

Attentional Heterogeneous Graph Neural Network: Application to Program Reidentification

≥ International Conference on

1

Shen Wang¹, Zhengzhang Chen², Ding Li², Zhichun Li², Lu-An Tang², Jingchao Ni², Junghwan Rhee², Haifeng Chen² and Philip S. Yu¹ ¹University of Illinois at Chicago ²NEC Laboratories America

Background: Graphs/Networks

Social networks

IT/OT networks

Brain networks

- **Ubiquitous** in real world
 - Graph is extensively employed within different fields
- A flexible and general data structure
 - Nature representation for linked data

Big Data

Large Scale with Rich attributes

Background: Graphs/Networks

Ubiquitous in real world

 Graph is extensively employed within different fields

It requires a effective and efficient way to represent the Graphs.

пикеа аата

Big Data

Large Scale with Rich attributes

IT/OT networks

Brain networks

Background: Network Embedding

 Encode nodes so that the similarity in the embedding space approximates similarity in the original network

• similarity
$$(u_1, u_2) \approx z_{u_1}^T z_{u_2}$$

Encode subgraph/graph so that the similarity in the embedding space approximates similarity in the original network

similarity(
$$S_1, S_2$$
) $\approx z_{S_1}^T z_{S_2}$

Background: Graph Neural Network: an effective and efficient way of Network Embedding

ENC(V) = complex function that depends on graph structure.

- GNN Methods:
 - Generate node embeddings based on local neighborhoods
 - Nodes aggregate information from their neighbors using neural networks
 - Leverage a center-surround filter
- Examples:
 - GCN, Diffusion Convolution Network, GraphSAGE, Gated Graph Neural Network

Limitations

- Only apply to **homogeneous** graph
- Only focus on node embedding

Background: Heterogeneous vs Homogeneous

(a) Network instance

(b) Network schema

(b) Network schema

 Most real-world graph are Heterogeneous Graph

Heterogeneous Graph vs Homogeneous Graph

- Entities/Nodes:
 - multiple types vs single type
- Links/Edges:
 - multiple types vs single type

Tradition GNNs on Heterogeneous Graph

Tradition GNNs on Heterogeneous Graph

Tradition GNNs on Heterogeneous Graph

- Assume we have a graph G with:
 - V_A, V_B, V_C are different sets of vertices belong to different types, and each vertex has high-dimensional features (categorical attributes, text, image data, node degrees, clustering coefficients, indicator vectors)
 - $E_{A \rightarrow B}, E_{C \rightarrow A}$ are the sets of edges belong to different types

Goal

- Find a **neural network based function** that **encodes** the **graph** *G* into a low-dimensional vector

 $ENC(\underline{G}) = \underline{Z}_{\underline{G}} - d$ -dimensional embedding **Applications** input graph

 Program Reidentification: given a target program with corresponding event data during a time window and a claimed name/ID, check whether it belongs to the claimed name/ID

Re-ID

Challenge 1: How to preserve the heterogeneous graph structure?

- $E_{A \rightarrow B}$, $E_{C \rightarrow A}$ are the sets of **edges** belong to **different types**

Goal

Find a neural network based function that encodes the graph G into a low-dimensional vector

 $ENC(\underline{G}) = \underline{Z}_{\underline{G}} \leftarrow d$ -dimensional embedding input graph

Applications

 Program Reidentification: given a target program with corresponding event data during a time window and a claimed name/ID, check whether it belongs to the claimed name/ID

Challenge 1: How to preserve the heterogeneous graph structure?

Challenge 2: How to capture the hierarchy of different dependencies from simple to complex?

Applications

input graph

 Program Reidentification: given a target program with corresponding event data during a time window and a claimed name/ID, check whether it belongs to the claimed name/ID

Challenge 1: How to preserve the heterogeneous graph structure?

Challenge 2: How to capture the hierarchy of different dependencies from simple to complex?

Challenge 3: How to deal with the different importances of different dependencies?

during a time window and a claimed name/ID, check whether it belongs to the claimed name/ID

le-ID

An overview of the proposed DeepHGNN for program reidentification

Multi-Channel Transformation

- Motivation: GNN filter is required to capture the heterogeneous network structure
 - How to: Transform the heterogeneous graph to multi-channel graph with the guide of metapaths
 - Meta-path: a path that connects entity types via a sequence of relations over a heterogeneous network.
 - A process forks another process (P -> P)
 - A process accesses a file (P -> F)
 - A process opens an Internet socket (P -> I)
 - Two processes access the same file (P -> F <- P
 - Two processes open the same Internet socket (P -> I <- P)
- Contribution: Heterogeneous-aware filter can be learned
 - Diverse filter can capture heterogeneous structure
- $\hat{G} = \{G_i | G_i = (V_i, E_i, A_i), i = 1, 2, ..., |C|)\}$

Contextual Graph Encoder (CGE)

- Intuition
 - Propagate contexts via **diffusion process** characterized by a **random walk** on the graph with a specific probability $q \in [0,1]$ and a state transition matrix $D^{-1}A$
 - Propagation layer computes weighted sum of the full set of 1-hop contexts' current representation

Contextual Graph Encoder(CGE): General View

- Key Idea: Generate graph embeddings based on local contexts.
- Intuition: Nodes aggregate information from their context using neural networks
- Architecture:
 - Input layer: extract node features
 - Propagation Layer: aggregate contexts information
 - Perceptron Layer: map the aggregated contexts information to specific nonlinear space

Channel-Aware Attention

 Motivation: Leverage the correlation of different channels to assign each channel a specific weight

How to:

Compute the attention weight

 $\alpha_i = \frac{\exp(\sigma(a[W_a h_{G_i} || W_a h_{G_k}]))}{\sum_{k' \in |C|} \exp(\sigma(a[W_a h_{G_i} || W_a h_{G_{k'}}]))}$

Compute the attentional joint embedding

$$h_{G_{Join}} = \sum_{i=1}^{|C|} ATT(h_{G_i})h_{G_i}$$

 Contribution: Help to learn the joint embedding with considering the importance of different channels

Experiment Setup

- Baselines:
 - LR and SVM
 - XGB
 - MLP
- Dataset:
 - Real-world system events monitoring data in Windows OS
- Evaluation Metrics:
 - ACC
 - F-1 score
 - AUC score
 - Precision
 - Recall

Synthetic Experiment Results

Meta-Path	Evaluation Criteria				
	ACC	F-1	AUC		
$\mathbf{DeepHGNN}_{pp}$	0.838	0.864	0.843		
$\mathbf{DeepHGNN}_{pf}$	0.821	0.855	0.838		
$\mathbf{DeepHGNN}_{pi}$	0.579	0.635	0.592		
$DeepHGNN_{con}$	0.876	0.901	0.890		
$\mathbf{DeepHGNN}_{att}$	0.905	0.929	0.908		

Table 1: Reidentification results of different meta-paths.

Figure 2: Parameter sensitivity analysis results.

Method	Settings	Evaluation Criteria					
		ACC	F-1	AUC	Precision	Recall	
LR	fea-1	0.693	0.755	0.699	0.632	0.948	
	fea-2	0.705	0.770	0.703	0.655	0.950	
	fea-3	0.724	0.772	0.727	0.675	0.948	
SVM	fea-1	0.502	0.662	0.502	0.505	0.970	
	fea-2	0.795	0.778	0.725	0.701	0.935	
	fea-3	0.504	0.652	0.504	0.505	0.975	
XGB	fea-1	0.775	0.802	0.776	0.732	0.930	
	fea-2	0.833	0.860	0.846	0.821	0.936	
	fea-3	0.855	0.866	0.856	0.827	0.937	
$MLP_{shallow}$	fea-1	0.633	0.745	0.643	0.626	0.938	
	fea-2	0.775	0.808	0.779	0.724	0.932	
	fea-3	0.778	0.808	0.780	0.726	0.932	
MLP_{deep}	fea-1	0.633	0.743	0.653	0.625	0.945	
	fea-2	0.801	0.830	0.805	0.769	0.921	
	fea-3	0.815	0.831	0.816	0.778	0.923	
$\mathbf{DeepHGNN}_{shallow}$	/	0.905	0.929	0.908	0.905	0.933	
$\mathbf{DeepHGNN}_{deep}$	/	0.929	0.961	0.935	0.932	0.936	

Table 2: Comparison on normal program reidentification.

Real-world Experiment Results

Figure 3: Disguised program detection results.

Figure 4: Scatter plot embedding of different versions of CHROME.EXE vs FIREFOX.EXE.

Summary

- First attempt to study the Graph Neural Network on Heterogeneous Graph in an attentional mechanism
 - Directly handle the heterogeneous graph and preserve the heterogeneous relationship
- We propose Deep Heterogeneous Graph Neural Network
 - General graph embedding framework based on graph neural network
- Effectively and efficiently applied in the real-world tasks of program reidentification

Thank you!

