZS[C(zy) — h(zy)] +E;, 7, C(z4) — h(z4)]

erroron target er(h) = IEzy~ZT[C(Zy) — h(zy)]| +E; ~2.[C(24) — h(zy)]

l detectorhypothesis l classifier hypothesis
anomaly detector domain classifier
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Quantitative Results for Transferable Adaptation Classifacation

Problem No | R.DANN | VRADA | CoDATS DTS Train on
Adaptation Target

HAR 2 - 11 83.3 80.7 64.1 74.5 84.3 100
HAR 7 - 13 89.9 75.3 78.3 96.5 98.1 100 I Each dataset (HAR, HHAR,
HAR 12 ©16 41.9 35.1 61.7 77.5 72.9 100
HAR9 - 18 31.1 56.6 59.8 85.8 89.8 100 WISDM AR and uwave)
HAR 18 23 89.3 78.2 72.9 86.2 94.9 100 . .
HAR 6 > 23 52.9 79.1 78.2 94.7 94.9 100 contains sequential
HAR Average 69.2 70.2 70 88.4 93.5 100
HHAR 1 >3 77.8 85.1 81.3 93.2 93.7 99.2 accelerometer data from
HHAR 3 -5 68.8 85.4 82.3 95.6 95.9 99 . . .
HHAR4 -5 60.4 70.4 71.6 94.2 94.9 99 dlfferent partICIpants'
HHAR 3 -8 77.8 82.8 82.2 93.4 94.7 99.3
HHARS5 -8 95.3 82.5 87.5 97.1 97.9 99.3
HHAR Average 64.8 68.7 68.3 88.3 89.9 99
WISDM AR1 - 11 71.7 55.6 55 71.7 91.7 98.3
WISDM AR4 - 15 78.2 69.2 82.7 81.4 82.9 100 I DTS boosts the performance
WISDM AR2 - 32 60.1 49 66.7 67.3 70.7 100
WISDM AR1 = 7 68.5 44.8 63 70.9 72.7 96.4 by Obtaining domain_
WISDM Average 56.8 48.3 61.2 70 81.7 98.5
uWave 3> 5 82.7 63.7 32.4 93.8 95.6 100 invariant transferable
uWave 2 - 7 85.1 53.9 12.2 91.4 98.9 100
uWave 3 > 7 95.5 64 30.4 92 98.9 100 Components as common
uWave 4 -5 5 83.3 35.4 12.8 99.1 96.7 100
uWave 7 - 8 95.2 49.7 12.5 93.8 96.7 100 know|edge_
uWave Average 91 48.4 19.7 94.3 97.7 100

Target detectionaccuracy for time-series domain adaptation
(from source to target) betweendifferent participants.

Texas A&M University 1 1




Traversal Results

Latent traversal plots from DTS on ECG. All figures of latent codes traversal each
block corresponds to the traversal of a single latent variable while keeping others
fixed. Blue and green denote two time-series with different sequential patterns.
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