TINET: Learning Invariant Networks via Knowledge Transfer

Chen Luo

Joint work with

Zhengzhang Chen, Lu-an Tang, Anshumali Shrivastava, Zhichun Li, Haifeng Chen, Jieping Ye

System Behavior Analysis

- Very Large-scale (More than 80,000 servers for only one data center in AWS)
- 24*7 Running (Online Service)

Outline

- Background and Motivation: Invariant Network
- TINET: Learning Invariant Network via Knowledge
 Transfer
- Experimental Results and Case Study
- Summary

Background: Invariant Network Model

Invariant network captures the normal behavior profile of a system.

Invariant network is a powerful and widely-applied tool for further system behavior analysis using graph mining algorithms.

Background: How to Build An Invariant Network

(a). Enterprise System

(c). Security Applications

Invariant Network is a Heterogeneous Weighted Network:

- Node: System component/entity (Process, File, Socket, etc.)
- Edge: Invariant relationship

Constructing Invariant Network

- Time Series data (Cheng, Wei, et al. KDD 2016)
- Categorical data (Boxiang Dong, et al. CIKM 2017)

Motivation: Traditional Workflow of Learning Invariant Network

Motivation: Why Not Directly Transfer Invariant Network?

- Directly transfer the existing invariant network to the new environment
 - Suffered by environment differences
 Low stability scores
 - No knowledge about the new environment **Domain-specific entities or links**
- Existing transfer learning mainly focus on numerical data

We need a new transfer learning technique for Invariant Network!

In this work, we propose TINET, a knowledge transfer technique for Invariant Networks.

Outline

- Background and Motivation: Invariant Network
- TINET: Learning Invariant Network via Knowledge
 Transfer
- Experimental Results and Case Study
- Summary

Problem: Knowledge Transfer for Invariant Network

Challenges: Knowledge Transfer for Invariant Networks

- Extract domain specific knowledge from a target environment.
 - The domain specific information is crucial for invariant network learning.
- Extract common knowledge from a source environment.
 - Only the common knowledge can be transferred from the source domain to the target domain.
- How to deal with the heterogeneous relations in the model.
 - The network is a heterogeneous graph with multiple types of relations.
 We propose TINET to address all these challenges.

TINET Framework

Source Domain Knowledge

- **EEM** (Entity Estimation Model)
 - Filter out irrelevant entities from source domain
 - Transfer entities to target domain
- **DCM** (Dependency Construction Model)
 - Construct the missing dependencies in target domain
 - By solving a two-constraint optimization problem

EEM: Entity Estimation Model

Embedded vector for each entity

Weighted combination of each meta-path

EEM: Entity Estimation Model

DCM: Dependency Construction Model

 $G \tau$

Source Domain Knowledge

DCM

- Smoothness
 - Learned dependencies should more or less intact in G_T as much as possible
- Consistency
 - Keep the domain differences

Recap: TINET Framework

Source Domain Knowledge

- **EEM** (Entity Estimation Model)
 - Filter out irrelevant entities from source domain
 - Transfer entities to target domain
- **DCM** (Dependency Construction Model)
 - Construct the missing dependencies in target domain
 - By solving a two-constraint optimization problem

Outline

- Background and Motivation: Invariant Network
- TINET: Learning Invariant Network via Knowledge
 Transfer
- Experimental Results and Case Study
- Summary

Experiment Setup

• Baselines:

- NT: No Transfer (Using the small target graph)
- DT: Directly Transfer (Using the source graph)
- RW-DCM: Random Walk + DCM Model
- EEM-CMF: EEM + Collective Matrix Factorization
- Datasets:
 - Synthetic data: generated by three factors (Graph Size, Dynamic Factor, and Maturity Score)
 - Real data: Monitored system data in two OS (Linux and Windows)
- Evaluation Metrics:
 - F1-Score: Compare the ground truth Invariant Network with the estimated Invariant Network

Synthetic Results

TINET outperforms all baseline methods.

Real Data Results

TINET outperforms all baseline methods.

Convergence Analysis

Parameter Study

No parameters needed to be tuned for TINET.

Case Study: Intrusion Detection

Method	Precision	Recall
NT	0.01	0.10
DT	0.15	0.30
RW-DCM	0.48	0.57
EEM-CMF	0.53	0.60
TINET	0.68	0.76
Real 30 days' invariant network	0.70	0.76

- Source domain: NEC Japan (2 months)
- Target domain: NEC Princeton (3 days)
- Testing period: 3 days

Launched several cyber attacks for the systems.

The 2018 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

 $Recall = \frac{\#Detected \ True \ Alerts}{\#Real \ Alerts}$ $Precision = \frac{\#Detected \ True \ Alerts}{\#All \ Alerts}$

Outline

- Background and Motivation: Invariant Network
- TINET: Learning Invariant Network via Knowledge
 Transfer
- Experimental Results and Case Study
- Summary

Summary

- We build the first transfer learning framework TINET for Invariant Networks.
 - TINET can effectively extract useful knowledge from the source domain, and transfer it to the target network.
- We demonstrate the effectiveness of our method on both synthetic and real-world datasets.
 - TINET achieves superior detection performance at least 20 days lead-lag time in advance with very high accuracy.

Thanks

• QA

