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• Very Large-scale (More than 80,000 servers for only one data center in AWS)
• 24*7 Running (Online Service)
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Background: Invariant Network Model

Invariant network captures the normal behavior profile of a system. 

Invariant network is a powerful and widely-applied tool for further system behavior 

analysis using graph mining algorithms.
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Background: How to Build An Invariant Network

Invariant Network is a Heterogeneous Weighted Network:

• Node: System component/entity (Process, File, Socket, etc.)   

• Edge: Invariant relationship

Constructing Invariant Network

• Time Series data (Cheng, Wei, et al. KDD 2016)

• Categorical data (Boxiang Dong, et al. CIKM 2017)
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Motivation: Traditional Workflow of Learning Invariant Network
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Traditional Workflow

1. Slow: Constructing a Invariant 

Network need more than 30 

days of learning.

2. New customer & new 

environment: rebuild the 

network.

3. POC: Customer cannot wait.
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Motivation: Why Not Directly Transfer Invariant Network?

• Directly transfer the existing invariant network to the new environment

• Suffered by environment differences       Low stability scores

• No knowledge about the new environment   Domain-specific entities or links

• Existing transfer learning mainly focus on numerical data

We need a new transfer learning technique for Invariant Network!   

In this work, we propose TINET, a knowledge transfer technique for Invariant 

Networks.
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Problem: Knowledge Transfer for Invariant Network
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Challenges: Knowledge Transfer for Invariant Networks

• Extract domain specific knowledge from a target environment. 

• The domain specific information is crucial for invariant network 
learning.

• Extract common knowledge from a source environment.

• Only the common knowledge can be transferred from the source 
domain to the target domain.

• How to deal with the heterogeneous relations in the model.

• The network is a heterogeneous graph with multiple types of relations.

We propose TINET to address all these challenges.

The 2018 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining



TINET Framework

Source Domain Knowledge

EEM DCM

SG
• EEM (Entity Estimation Model) 

• Filter out irrelevant entities from 

source domain

• Transfer entities to target domain

• DCM (Dependency Construction Model)

• Construct the missing 

dependencies in target domain

• By solving a two-constraint 

optimization problem
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EEM: Entity Estimation Model

• Two Problems:

• Lack of correlation measure for entities

• Lean embedding vectors for entities in a 

common d-dimensional space

• Heterogeneous long-term dependency relations

• Meta-paths to represent relations

EEM

Source Domain Knowledge

Embedding Term
Regularization Term

Embedded vector for each entity Weighted combination of each meta-path
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EEM: Entity Estimation Model

EEM

Source Domain Knowledge

Embedding Term
Regularization Term

Embedded vector for each entity Weighted combination of each meta-path
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Adjacency matrix of each homogeneous network

Value equals to shortest path distance

Weight for each meta-path



DCM: Dependency Construction Model

DCM

• Constraints 

• Smoothness

• Learned dependencies should 

more or less intact in       as 

much as possible

• Consistency

• Keep the domain differences

Source Domain Knowledge

Smoothness Consistency

Matrix representation of source graph.

Leverage the importance of source information 

and target information.
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Recap: TINET Framework

Source Domain Knowledge

EEM DCM

SG
• EEM (Entity Estimation Model) 

• Filter out irrelevant entities from 

source domain

• Transfer entities to target domain

• DCM (Dependency Construction Model)

• Construct the missing 

dependencies in target domain

• By solving a two-constraint 

optimization problem
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Experiment Setup

• Baselines:

• NT: No Transfer (Using the small target graph)

• DT: Directly Transfer (Using the source graph)

• RW-DCM: Random Walk + DCM Model

• EEM-CMF: EEM + Collective Matrix Factorization

• Datasets:

• Synthetic data: generated by three factors (Graph Size, Dynamic Factor, 
and Maturity Score)

• Real data: Monitored system data in two OS (Linux and Windows)

• Evaluation Metrics:

• F1-Score: Compare the ground truth Invariant Network with the 
estimated Invariant Network
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Synthetic Results

TINET outperforms all baseline methods.
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Real Data Results
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TINET outperforms all baseline methods.



Convergence Analysis
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Parameter Study

No parameters needed to be tuned for TINET.
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Case Study: Intrusion Detection

Source domain: NEC Japan (2 months)

Target domain: NEC Princeton (3 days)

Testing period: 3 days

Launched several cyber attacks for the systems.

Method Precision Recall

NT 0.01 0.10

DT 0.15 0.30

RW-DCM 0.48 0.57

EEM-CMF 0.53 0.60

TINET 0.68 0.76

Real 30 days’ invariant network 0.70 0.76

𝑅𝑒𝑐𝑎𝑙𝑙 =
#𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑇𝑟𝑢𝑒 𝐴𝑙𝑒𝑟𝑡𝑠

#𝑅𝑒𝑎𝑙 𝐴𝑙𝑒𝑟𝑡𝑠

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑇𝑟𝑢𝑒 𝐴𝑙𝑒𝑟𝑡𝑠

#𝐴𝑙𝑙 𝐴𝑙𝑒𝑟𝑡𝑠
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Summary

• We build the first transfer learning framework TINET for 
Invariant Networks.

• TINET can effectively extract useful knowledge from the source 
domain, and transfer it to the target network. 

• We demonstrate the effectiveness of our method on both 
synthetic and real-world datasets. 

• TINET achieves superior detection performance at least 20 days 
lead-lag time in advance with very high accuracy.
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