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Background: Graphs/Networks

▪ Ubiquitous in real world

─ Graph is extensively employed 
within different fields 

▪ A flexible and general data 
structure

─ Nature representation for
linked data

▪ Big Data

─ Large Scale with Rich attributes

Social networksEnterprise networks

IT/OT networks Brain networks
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Background: Network Embedding

▪ Encode nodes so that the 
similarity in the embedding space 
approximates similarity in the 
original network

▪ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑢1, 𝑢2 ≈ 𝑧𝑢1
𝑇 𝑧𝑢2

▪ Encode subgraph/graph so that 
the similarity in the embedding 
space approximates similarity in 
the original network

▪ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆1, 𝑆2 ≈ 𝑧𝑆1
𝑇 𝑧𝑆2

𝐸𝑁𝐶(𝑢)

𝐸𝑁𝐶(𝑆)
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Background: Graph Neural Network: an effective 

and efficient way of Network Embedding
▪ GNN Methods:

─ Generate node embeddings based 
on local neighborhoods

─ Nodes aggregate information
from their neighbors using neural 
networks

─ Leverage a center-surround filter

▪ Examples: 

─ GCN, Diffusion Convolution 
Network, GraphSAGE, Gated Graph 
Neural Network

▪ Limitations

─ Only apply to homogeneous graph

─ Only focus on node embedding

𝐸𝑁𝐶 𝑉 = complex function that 

depends on graph structure.
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Background: Heterogeneous vs Homogeneous

▪ Most real-world graph are 
Heterogeneous Graph 

▪ Heterogeneous Graph vs 
Homogeneous Graph

─ Entities/Nodes: 

• multiple types vs single type

─ Links/Edges: 

• multiple types vs single type
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Tradition GNNs on Heterogeneous Graph

Apply

GNN

Learned GNN filters

Contains
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Tradition GNNs on Heterogeneous Graph

Apply

GNN

Learned GNN filters

Contains

Fail to  
distinguish

How to learn GNN filter to preserve the 
heterogeneous graph structure?  
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Problem Statement

▪ Assume we have a graph 𝐺 with:

─ 𝑉𝐴, 𝑉𝐵, 𝑉𝐶 are different sets of vertices belong to different types,  and each 
vertex has high-dimensional features (categorical attributes, text, image data, 
node degrees, clustering coefficients, indicator vectors )

─ 𝐸𝐴→𝐵, 𝐸𝐶→𝐴 are the sets of edges belong to different types

▪ Goal
─ Find a neural network based function that encodes the graph 𝐺 into a low-dimensional 

vector

▪ Applications

─ Program Reidentification: given a target program with corresponding event data 
during a time window and a claimed name/ID, check whether it belongs to  the 
claimed name/ID

input graph
d-dimensional embedding𝐸𝑁𝐶 𝐺 = ZG
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d-dimensional embedding𝐸𝑁𝐶 𝐺 = ZG

Challenge 1: How to preserve the heterogeneous 
graph structure?

Challenge 2: How to capture the hierarchy of 
different dependencies from simple to complex?

Challenge 3: How to deal with the different 

importances of different dependencies?
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An overview of the proposed DeepHGNN for 

program reidentification
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Multi-Channel Transformation

▪ Motivation: GNN filter is required to capture the 
heterogeneous network structure

▪ How to: Transform the heterogeneous graph to 
multi-channel graph with the guide of meta-
paths

─ Meta-path: a path that connects entity types via 
a sequence of relations over a heterogeneous 
network. 

• A process forks another process (P -> P) 

• A process accesses a file (P -> F)

• A process opens an Internet socket (P -> I)

• Two processes access the same file (P -> F <- P

• Two processes open the same Internet socket (P -> I <- P)

▪ Contribution: Heterogeneous-aware filter can 
be learned

─ Diverse filter can capture heterogeneous structure
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Contextual Graph Encoder (CGE)

▪ Propagation function

─ Propagation matrix:

─ Graph receptive field:

▪ Intuition

─ Propagate contexts via diffusion process characterized by a random walk on 
the graph with a specific probability 𝑞 ∈ 0,1 and a state transition matrix 𝐷−1𝐴

─ Propagation layer computes weighted sum of the full set of 1-hop contexts’ 
current representation
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Contextual Graph Encoder(CGE): General 

View

▪ Key Idea: Generate graph embeddings based on local 
contexts. 

▪ Intuition: Nodes aggregate information from their 
context using neural networks

▪ Architecture:

─ Input layer: extract node features

─ Propagation Layer: aggregate contexts information

─ Perceptron Layer: map the aggregated contexts information 
to specific nonlinear space
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Channel-Aware Attention

▪ Motivation: Leverage the correlation of 
different channels to assign each channel a 
specific weight

▪ How to: 

─ Compute the attention weight

─ Compute the attentional joint embedding

▪ Contribution: Help to learn the joint 
embedding with considering the 
importance of different channels
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Experiment Setup
▪ Baselines:

─ LR and SVM

─ XGB

─ MLP

▪ Dataset:

─ Real-world system events monitoring data in Windows OS

▪ Evaluation Metrics: 

─ ACC

─ F-1 score

─ AUC score

─ Precision

─ Recall
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Synthetic Experiment Results
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Real-world Experiment Results
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Summary

▪ First attempt to study the Graph Neural Network on 
Heterogeneous Graph in an attentional mechanism

─ Directly handle the heterogeneous graph and preserve the 
heterogeneous relationship 

▪ We propose Deep Heterogeneous Graph Neural 
Network

─ General graph embedding framework based on graph neural 
network 

▪ Effectively and efficiently applied in the real-world tasks of 
program reidentification
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Thank you!
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