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Background: Root Cause Analysis (RCA)

 Input: System entity metrics and system KPI (i.e., multi-variate time series)

 Output: Top-k possible root causes (i.e., malfunctional system entities)
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Limitations of Traditional Offline RCA

 Limitations

 Inefficient: For a new system failure, need to retrain/rebuild the model from scratch

 Slow: For a large-scale system, often require a long data collecting time and RCA running time

 Strict assumption: The collected data should be only related to one failure case or one 

system state; Hard to determine which time period of data should be used for training the model
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Workflow of Online RCA

 Online RCA can incrementally learn the change of the RCA model

 Online setting “virtually” accelerates RCA process by leveraging the 
learned invariant dependencies

 Online learning can mitigate damages/losses by triggering early RCA 
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Two Straightforward Online RCA Methods

 Option 1: Directly use the offline trained RCA model 

 Suffered by different data distributions.  (Low RCA performance) 

 Lack of knowledge about new system failures. (Missing domain-
specific failure patterns)

 Option 2: Keep updating the RCA model for each incoming 
data batch

 Too many useless model updates. (High computational costs)

 Include too much noisy data (i.e., data may belong to multiple system 
phrases/failure cases). (Poison RCA performance)

 An efficient incremental RCA framework should be 
proposed for accurately locating root causes in time
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When and how to update model is critical for online RCA



CORAL Framework Overview
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 Online Trigger Point Detection

 Automatically detect system state change and trigger incremental causal discovery

 Incremental Causal Discovery

 Integrate system state invariant and system state dependent information for incrementally
constructing causal graph

 Root Cause Localization

 Localize root causes of system failures using the learned causal structure



Online Trigger Point Detection

 Detect system state changes in a short delay time.

 Computational cost should be low.
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Online Trigger Point Detection

 Distance Function: The distance will remain small as long as the observations 
continue to follow the same latent time series

 CUSUM Score Calculation: The algorithm uses the subspace distance as a detection 
score to construct a CUSUM statistic to perform the sequential hypothesis test.
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𝐻𝑡 = {𝑋𝑡−𝐿+1: 𝑋𝑡}



Disentangled Causal Graph Learning

 Intuition

 Dynamic Causal Relationships

◼ Relations between variables and their temporal dynamics may depend on the 
system state

 Inherent Stable Causal Relationships

◼ Some inherent system dependencies will never vary over time
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Causal relationships between system entities can be complex and vary over time



Disentangled Causal Graph Learning

 Goals

 Learn state-invariant causal graph

◼ Keeps  inherent unvarying causal relations for disentangling state-invariant information

 Learn state-dependent causal graph

◼ Captures time-varying causal relations for disentangling state-dependent information

10

Disentangle state-invariant and state-dependent causal relationships



Disentangled Causal Graph Learning

 System State Encoder

 Integrate the previous system state and current data batch information

 Map the learned embedding as the attributes of the previous causal graph and
disentangle the information of the attributed causal graph by VGAE
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System state encoder disentangles the information of both data and causal graph



Disentangled Causal Graph Learning

 State-Invariant Decoder

 Decode the state-invariant causal graph by minimizing the error of reconstructed
causal graph and the previous causal state causal graph

 Rectify the learned state-invariant causal graph by minimizing the prediction error
on previous state data and current batch data
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State-invariant decoder extracts invariant causation from the prior causal graph



Disentangled Causal Graph Learning

 State-Dependent Decoder

 Decode the state-dependent causal graph by minimizing the error of reconstructed
causal graph and the complement of the previous causal state causal graph

 Rectify the learned state-invariant causal graph by minimizing the prediction error
on current batch data
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State-dependent decoder captures new causation from the graph's complement



Disentangled Causal Graph Learning

 Causal Graph Fusion

 Remain the sparsity of the learned causal graph (Fusion Layer)

 Regularize the learned causal graph to be a directed acyclic graph (DAG), NOTEARS
constraints
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Causal graph fusion integrates both invariant and dependent causation



Network Propagation based RCA
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 Random-Walk based RCA method, starting from the system KPI node and visits each 
node in the learned graph with restarts.

 The moving probability in the learned causal graph from node i to node j:

 The visiting probability transition equation of the random walk with restarts:

 When the visiting probability distribution converges, the nodes' probability scores 
serve as their causal scores for ranking. 

Network propagation RCA captures the propagation patterns of system failures



Framework Convergence Conditions

 Two Convergence Conditions
 Learned causal graph converges, which is determined by the similarity

of the edge distributions between two iterations

 Learned root cause list converges, which is determined by the
similarity of the detected root cause list between two iterations

 Integrate the two kinds of similarities
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Experimental Evaluation

 Baselines
 PC

◼ is a classic constraint-based method, which
first decides skeleton, then directions.

 C-LSTM

◼ captures the nonlinear Granger causality by 
using LSTM neural networks.

 Dynotears
◼ is a score-based method that uses SVAR to 

construct dynamic Bayesian networks.

 GOLEM
◼ employs a likelihood-based score function to 

relax hard DAG constraints in NOTEARS.

 NOTEARS

◼ forms the structure learning problem as a 
continuous constrained optimization task.

 NOTEARS*
◼ online-version of NOTEARS.

 GOLEM*

◼ online-version of GOLEM.

 Datasets
 Swat

◼ 6 high-level nodes, 51 low-level
nodes, 16 faults

 WADI

◼ 3 high-level nodes, 23 low-level
nodes, 15 faults

 AIOps

◼ 5 high-level nodes, 234 low-level
nodes, 5 faults

 Evaluation Metrics
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Online Trigger Point Detection

Comparison of trigger point detection with and w/o metric data. Red dashed lines indicate the trigger points.
Please note that the trigger points reflected on KPI data were actually detected based on system entity metrics 
data (200+ variables with 200,000+ timestamps). 
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CORAL successfully detects the system state change points

 Integrating metric data with KPI data enhances early and precise change 
point detection.



Overall Comparison
19

 CORAL
significantly
outperforms
other baseline
models in terms
of all evaluation
metrics.

 Online root
cause analysis
algorithms
perform much
better than
other baselines.



Learning Procedure Analysis

 The performance of online RCA frameworks improves as the number of data 
batches increases.

 Online RCA successfully identifies root causes by gradually detecting changing 
patterns in monitoring metric data.

 CORAL achieves this advantage by updating the causal graph through disentangling 
state-invariant and state-dependent information, leading to more robust and 
effective causal structures.
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Comparison of online RCA models on different batches in terms of ranking percentile.

CORAL quickly and accurately locates the root cause of system failures



Conclusion and Future Work

 Conclusion

 We propose an incremental root cause analysis framework
for mitigating damages and losses of system failures.

 Online trigger point detection module can detect system 

state changes in a short delay time.

 Incremental causal discovery disentangles system state-
dependent and system state-invariant information for
efficiently updating causal model.

 The proposed framework has been deployed in real industrial
systems and plays an important role in keeping security.

 Future Work

 We will extend our framework to other important real-world
scenarios such as financial service, health care, and etc.
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