
AutoOD: Neural Architecture Search for
Outlier Detection

Yuening Li1, Zhengzhang Chen2,∗, Daochen Zha1, Kaixiong Zhou1, Haifeng Jin1, Haifeng Chen2, and Xia Hu1
1Department of Computer Science and Engineering, Texas A&M University, USA

{yueningl,daochen.zha,zkxiong,jin,xiahu}@tamu.edu
2NEC Laboratories America, Princeton, USA

{zchen,haifeng}@nec-labs.com
∗Corresponding author.

Abstract—Outlier detection is an important data mining task
with numerous applications such as intrusion detection, credit
card fraud detection, and video surveillance. However, given
a specific task with complex data, the process of building an
effective deep learning based system for outlier detection still
highly relies on human expertise and laboring trials. Moreover,
while Neural Architecture Search (NAS) has shown its promise
in discovering effective deep architectures in various domains,
such as image classification, object detection and semantic
segmentation, contemporary NAS methods are not suitable for
outlier detection due to the lack of intrinsic search space and
low sample efficiency. To bridge the gap, in this paper, we
propose AutoOD, an automated outlier detection framework,
which aims to search for an optimal neural network model
within a predefined search space. Specifically, we introduce an
experience replay mechanism based on self-imitation learning to
improve the sample efficiency. Experimental results on various
real-world benchmark datasets demonstrate that the deep model
identified by AutoOD achieves the best performance, comparing
with existing handcrafted models and traditional search methods.

I. INTRODUCTION

With the increasing amount of surveillance data collected
from large-scale information systems such as the Web, social
networks, and cyber-physical systems, it becomes more and
more important for people to understand the underlying regu-
larity of the vast amount of data, and to identify the unusual
or abnormal instances [1]. Centered around this goal, outlier
detection plays a very important role in various real-world
applications [2]–[8], such as fraud detection, cyber security,
medical diagnosis, and social network analysis.

Driven by the success of deep learning, there has been
a surge of interests [6], [9]–[11] in adopting deep neural
networks for outlier detection. Deep neural networks can learn
to represent the data as a nested hierarchy of concepts to
capture the complex structure in the data, and thus significantly
surpass traditional outlier detection methods as the scale
of data increases [12]. However, building a powerful deep
neural network system for a real-world complex application
usually still heavily relies on human expertise to fine-tune
the hyperparameters and design the neural architectures. These
efforts are usually time-consuming and the resulting solutions
may still have sub-optimal performance.

Neural Architecture Search (NAS) [13]–[15] is one promis-
ing means for automating the design of neural networks, where

reinforcement learning and evolution have been used to dis-
cover optimal model architectures from data [16]. Designing
an effective NAS algorithm requires two key components:
the search space and the search strategy, which define what
architectures can be represented in principles and how to
explore the search space, respectively. The discovered neural
architectures by NAS have been demonstrated to be on par or
outperforms hand-crafted neural architectures.

Although the recent years have witnessed significant
progress of NAS techniques in some supervised learning tasks
such as image classification and text classification [13], [16],
the unsupervised setting and the naturally imbalanced data
have introduced new challenges in designing an automated
outlier detection framework. (1) Lack of search space. It
is non-trivial to determine the search space for an outlier
detection task. In particular, since there is no class label
information in the training data of an outlier detection task,
objective functions play an important role to differentiate
between normal and anomalous behaviors. Thus, in contrast
to the supervised learning tasks, we often need to find a
suitable definition of the outlier and its corresponding objective
function for a given real-world data. One typical way to define
the anomalies is to estimate the relative density of each sample,
and declare instances that lie in a neighborhood with low
density as anomalies [17]. Yet these density-based techniques
perform poorly if the data have regions of varying densities.
Another way to define anomalies is through clustering. An
instance will be classified as normal data if it is close to
the existing clusters, while the anomalies are assumed to
be far away from any existing clusters [18]. However, these
clustering-based techniques will be less effective if the anoma-
lies form significant clusters among themselves [1]. The proper
definition of anomalies not only requires domain knowledge
from researchers and experience from data scientists, but also
needs thorough and detailed raw data analysis efforts. Thus,
different from the search spaces defined by the existing NAS,
the search space of automated outlier detection needs to cover
not only the architecture configurations, but also the outlier
definitions with corresponding objective functions. (2) Low
sample efficiency. Existing NAS algorithms usually require
training a large number of child models to achieve good
performance, which is computationally expensive. While in

2117

2021 IEEE 37th International Conference on Data Engineering (ICDE)

978-1-7281-9184-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00210

20
21

 IE
EE

 3
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
8-

1-
72

81
-9

18
4-

3/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

13
99

.2
02

1.
00

21
0

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:46:21 UTC from IEEE Xplore. Restrictions apply.

real-world outlier detection tasks, abnormal samples are very
rare. Thus, it requires the search strategy to exploit samples
and historical search experiences more effectively.

To tackle the aforementioned challenges, in this paper, we
propose AutoOD, an automated outlier detection algorithm to
find an optimal deep neural network model for a given dataset.
In particular, we first design a comprehensive search space
specifically tailored for outlier detection. It covers architecture
settings, outlier definitions, and corresponding loss functions.
Given the predefined search space, we further propose an
experience replay mechanism based on self-imitation learning
to enhance sample efficiency. It can benefit the search process
through exploiting good experience in the historical episodes.
To evaluate the performance of AutoOD, we perform an exten-
sive set of experiments on benchmark datasets comparing with
existing handcrafted models and traditional search methods.

The contributions of this paper are summarized as follows:
• We identify a novel and challenging problem (i.e., auto-

mated outlier detection) and propose a generic framework
AutoOD. To the best of our knowledge, AutoOD describes
the first attempt to incorporate AutoML with an outlier
detection task, and one of the first to extend AutoML
concepts into applications from data mining fields.

• We carefully design a search space specifically tailored to
the automated outlier detection problem, covering archi-
tecture settings, outlier definitions, and the corresponding
objective functions.

• We introduce an experience replay mechanism based on the
self-imitation learning to improve the sample efficiency.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Deep AutoEncoder Based Outlier Detection

Classical outlier detection methods, such as Local Outlier
Factor and One-Class SVMs, suffer from bad computational
scalability and the curse of dimensionality in high-dimensional
and data-rich scenarios [11]. Deep structured models have
been proposed to process the features in a more efficient way.
Among recent deep structured studies, Deep AutoEncoder is
one of the most promising approaches for outlier detection.
The AutoEncoder learns a representation by minimizing the
reconstruction error from normal samples [19], [20]. There-
fore, it can be used to extract the common factors of variation
from normal samples and reconstruct them easily, and vice
versa. Besides directly employing the reconstruction error as
the denoter, recent studies [11], [17], [18] demonstrate the
effectiveness of collaborating Deep AutoEncoders with clas-
sical outlier detection techniques, by introducing regularizers
through plugging learned representations into classical outlier
definition hypotheses. Specifically, there are three typical
outlier assumptions: density, cluster, and centroid. The density
based approaches [17] estimate the relative density of each
sample, and declare instances that lie in a neighborhood
with low density as anomalies. Under the clustering based
assumption, normal instances belong to an existing cluster in
the dataset, while anomalies are not contained in any existing

cluster [18]. The centroid based approaches [11] rely on the
assumption that normal data instances lie close to their closest
cluster centroid, while anomalies are far away from them. In
this work, we illustrate the proposed AutoOD by utilizing
Deep AutoEncoder with a variety of regularizers as the basic
outlier detection algorithm. The framework of AutoOD could
be easily extended to other deep structured approaches.

B. Problem Statement

Different from the traditional Neural Architecture Search,
which focuses on optimizing neural network architectures for
supervised learning tasks, automated outlier detection has the
following two unique characteristics. First, the neural archi-
tecture in the Autoencoder needs to be adaptive in the given
dataset to achieve competitive performance. The hyperparam-
eter configurations of neural architecture include the number
of layers, the size of convolutional kernels and filters, etc.;
Second, the outlier detection requires the designs of definition-
hypothesis and corresponding objective function. Formally, we
define the outlier detection model and the unified optimization
problem of automated outlier detection as follows.
Outlier Detection Model: The model of outlier detection
consists of three key components: the neural network architec-
ture A of AutoEncoder, the definition-hypothesis H of outlier
assumption, and the loss function L. We represent the model
as a triple (A,H,L).
Automated Outlier Detection: Let the triple (A,H,L) denote
the search space of outlier detection models, where A denotes
the architecture subspace, H denotes the definition-hypothesis
subspace, and L denotes the loss functions subspace. Given
training set Dtrain and validation set Dvalid, we aim to find
the optimal model (A?, H?, L?) to minimize the objective
function J as follows:

(A?, H?, L?) = argmin
A∈A,H∈H,L∈L

J(A(ω), H, L,Dtrain,Dvalid),

(1)
where ω denotes the weights well trained on architecture A.
J denotes the loss on Dvalid using the model trained on the
Dtrain with definition-hypothesis H and loss function L.

III. PROPOSED METHOD

In this section, we propose an automated outlier detection
framework to find the optimal neural network model for a
given dataset. A general search space is designed to include the
neural architecture hyperparameters, definition-hypothesis, and
objective functions. To overcome the curse of local optimality
under certain unstable search circumstances, we propose an
experience replay mechanism based on self-imitation learning
to better exploit the past good experience and enhance the
sample efficiency. An overview of AutoOD is given in Fig. 1.

A. Search Space Design

Because there is a lack of intrinsic search space for outlier
detection tasks, here we design the search space for the Deep
AutoEncoder based algorithms, which is composed of global

2118

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:46:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: An overview of AutoOD. With the pre-defined search space and the given dataset, we use an LSTM based controller
to generate actions a. Child models are sampled from actions a and evaluated with the reward r. Once the search process of
one iteration is done, the controller samples M child models as candidate architectures and then picks the top K from them.
The top K architectures’ controller outputs will fed as the input of the next iteration’s controller. Parameters θ of the controller
are updated with the reward r. Good past experiences evaluated by the reward function are stored in replay buffers for future
self-imitations (shown as the blue line).

Definitions H Regularizer Equations

Density [17] − log

(∑K
k=1 φ̂k

exp
(
− 1

2
(f(xi;ω)−µ̂k)T Σ̂−1

k
(f(xi;ω)−µ̂k)

)
√
|2πΣ̂k|

)

Cluster [18]
∑
i

∑
j pij log pij

((
1+‖f(xi;ω)−µj‖2

)−1

∑
j

(
1+‖f(xi;ω)−µj‖2

)−1

)−1

Centroid [11] R2 +
∑n
i=1 max

{
0, ‖f (xi;ω)− c‖2 −R2

}
Reconstruction [19] 1

n

∑n
i=1 ‖g (f (xi;ω))− xi‖

2
2

TABLE I: The set of four representative outlier detection
hypotheses, where f(·) and g(·) denote encoder and decoder
functions, respectively.
settings for the whole model, and local settings in each layer
independently. Formally, we have:

A = {f1(·), ..., fN (·), g1(·), ..., gN (·)},
f i(x;ωi) = ACT(NORMA(POOL(CONV(x))),
gi(x;ωi) = ACT(NORMA(UPPOOL(DECONV(f(x)))),
score = DIST(g(f(x;ω)), x) + DEFINEREG(f(x;ω)),

(2)
where x denotes the set of instances as input data, and ω
denotes the trainable weight matrix. The architecture space
A contains N encoder-decoder layers. f(·) and g(·) denote
encoder and decoder functions, respectively. ACT(·) is the
activation function set. NORMA denotes the normalization
functions. POOL(·) and UPPOOL(·) are pooling methods.
CONV(·) and DECONV(·) are convolution functions. As we
discussed in the Section II (A), the encoder-decoder based out-
lier score score contains two terms: a reconstruction distance
and an outlier regularizer. DIST(·) is the metric to measure the
distance between the original inputs and the reconstruction
results. DEFINEREG(·) acts as an regularizer to introduce
the definition-hypothesis from H . We revisit and extract the
outlier detection hypotheses and their mathematical formulas
from state-of-the-art approaches as shown in the Table I. We
decompose the search space defined in Eq. 2 into the following
8 classes of actions:

Global Settings:
• Definition-hypothesis determines the way to define

the “anomalies”, which acts as a regularization term in
the objective functions. We consider density-based, cluster-
based, centroid-based, and reconstruction-based assump-
tions, as shown in Table I.

• Distance measurement stands for the matrix measur-
ing the distance for the reconstruction purpose, including
l1, l2, l2,1 norms, and the structural similarity (SSIM).

Local Settings in Each Layer:
• Output channel is the number of channels produced by

the convolution operations in each layer, i.e., 3, 8, 16, 32,
64, 128, and 256.

• Convolution kernel denotes the size of the kernel
produced by the convolution operations in each layer, i.e.,
1× 1, 3× 3, 5× 5, and 7× 7.

• Pooling type denotes the type of pooling in each layer,
including the max pooling and the average pooling.

• Pooling kernel denotes the kernel size of pooling
operations in each layer, i.e., 1× 1, 3× 3, 5× 5, and 7× 7.s

• Normalization type denotes the normalization type
in each layer, including three options: batch normalization,
instance normalization, and no normalization.

• Activation function is a set of activation functions
in each layer, including Sigmoid, Tanh, ReLU, Linear,
Softplus, LeakyReLU, ReLU6, and ELU.

Thus, we use a (6N + 2) element tuple to represent the
model, where N is the number of layers in the encoder-
decoder-wise structure. Our search space includes an exponen-
tial number of settings. Specifically, if the encoder-decoder cell
has N layers and we allow action classes as above, it provides
4× 4× (7× 4× 2× 4× 3× 8)N possible settings. Suppose
we have a N = 6, the number of points in our search space is
3.9e+23, which requires an efficient search strategy to find an

2119

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:46:21 UTC from IEEE Xplore. Restrictions apply.

Inputx

Convolution

Pooling

N
orm
alization

Activation

Convolution

Pooling

Loss/
O
utlier

score

N
orm
alization

Activation

D
econvolution

D
econvolution

R
econstruction

R
egularizer

D
istance

Latent

f!(#)f"(#)
g"(#)g!(#)

Definition hypothesis

Distance measurement

CONVPOOLNORMAACT

• Channel
• Kernel size

• Pooling type
• Kernel size

• Batch
• Instance
• No

• Sigmoid
• ReLU
• Tanh
• …

+

Fig. 2: An example of the search space in AutoOD with two
layers, which is composed of global settings for the whole
model (blue and purple parts), and local settings in each layer
(red and green parts), respectively. All building blocks are
wired together to form a direct acyclic graph.

optimal model out of the large search space. Fig. 2 illustrates
an example of the proposed search space in AutoOD.

B. Search Process

We now describe how to search the optimal model within
the given search space. Inspired by the recent NAS work,
the search strategy is considered as a meta-learning process.
A controller is introduced to explore a given search space
by training a child model to get an evaluation for guiding
exploration [16]. The controller is implemented as a recurrent
neural network. We use the controller to generate a sequence of
actions for the child model. The whole process can be treated
as a reinforcement learning problem with an action a1:T , and
a reward function r. To find the optimal model, we ask our
controller to maximize its expected reward r, which is the
expected performance in the validation set of the child models.

There are two sets of learnable parameters: one of them is
the shared parameters of the child models, denoted by ω, and
the other one is from the LSTM controller, denoted by θ. ω
is optimized using stochastic gradient descent (SGD) with the
gradient ∇ω as:

∇ωEm∼π(m;θ)[L(m;ω)] ≈ ∇ωL(m,ω), (3)

where child model m is sampled from the controller’s actions
π(m; θ), L(m,ω) is the loss function composed from the
search space above, computed on a minibatch of training data.
The gradient is estimated using the Monte Carlo method.

Since the reward signal r is non-differentiable, to maximize
the expected reward r, we fix ω and apply the REINFORCE
rule [21] to update the controller’s parameters θ as:

∇θEP (a1:t;θ)[r∇θ logP (at|a1:t−1; θ)], (4)

where r is computed as the performance on the validation
set, rather than on the label-free training set. We define the
reward r as the detection accuracy of the sampled child model.
We also adopt different evaluation metrics, including AUROC,
AUPR, and RPRO in the experiment section. An empirical
approximation of the Eq. 4 is:

L =
1

n

n∑
k=1

T∑
t=1

(rk − b)∇θ logP (at|a1:t−1; θ), (5)

where n is the number of different child models that the
controller samples in one batch and T is the number of tokens.
b acts as a baseline function to reduce the estimate variance.

C. Experience Replay via Self-Imitation Learning

The goal of this subsection is to exploit the past good
experiences for the controller to benefit the search process
by enhancing the sample efficiency, especially considering
there are only a limited number of negative samples in outlier
detection tasks. In this paper, we propose to store rewards
from historical episodes into experience replay buffers [22]:
B = (a1:t, ra), where (a1:t and ra) are the actions and the
corresponding reward. To exploit good past experiences, we
update the experience replay buffer for child models with
better rewards, and amplify the contribution from them to the
gradient of θ. More specifically, we sample child models from
the replay buffer using the clipped advantage (r− b)+, where
the rewards r in the past experiences outperform the current
baseline b. Comparing with the Eq. 5, the objective to update
the controller’s parameter θ through the replay buffer is:

∇θEa1:t∼πθ,b∼B[− log πθ (at|a1:t−1) (ra − b)+]. (6)

Then, an empirical approximation of the Eq. 6 is:

Lreplay =
1

n

n∑
k=1

T∑
t=1

∇θ − log πθ (at|a1:t−1) (ra − b)+, (7)

where n is the number of different child models that the
controller samples in one batch and T is the number of tokens.
The optimal model with the best performance on the validation
set is utilized for the outlier detection tasks.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to answer
the following four research questions.
• Q1: How effective is AutoOD compared with state-of-the-

art handcrafted algorithms?
• Q2: Whether or not the experience replay effective in the

search process?
• Q3: Compared with random search, how effective is the

proposed search strategy?
1) Datasets and Baselines: We evaluate AutoOD on

four benchmark datasets, MNIST [25], Fashion-MNIST [26],
CIFAR-10 [27], Tiny-ImageNet [28], and two synthetic noise
datasets (i.e., Gaussian and Uniform). The Gaussian dataset
consists of 1, 000 random 2D images, where the value of each
pixel is sampled from an i.i.d Gaussian distribution with mean
0.5 and unit variance. And the Uniform dataset consists of
1, 000 images, at which the value of each pixel is sampled
from an i.i.d uniform distribution on [0, 1]. We manually inject
abnormal samples (a.k.a. out-of-distribution samples), which
consists of images randomly sampled from other datasets.
For all datasets, we train an anomaly detection model on
the training set, which only contains in-distribution samples,
and use a validation set with out-of-distribution samples to
guide the search, and another test set with out-of-distribution
samples to evaluate the performance. The contamination ratio

2120

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:46:21 UTC from IEEE Xplore. Restrictions apply.

(a) In-distribution dataset: MNIST

OOD Dataset AUROC AUPR In AUPR Out
Fashion-MNIST 99.9/97.9/97.9 99.9/99.7/99.6 100/90.5/91.0
CIFAR-10 99.9/99.9/99.7 91.3/90.3/99.9 99.2/99.9/97.6
Tiny-ImageNet 99.9/99.4/99.6 99.8/99.6/99.9 99.8/96.8/97.5
Gaussian 99.9/99.7/99.9 100/99.8/100 100/99.7/100
Uniform 100/99.9/100 100/99.9/100 100/99.9/100

(b) In-distribution dataset: Fashion-MNIST

OOD Dataset AUROC AUPR In AUPR Out
MNIST 99.9/92.9/72.9 99.9/82.8/91.6 99.9/94.2/46.1
CIFAR-10 99.9/88.2/96.6 99.5/80.6/99.3 99.9/97.2/80.4
Tiny-ImageNet 98.2/87.7/95.5 90.7/80.4/99.0 95.3/97.1/82.5
Gaussian 99.9/97.2/89.6 99.9/82.24/98.0 100/99.5/48.2
Uniform 99.9/95.8/63.6 99.9/82.9/91.4 99.9/99.0/19.8

(c) In-distribution dataset: CIFAR-10

OOD Dataset AUROC AUPR In AUPR Out
MNIST 100/98.4/99.9 100/99.4/100 100/89.4/99.4
Fashion-MNIST 99.6/98.2/99.4 98.1/96.1/99.9 99.9/98.8/97.3
Tiny-ImageNet 84.0/72.6/81.6 87.5/73.5/76.9 87.8/80.6/84.8
Gaussian 99.9/86.3/98.8 99.9/90.5/99.1 99.3/77.0/97.9
Uniform 99.9/86.4/99.0 99.9/90.2/99.2 99.9/78.6/98.6

(d) In-distribution dataset: Tiny-ImageNet

OOD Dataset AUROC AUPR In AUPR Out
MNIST 100/99.8/94.8 100/98.2/98.9 100/98.2/79.9
Fashion-MNIST 99.7/70.4/73.8 98.6/88.4/92.6 100/85.5/39.5
CIFAR-10 86.7/82.9/58.0 95.8/75.3/85.7 89.1/75.3/28.2
Gaussian 99.9/97.0/95.4 100/98.0/99.0 99.9/94.8/80.5
Uniform 100/96.0/87.5 100/97.4/96.8 100/99.3/62.8

TABLE II: Performance comparison on instance-level abnormal sample detection. The results from AutoOD and the two
baselines MSP [23] and ODIN [24] are listed as AutoOD/MSP/ODIN. OOD: Out-of-distribution.

in the validation set and the test set are both 0.05. The
train/validation/test split ratio is 6 : 2 : 2. Two state-of-the-
art methods MSP [23] and ODIN [24] are used as baselines.

2) Performance on Out-of-distribution Sample Detection:
To answer the research question Q1, we compare Au-
toOD with the state-of-the-art handcrafted algorithms for the
instance-level abnomral sample detection task using metrics
AUROC, AUPR-In and AUPR-Out. Considering the auto-
mated search framework of AutoOD, we represent its perfor-
mance by the best model found during the search process. In
these experiments, we follow the setting in [23]: Each model is
trained on individual dataset Din, which is taken from MNIST,
Fashion-MNIST, CIFAR-10, and Tiny-ImageNet, respectively.
At test time, the test images from Din dataset can be viewed
as the in-distribution (positive) samples. We sample out-
of-distribution (negative) images from another real-world or
synthetic noise dataset, after down-sampling/up-sampling and
reshaping their sizes as the same as Din.

As can be seen from Table II, in most of the test cases,
the models discovered by AutoOD consistently outperform
the handcrafted out-of-distribution detection methods with pre-
trained models (ODIN [24]) and without pre-trained models
(MSP [23]). It indicates that AutoOD could achieve higher
performance in accuracy, precision, and recall simultaneously,
with a more precise detection rate and fewer nuisance alarms.

3) Effectiveness of Experience Replay: To further answer
the question Q2, we evaluate the effectiveness of the experi-
ence replay buffers, by altering the size of the replay buffers
B in Eq. 7. Corresponding results are reported in Table III
(b). The results indicate that the increase of the buffer size
could enhance model performance after 200 epochs. We also
observe that the size of the buffer is sensitive to the final
performance, as better performance would be achieved in the
20th, 100th epoch with a larger buffer size. This indicates that
self-imitation learning based experience replay is useful in the
search process. Larger buffer size brings benefits to exploit
past good experiences.

4) Comparison Against Traditional NAS: Instead of apply-
ing the policy gradient based search strategy, one can use

AUROC20 AUROC100 AUROC200

no buffer 85.43 96.57 98.00
buffer size=5 88.05 97.12 98.04

buffer size=10 87.44 97.70 98.12

TABLE III: Parameter analysis on Fashion-MNIST (in-
distribution) and CIFAR-10 (out-of-distribution).

random search to find the best model. Although this baseline
seems simple, it is often hard to surpass [29]. We compare
AutoOD with random search to answer the research question
Q3. The quality of the search strategy can be quantified by
the following three metrics: (1) the average performance of the
top-5 models found so far, (2) the mean performance of the
searched models in every 20 epochs, (3) the standard deviation
of the model performance in every 20 epochs. From Fig. 3, we
can observe that: Firstly, our proposed search strategy is more
efficient to find the well-performed models during the search
process. As shown in the first row of Fig. 3, the performance
of the top-5 models found by AutoOD consistently outperform
the random search. The results also show that not only the best
model of our search strategy is better than that of random
search, but also the improvement of average top models is
much more significant. This indicates that AutoOD explores
better models faster than the random search. Secondly, there
is a clear increasing tendency in the mean performance of
AutoOD, which can not be observed in random search. It
indicates that our search controller can gradually find better
strategies from the past search experiences along the learning
process, while the random search’s controller has a relatively
low chance to find a good child model. Thirdly, compared
with the random search, there is a clear dropping of standard
deviation along the search process. It verifies that our search
strategy provides a more stable search process.

V. CONCLUSIONS

In this paper, we investigated a novel and challenging
problem of automated deep model search for outlier detection.
Different from the existing Neural Architecture Search meth-
ods that focus on discovering effective deep architectures for
supervised learning tasks, we proposed AutoOD, an automated

2121

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:46:21 UTC from IEEE Xplore. Restrictions apply.

0.85

0.9

0.95

1

A
U

R
O

C

MNIST

0.8

0.85

0.9

0.95

1

Fashion-MNIST

0.92

0.94

0.96

0.98

1

CIFAR-10

0.96

0.98

1

Tiny-ImageNet

Random search
AutoOD

0.80

0.90

1.00

M
ea

n

0.75

0.8

0.85

0.9

0.95

0.9
0.92
0.94
0.96
0.98

1

0.92

0.94

0.96

0.98

1

50 100 150 200
0.00

0.10

0.20

Epoch

St
d

50 100 150 200
0.00

0.05

0.10

0.15

Epoch
50 100 150 200

0.00

2.00

4.00

6.00

8.00
·10−2

Epoch
50 100 150 200

0.00

2.00

4.00

6.00

8.00
·10−2

Epoch

Fig. 3: Performance comparison with random search. (Top row) The progression of average performance in top-5 models for different search
methods, i.e., AutoOD (red lines with circles), and random search (blue lines with asterisks). (Middle row and bottom row) The mean and
standard deviation of model performances in every 20 epochs along the search progress.

unsupervised outlier detection framework, which aims to find
an optimal neural network model within a predefined search
space for a given dataset. AutoOD builds on the theory of self-
imitation learning. It overcomes the curse of local optimality,
the unfair bias, and inefficient sample exploitation problems
in the traditional search methods. We evaluated the proposed
framework using extensive experiments on benchmark datasets
for instance-level abnormal sample detection. The experimen-
tal results demonstrated the effectiveness of our approach.

ACKNOWLEDGEMENT

The work is done during an internship at NEC, and is
in part, supported by NSF (IIS-1750074, CNS-1816497, IIS-
1718840). The views and conclusions in this paper are those
of the authors and should not be interpreted as representing
any funding agencies.

REFERENCES

[1] V. Chandola and et al., “Anomaly detection: A survey,” CSUR, 2009.
[2] B. Dong, Z. Chen, H. W. Wang, L.-A. Tang, K. Zhang, Y. Lin, Z. Li, and

H. Chen, “Efficient discovery of abnormal event sequences in enterprise
security systems,” in CIKM, 2017.

[3] S. Wang, Z. Chen, D. Li, Z. Li, L.-A. Tang, J. Ni, J. Rhee, H. Chen, and
S. P. Yu, “Attentional heterogeneous graph neural network: Application
to program reidentification,” in SDM, 2019.

[4] Z. Chen, W. Hendrix, and N. F. Samatova, “Community-based anomaly
detection in evolutionary networks,” J. Intell. Inf. Syst., 2012.

[5] Y. Li, X. Huang, J. Li, M. Du, and N. Zou, “Specae: Spectral autoen-
coder for anomaly detection in attributed networks,” in CIKM, 2019.

[6] Z. Wang, Z. Chen, J. Ni, H. Liu, H. Chen, and J. Tang, “Multi-scale
one-class recurrent neural networks for discrete event sequence anomaly
detection,” arXiv preprint arXiv:2008.13361, 2020.

[7] N. Liu, Q. Tan, Y. Li, H. Yang, J. Zhou, and X. Hu, “Is a single
vector enough? exploring node polysemy for network embedding,” in
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019.

[8] S. Wang, Z. Chen, X. Yu, D. Li, J. Ni, L.-A. Tang, J. Gui, Z. Li, H. Chen,
and S. P. Yu, “Heterogeneous graph matching networks for unknown
malware detection,” in IJCAI, 2019.

[9] Y. Li, N. Liu, J. Li, M. Du, and X. Hu, “Deep structured cross-modal
anomaly detection,” in 2019 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, IEEE, 2019.

[10] X. Huang, Q. Song, Y. Li, and X. Hu, “Graph recurrent networks with
attributed random walks,” in KDD, 2019.

[11] L. Ruff and et al., “Deep one-class classification,” in ICML, 2018.
[12] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection

with outlier exposure,” arXiv preprint arXiv:1812.04606, 2018.
[13] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement

learning,” ICLR, 2016.
[14] Y. Li, D. Zha, N. Zou, and X. Hu, “Pyodds: An end-to-end outlier

detection system,” arXiv preprint arXiv:1910.02575, 2019.
[15] Y. Li, D. Zha, P. Venugopal, N. Zou, and X. Hu, “Pyodds: An end-

to-end outlier detection system with automated machine learning,” in
Companion Proceedings of the Web Conference 2020, 2020.

[16] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” in ICML, 2018.

[17] B. Zong and et al., “Deep autoencoding gaussian mixture model for
unsupervised anomaly detection,” ICLR, 2018.

[18] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolutional
autoencoders,” in NIPS, 2017.

[19] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in KDD, pp. 665–674, 2017.

[20] M. Du, S. Pentyala, Y. Li, and X. Hu, “Towards generalizable
forgery detection with locality-aware autoencoder,” arXiv preprint
arXiv:1909.05999, 2019.

[21] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, 1992.

[22] J. Oh and et al., “Self-imitation learning,” ICML, 2018.
[23] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified

and out-of-distribution examples in neural networks,” ICLR, 2017.
[24] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-

distribution image detection in neural networks,” ICLR, 2017.
[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, 1998.
[26] H. Xiao and et al., “Fashion-mnist: a novel image dataset for bench-

marking machine learning algorithms,” arXiv:1708.07747, 2017.
[27] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features

from tiny images,” tech. rep., Citeseer, 2009.
[28] J. Deng and et al., “Imagenet: A large-scale hierarchical image database,”

in CVPR, 2009.
[29] L. Li and A. Talwalkar, “Random search and reproducibility for neural

architecture search,” arXiv preprint arXiv:1902.07638, 2019.

2122

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:46:21 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T22:43:09-0400
	Preflight Ticket Signature

