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DL-Based Face Recognition in Dalily Life
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DL Models Are Not R

Yy
s
)
v

\‘\l, 3. bt

AN

Small adversarial noise

“Airliner”

(Goodfellow et al., ICLR'14)

DL models are inherently vulnerable to
adversarial examples



Face Recognition Systems Are Not Secure

“Bob” Adversarial eyeglass frame “Alice”

(Sharif et al., CCS'16)

Adversarial examples can be realizable in physical space



Face Recognition Systems Are Not Secure

(Source: www.faception.com) (Source: www. en.wikipedia.org)

It is critical to evaluate robustness of face recognition
systems in adversarial settings



Robustness Evaluation Is Challenging
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= Lack of understanding which individual or combination of components is

vulnerable to adversarial examples
o Different training sets and neural architectures result in different performance and
robustness
o Existing approaches: only use white-box or black-box attack for evaluation



Robustness Evaluation Is Challenging
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Open-set face recognition

Closed set face recogmtlon

= Lack of understanding different levels of robustness corresponding to

different types of attacks

o Attackers vary by perturbation types, goals, knowledge, and capabilities
o Existing approaches: only use a specific type of attack (e.q., digital attack)



Our main contribution:
A fine-grained robustness evaluation framework for face
recognition systems



FaceSec - Framework
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FaceSec — Face Mask Attack

max L(S(x * (1= f) +T(6) * ), )
* L:loss function

* S: target system

* x:inputimage Back Propagation
* y:label

* O: grid level color matrix

* T:a sequence of transformations

* f:areas where perturbation is
allowed

Perspective|Transformation




FaceSec — Universal Attack

Input batch Face-agnostic perturbation Output batch

§ = arg maxmin{L(SCx; x (1 — f) + 8" * ), y)}hils

A general approach that works for both digital and
physically realizable attacks



Experimental Results

Attack Success Rate of Dodging Face Mask Attacks

Attacker’s System Knowledge

Target System Zero Training Neural Full

knowledge set architecture  knowledge
VGGFace 0.26 0.32 0.63 1.00
FaceNet 0.30 0.42 0.83 1.00
ArcFacel8 0.27 0.33 0.71 1.00
ArcFace50 0.29 0.36 0.67 0.99
ArcFacel01 0.26 0.36 0.54 0.99

Accurate knowledge of neural architecture is significantly more
important than training data in black-box attacks



Attack Success Rate
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Experimental Results

Dodging Attacks VS. SOTA Defense
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Adversarial robustness highly depends
on both the nature of perturbation
and the neural architecture

Adversarial robustness against one
type of perturbation may not be
generalized to other types
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Conclusion
FACESEC is the first that supports to evaluate the risks of
ifferent components of face recognition systems from multiple

C

imensions and under various adversarial settings

. FACESEC can work for both closed-set and open-set systems
. Our systematic and comprehensive evaluations demonstrate that

FACESEC can greatly help understand the robustness of face
recognition systems
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