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1. Motivation

Which one
should | choose?

Mistral 7B [Llama 3 70B GPT-3.5 Turbo GPT-40

X XRX XX RXRXX

Response Quality Cost Latency
We want to select the model which At the set level, the comparable response We don't want the query to
can answer the query correctly. quality with lower cost is possible. gueue for a long time.

We aim to balance response quality, cost, and latency to achieve the trade-off.
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2. Key Challenges & Our Solutions

* Challenge 1: Dynamic trade-offs among quality, cost, and latency.

* Insight: Smart LLM selection reduces cost while maintaining response quality.

* Solution: Predict quality and cost and introduce the time penalty to perform query-
specific LLM assignments.

* Challenge 2: Enabling continual learning in deployed systems.
* Insight: Using feedback improves performance on evolving queries.

e Solution: Real-time learning (user feedback) refines routing choices.

* Challenge 3: Navigating a varying set of LLM candidates over time (e.g., new LLM
addition or old LLM removal).
* Insight: Dynamically add or remove LLMs without retraining the entire system.

* Solution: The LLM-specific prediction enables plug-and-play integration.
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3. MixLLM: Key Components and Workflow

Tag-Enhanced Embedding LLM-Specific Prediction Decision Making Continual Training
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* Informative embedding * Individual prediction
* Time penalty * Feedback after depolyment
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3.1. Tag-Enhanced Embedding

* Generate fine-grained query tags to train the encoder.
* Why Tags?

t-SNE Component 2
t-SNE Component 2

-5%0 %0

=25 0 2
t-SNE Component 1

Tags have correlation with LLM response quality.

t_-SNE Component 1
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3.1. Tag-Enhanced Embedding

* Use BERT-based encoder for sentence embedding:

e, = Encoder(q,),

* Employ InsTag [1] to generate query tags, then cluster tags into relevant
domains.

* Train encoder based on these domain clusters:

Q| |D|

Lintra = Zlo eXp €i- ﬂ’z) Linter = ZlogZeXp K- u’k
e S exple; - pj) 1Dl
i=1 —1 €Xplei - i, j=1

[1]Lu, Keming, et al. "# instag: Instruction tagging for analyzing supervised fine-tuning of large language models." The Twelfth International Conference on Leaming Representations. 2023.
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3.2. LLM-Specific Prediction

* For each candidate LLM:
* Predict the response quality of this LLM on the current query:

pnl — q(en;ggq)a

* Predict response length to estimate total cost:

lenres fi (en; 9{1),

nl_

Cnil = len prlcel "4+ lenres price;©”,

A - / 7
e Y

input cost output cost
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3.3. Meta Decision Maker

* Select the most suitable LLM according to the score:

trade unc en
Snl = Sp] ta-s, 7 — 0 sp .

* Quality vs. Cost Trade-off: Flnds the optlmal balance.

A
trade_ L

* Uncertainty Correction: AdeStS based on confidence in predictions.

unc __ T —1
Snil = €n A7 ey,

S

* Time penalty: Avoids excessive waiting time.

S?en — BV(wl _67-) ,
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3.4. Continual Training

Offline Training Online Training
* Pre-deployment update e Post-deployment update

* Full feedback from all candidate LLMs < Partial feedback from the selected LLM
* Binary = Dynamic Feedback Score

rq .._ gra A / df
gl . — Bl T ?71 . V@EQE(p’n,l)pn,l)a S?’L,l — Sn,l —|— KTL,Z . Sn,l)
rl._grl — . res ]enres df  df df df ¢, . pdf
9[ : 9[ 12 veglﬁ(lenn,l ) 1enn,l )’ |:87’L,17 S’I’L,27 P Sn,|M| = f (en, 0 )

A=A +el e, : :
l LT ey e * Apply the Policy Gradient method to

update the parameters.
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4. MixLLM in Action: Live Demonstration

¥ & MillMDemo-aHuggingFac ¥+ -~ @
< @ % huggingfacecofspaces/wxy185/MixLLM_Demo * 0O @ :
= Spaces MixLLM_Demo T Log

App Files Community Settings i,

L

MixLLM: Dynamic Routing in Mixed Large Language Models

= What is MixLLM? A Router to Choose the Best LLM to Answer!

Large Language Madels (LLMs) exhibit potential artificial gene
maximize response quality and minimize cost and latency.

ntelligence recently, however, their usage is costly with high response latency. Given mixed LLMs with their own strengths and weaknesses, LLM routing aims 1o idantify the most suitable model for each quary in the stream to

However, the challenges involve: (1) dynamic trade-offs among quality, cost, and latency: (2) enabling continual leaming in deployed systems: and (3) navigating a varying (e.g.. new LLM addition or old LLM removal) set of LLM candidates over time.

To bridge these gaps, we develop M LM, a dynamic bandit-based routi for query-LLM assignment. Specifically, we first leverage query tags to enhance query embeddings for the routing task. Next, we design light

weight prediction models la estimate the response qualities
and costs of queries over LLMz. We then davise 2 meta-decision maker to choase the query-LLM assignments to best tradectf rasponse quality, cost, and latency. Finally, the system benefits from continual training, allowing it to adapt to evolving queries and user feedback over time

Qur extensive experiments show that MixLLM achieves the best trade-offs in response quality, cost, and latency (97.25% of GPT-4's quality at 24.18% of the cost under the time constraint).

@ Try MixLLM Routing: Experiment with Samples or Your Own Query!

Experience the power of MixLLM's intelligent routing system by selecting 2 sample query of inpulling your own query. Explore how Mixl LM dynamically assigns queries to the bast LLM!

# Try a Sample Query (Quick Demo) &, Test Your Own Query (Full Routing Flow)

Please select one query -

Select Budget

Select Bud,

Very Low -
Very Low -

£
/ Clear Result
/ Clear Result
LM Quality Cost/cent Waiting Time/ms

LM Quality Cost/cent Waiting Time/ms

Final Chaice
Final Gigoice

MixLLM is a dynamic LLM routing system that selects the
~ best model based on quality, cost, and latency.

! How MixLLM Works? Find the Answer in the Following Figure!
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5. Evaluating MixLLM: Performance & Insights

* Dataset:
* RouterBench: Consists of 36,497 queries from 8 NLP datasets. Each query is

answered by 11 different LLMs.
e Data Split: 80% Training (Offline Training: Pre-train on all LLM responses), 20%
Testing (Online Training: Adapt using binary feedback)

e Baselines:
* AutoMix, RoutelLLM, Zooter, RouterBench, FORC, OptLLM, MetaLLM.

e Metric (LLMs cost & latency) source:
* https://artificialanalysis.ai/
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5.1. Overall Routing Performance

* MixLLM: 70000 Oracle
* outperforms baselines; -
* achieves 97.25% of GPT-4’s quality at WizardLMGPT—4

Claude-Instant-V1
Claude-vV1
Claude-vV2

24.18% of the cost under the time
constraint;
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* remains stable when the budget is S ¢ codellama
. O 40004 < Mistral-78
h |g h . (V) Mistral-8x7B
wn Random ,
C [ YI—34Bl—Chat
§3000 T et * (;racle
© Zooter
* Why can response quality decline even = 7 nion
with a high budget? 20001 oLy
* Higher budgets encourage using ‘ | | | - M
powerful LLM, where many queries ° ’ Cost/(Dollars) 2 ®

exceed the waiting time tolerance.

“lIra A.Ful-ton Schools of
ﬂl Engineering

Arizona State University



5.2. Study on Continual Training

* Continual training offers improved performance.
Offline : Online
80:20  50:50  30:70
Without Online Training 75.54% 71.98% 69.74%
With Refined Feedback 76.45% 72.99% 71.29%

Setting

Improvement 1.21% 1.39% 2.22%
With Binary Feedback 7593% 72.37% 70.65%
Improvement 052% 0353% 1.31%

* |In real-world applications, collecting full feedback is difficult and expensive.
* The responses to queries can serve as partial feedback.

* The amount of data during inference will far exceed that during training.
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5.3. Study on Adaptive Training

 We add 2 new models: 7000) - wOracle
e Llama 3.1 8B; o
* Llama 3.1 70B. v GPLe
Lo . giazjc;:hl\:stant-w
< 5000 S
3 P v GPT35
* MixLLM achieves 98.55% of GPT-4's E ) L et
response quality while reducing the costto S < o
just 18.36%. 2 v T b latan
§3ooo ; SR
Y B Rouretun
. . . s J V Zooter
* The original parameters remain unchanged. 2000 — Routerpenen
We only train 2 new sets of prediction 1T
models. 0 5 10 15 20 25

Cost/(Dollars)
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5.4. Out-of-Domain Generalization

* Real-world queries often originate from new or unseen domains.

OOD splitting: the test set contains non-overlapping domains not in the training set

Splitting Policy Offline Only Offline + Online
Normal 80:20 Splitting 75.54% 76.45%
OOD 80:20 Splitting 71.43% 73.89%
Decrease 5.44% 3.35%

The offline-online training strategy effectively enhances domain generalization and
adaptation.

How to solve the OOD routing task?
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6. Takeaways & Future Directions

 MixLLM dynamically routes queries to the most suitable LLM while maintaining a
balance between response quality, cost, and latency.

* Extensive experiments confirm MixLLM'’s effectiveness: it achieves 97.25% of
GPT-4's quality at only 24.18% of the cost.

 MixLLM includes continual training: it learns from large-scale post-deployment
data and improves performance over time.

* MixLLM is highly flexible: it can add or remove LLM candidates without requiring
full retraining.

* Future work will focus on improving out-of-domain (OOD) generalization and
refining LLM selection policies for better performance.
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Q& A

Thank you for listening.

Looking forward to collaboration!
xwang735@asu.edu
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