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Background: Root Cause Analysis
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o Microservice Example
o Input: System entity metrics and system KPI (i.e., multi-variate time series)
o1 Qutput: Top-k possible root causes (i.e., malfunctional system entities)

o Effective root cause analysis (RCA) can greatly accelerate system failure recovery



Interdependent Networks
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[1]: “Catastrophic cascade of failures in interdependent networks,” Nature, vol. 464, no. 7291, pp.
1025-1028, 2010.

-1 Real-world systems are complex and exhibit interdependent structures
Multiple networks of a system are interconnected by cross-network links

o Cascading failures*l: The malfunctioning patterns of problematic system entities
can propagate across different networks or different levels of system entities



Research Challenges

How can we learn the inter-level and intra-level
causal relationships from monitoring data for
effectively capturing cascading patterns?

How can we accurately capture abrupt change
patterns from the metrics data of an individual
system entity for accurate RCA?



Proposed Framework REASON
I I —————

CPU Usage,
Memory Usage, etc

i . . | r 1
' Entity Metrics | :: Topological Causal Discovery ::
1 Low-Level Entity Metrics : || System Key System Key ]
: I |I Performance /‘* Performance :I
1 L1 m > : || Indicator Indicator : "
! 1
| : I II High-Level High-Level I
: Ln. ’\/—\/\/\ : I Nodes -‘ -\ﬂ / E"’d:s E/ﬁ‘ -\- o ] i'

I |I ; T 1
: > I Lo L I Low-Level A, : 3 : : |F :I
! High-Level Entity Metrics :a I: w-Lev e/ r Q——-./ o.:r de ve : q_i../ | }
I 4\/_\/‘\/\ﬁ I I J
I | I
1 H1 | |' Interdependent Causal Discovery Network Propagation Topological Causal Score :l
| . ! I
1 . I e i e e e e e e T e e e e e e T T e i e e e e e e e e e e e e e e e e e e e =

I
:Hm_J\/\/—\’— ] r__—_nl—_—.-_—.-.—.-.—_-a_—!_-.h- -—_.-_—.—__.--_-.I1 r_—
! > l: Individual Causal Discovery oy
Lo o I | Ao
I ! |: —1 1 : - 1l
Sk [T ==k 1
I system I 1 . -] 1 1o ' “4

< -- ' . b —_— . g8 L
: M | ! | TI‘ b ‘l‘f ' , pummi B L ' '
I | I TET 1 il |: IT7 : B 1
1 I — o | . .
I 1 E3 3 = ] |

: - : |: Extreme Value Distribution Individual Causal Score :| :: Final Causal Score TopK Root Causes :|
! ! 1
________________ ity betetsbesirdiglesiandentistenfesiyabtoniystiontreil [N infsstentretsbeshtyogbeterbeesiertesbtiesfestidinosiytfiebtat

system
response time

_____________________________________________________________________

REASON consists of three major steps: topological causal discovery,
Individual causal discovery, and causal integration.



Structural Vector Autoregressive (SVAR)
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0 SVAR Equation
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Topological Causal Discovery

Lower Level {Eg., Pod) GNN

0 Topological causal learning in two levels
71 Intra-level Learning
m Captures causal relations within the same-level system entities

1 Inter-level Learning

m Aggregates low-level information to high-level for constructing cross-level
causal relations



Hierarchical Graph Neural Networks
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Topological Causal Discovery
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o Learning Objectives
“1 Minimize the prediction error at each level
L= Y0y
71 Enforce the learned structure to be a DAG, (NOTEARS Constraint)
h(W) = tr(eW°W)—d =0



Network Propagation based RCA
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0 Network propagation-based root cause analysis

The moving probability among nodes in the same level:
g
Hoo (i) = (1-®)GT (i, /)/ ) G (i.k)
k=1

The moving probability among nodes across the level:
gd
Hoa(i,b) = ®W(i,b)/ ) | W(i, k)
k=1
When the visiting probability distribution converges, the nodes' probability
scores serve as their causal scores for ranking.



Individual Causal Discovery

» time

0 Individual causal learning via Extreme Value Theory
71 tisthe probability threshold for the peak value, which typically set at 98%.

01 z_q isthe threshold for the real anomaly case, which is determined by the
extreme value distribution.

=1 As the increase of time points, the time window will move and the
corresponding value of t and z_qg will be updated as well.



Evaluation

PC

is a classic constraint-based method, which
first decides skeleton, then directions.

C-LSTM

captures the nonlinear Granger causality by
using LSTM neural networks.

Dynotears

is a score-based method that uses SVAR to
construct dynamic Bayesian networks.

GOLEM

employs a likelihood-based score function to
relax hard DAG constraints in NOTEARS..

GNN

the model variant of REASON, which only
captures the low-level causal relations.

REASON-I

the model variant of REASON, which
removes the individual part.

REASON-T

the model variant of REASON, which
removes the topological part.

Swat

6 high-level nodes, 51 low-level
nodes, 16 faults

WADI

3 high-level nodes, 23 low-level
nodes, 15 faults

AlOps

5 high-level nodes, 234 low-level
nodes, 5 faults
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Experimental Results

Table 1: Overall performance w.r.t. SWaT dataset.

_____ | PR@!I_| PR@3 [ PR@5_| PR@7 | PR@10 [ MAP@3 [ MAP@5 | MAP@7 | MAP@10] MRR_ _

I REASON | 25.0% | 28.13% | 66.67% | 76.04% | 84.38% | 23.96% 35.0% 46.73% 57.60% | 40.99% |

T GNN~ [ 1875% | 19.79% | 43.75% | 52.08% | 62.50% | 18.06% | 27.92% | 33.63% | 41.88% | 34.77%
PC 12.5% | 13.54% | 34.38% | 47.92% | 58.33% 12.85% 20.42% 26.64% 35.0% 26.16%
C-LSTM 12.5% | 13.54% | 28.13% | 40.63% | 52.08% 13.89% 17.71% 23.81% 31.88% 29.35%
Dynotears | 12.5% | 29.17% | 32.29% | 34.38% | 42.71% 20.14% 24.38% 26.93% 30.83% 27.85%
GOLEM 6.25% 7.29% 12.5% 39.58% | 47.92% 7.64% 9.58% 16.96% 25.0% 22.36%

Table 2: Overall performance w.r.t. WADI dataset.

____[ PR@1_[ PR@3 [ PR@5 | PR@7 | PR@10 | MAP@3 [ MAP@S | MAP@T | MAP@10 | MRR _

I REASON | 28.57% | 59.52% | 65.0% | 76.19% | 79.76% | 42.46% 50.62% 57.41% 63.76% 53.35% |

T T GNNT T 14.28% |T2619% | 34.28% |T4286% | 54.76% | 21.83% [ 25.31% [ 30.15% | 3754% | 3271%
PC 7.14% | 27.38% | 35.0% | 44.05% | 50.0% 16.27% 23.90% 28.47% 34.57% 27.74%
C-LSTM 0% 20.24% | 35.0% | 47.62% | 51.19% 11.51% 18.55% 25.83% 32.73% 24.40%
Dynotears | 7.14% | 14.29% | 30.00% | 29.76% | 47.62% 10.71% 17.43% 20.95% 26.81% 22.23%
GOLEM 0% 19.05% | 40.0% | 46.43% | 53.57% 9.92% 20.38% 27.82% 34.83% 23.48%

Table 3: Overall performance w.r.t. AIOps dataset.

—— | PR@1 | PR@3 | PR@5 | PR@7 | PR@10 | MAP@3 | MAP@5 | MAP@7 | MAP@10 | MRR_

I REASON | 80.0% | 80.0% | 100.0% | 100.0% | 100.0% 80.0% 84.0% 88.57% 92.0% 84.0% -|

— T "GNNT 7| 200% |74000% [ 40.0% | T40.0% T 60.0% | 26.67% | 32.0% | 34.29% | 380% | 30.65%
PC 0% 20.0% 20.0% 40.0% 40.0% 13.33% 16.0% 22.86% 28.0% 14.0%
C-LSTM 0% 20.0% 20.0% 20.0% 20.0% 13.33% 16.0% 17.14% 18.0% 10.82%
Dynotears | 20.0% | 40.0% | 40.0% 40.0% 40.0% 33.33% 36.0% 37.14% 38.0% 30.79%
GOLEM 20.0% | 40.0% | 40.0% 40.0% 40.0% 33.33% 36.0% 37.14% 38.0% 31.22%




The Impact of Network Propagation

Table 4: The influence of network propagation in terms of MAP@ 10

PC GLOEM Dynotears C-LSTM GNN
Original | Propagate | Original | Propagate | Original | Propagate | Original | Propagate | Original | Propagate
SWaT 35.0% 37.39% 25.0% 33.44% 30.83% 37.08% 31.87% 34.16% 41.87% 49.16%
WADI | 34.57% 35.71% 34.83% 38.05% 26.81% 33.76% 32.72% 42.61% 37.53% 45.98%
AIOPS 28.0% 30.0% 38.0% 54.0% 38.0% 58.0% 18.0% 48.0% 38.0% 60.0%
Table 5: The influence of network propagation in terms of MRR
PC GLOEM Dynotears C-LSTM GNN
Original | Propagate | Original | Propagate | Original | Propagate | Original | Propagate | Original | Propagate
SWaT | 26.16% 32.27% 22.36% 30.42% 27.85% 33.98% 29.35% 32.85% 34.77% 40.43%
WADI | 27.74% 30.74% 23.48% 25.89% 22.22% 34.28% 24.39% 33.27% 32.71% 36.40%
AIOPS 14.0% 25.35% 31.22% 37.74% 30.79% 50.77% 10.82% 24.73% 30.65% 62.48%

- Network propagation can significantly improve the performance of root
cause localization.

-1 The reason for the improvement is that the network propagation captures
the propagated patterns of system failures among different system
entities.




Ablation Studies for REASON
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0 Definitions
REASON-T, which solely keeps the topological causal discovery.
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(c) Precision@K for AIOps

REASON-I, which only keeps the individual causal discovery.

(d) MAP@K for AIOps

REASON-N, which removes the inter-level learning in topological causal discovery while keeping the
intra-level learning of low-level system entities, network propagation and individual causal discovery.

: for keeping a good RCA performance.

' The integration of topological causal discovery and individual causal discovery is important

iThe inter-level learning component will help learn robust causation among high-level
' nodes by integrating the causal information in the low-level nodes.




Conclusion and Future Work
16|

0 Conclusion
We propose an offline RCA framework by learning
interdependent causation among system entities.

Network Propagation based method can capture the
propagated patterns of system failures for accurate RCA.

Capturing both topological and individual causal pattern
are helpful to maintain a good RCA performance.

The proposed framework has been deployed in real industrial
systems and plays an important role in keeping security.
0 Future Work

We will extend our framework to online setting for quickly and
efficiently locating root causes of system failures.



Thanks for Listening!
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