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Abstract

Time series data is ubiquitous across various do-
mains, including manufacturing, finance, and
healthcare. High-quality annotations are essen-
tial for effectively understanding time series
and facilitating downstream tasks. However,
obtaining such annotations is challenging, par-
ticularly in mission-critical domains. In this pa-
per, we propose TESS A, a multi-agent system
designed to automatically generate both general
and domain-specific annotations for time series
data. TESSA introduces two agents: a general
annotation agent and a domain-specific annota-
tion agent. The general agent captures common
patterns and knowledge across multiple source
domains, leveraging both time-series-wise and
text-wise features to generate general annota-
tions. Meanwhile, the domain-specific agent
utilizes limited annotations from the target do-
main to learn domain-specific terminology and
generate targeted annotations. Extensive ex-
periments on multiple synthetic and real-world
datasets demonstrate that TESSA effectively
generates high-quality annotations, outperform-
ing existing methods.

1 Introduction

Time series data is prevalent in various fields such
as climate (Chen et al., 2013; Li et al., 2025b), fi-
nance (Lee et al., 2024), and healthcare (Li et al.,
2022). It captures critical temporal patterns es-
sential for informed decision-making. However,
general users frequently encounter difficulties in
interpreting this data due to its inherent complexity,
particularly in multivariate contexts where multiple
variables interact over time. Furthermore, effective
interpretation typically requires domain-specific
knowledge to properly contextualize these patterns,
thereby posing significant challenges for individu-
als without specialized expertise.
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High-quality annotations are crucial for address-
ing these interpretive challenges. Annotations pro-
vide meaningful context or insights into time series
data, highlighting important patterns, events, or
anomalies. They facilitate accurate analysis, fore-
casting, and decision-making, enhancing the perfor-
mance of downstream tasks such as anomaly detec-
tion, trend prediction, and automated reporting. For
instance, in predictive maintenance, understanding
sensor data trends is vital for preventing equip-
ment failure, while in finance, interpreting stock
price movements is crucial for informed investment
strategies. Despite their importance, high-quality
annotations are often scarce in real-world appli-
cations. This scarcity stems primarily from the
reliance on domain experts for manual annotation,
which is resource-intensive, costly, and prone to
inconsistencies. Moreover, the need for precise and
domain-specific terminology further complicates
the annotation process, as different fields require
highly specialized knowledge for accurate and con-
textually relevant interpretation.

To alleviate the above issues, one straightforward
approach is to leverage external resources to gen-
erate annotations (Liu et al., 2024a). For example,
Time-MMD (Liu et al., 2024a) uses web searches
to retrieve information as annotations, aiming to
find similar patterns and descriptions from the in-
ternet. Others (Jin et al., 2024; Liu et al., 2024b)



directly adopt large language models (LLMs) for
annotation, leveraging LLMs’ great language un-
derstanding capability. Prototype-based methods,
such as prototype networks (Ni et al., 2021), have
also been employed to identify representative exam-
ples for annotation. However, these methods often
fall short of producing high-quality annotations.
Web search-based methods may retrieve irrelevant
or inconsistent information. LLMs, while power-
ful, tend to generate generic annotations, capture
only basic patterns, or even hallucinate, and fail
to account for the complex nature of time series
data. Prototype networks rely on large amounts of
data to train the network and identify representative
prototypes, but the scarcity of high-quality anno-
tations limits the quality and representativeness of
these prototypes, making it difficult to generalize
effectively to new or unseen patterns.

To address these limitations, we propose to ex-
tract knowledge from existing annotations across
multiple source domains and transfer this knowl-
edge to target domains with limited annotations.
Specifically, as shown in Fig. 1, we aim to de-
velop a system that automatically interprets time
series data across various fields using common or
domain-specific language. Formally, given abun-
dant annotations from multiple source domains and
limited annotations from a target domain, our goal
is to leverage both time-series-wise and text-wise
knowledge to generate accurate and contextually
appropriate annotations for the target domain. This
raises two key technical challenges: (i) How to
extract common knowledge from source domains?
(ii) How to learn domain-specific jargon from lim-
ited target-domain annotations?

To tackle these challenges and overcome the lim-
itations of existing methods, we propose TESSA,
a multi-agent system designed for both general and
domain-specific TimE SerieS Annotation. As il-
lustrated in Fig. 2, TESS A introduces two agents:
a general annotation agent and a domain-specific
annotation agent. The general annotation agent
focuses on capturing common patterns and knowl-
edge across various domains to generate annota-
tions understandable by general users. To learn
common knowledge from multiple domains, the
general agent employs a time series-wise feature
extractor and a text-wise feature extractor to extract
both time-series-wise and text-wise features from
time series data and domain-specific annotations
from multiple source domains. To ensure impor-
tant features are included in the general annota-

tions, two feature selection methods—LILM-based
and reinforcement learning-based selection—are
introduced to effectively and efficiently select both
the top-k most important time-series-wise and text-
wise features. The domain-specific agent lever-
ages limited target-domain annotations to learn and
generate annotations for specific domains using
domain-specific terminologies (jargon). It incor-
porates a domain-specific term extractor to learn
jargon from the limited target-domain annotations.
Additionally, an annotation reviewer is proposed to
maintain consistency between general annotations
and domain-specific annotations.

Our contributions are: (i) Problem. We explore
a novel problem in cross-domain multi-modal time
series annotation, bridging the gap between general
understanding and domain-specific interpretation;
(i) Framework. We propose a novel multi-agent
system, TESSA, designed for both general and
domain-specific time series annotation by leverag-
ing both time-series-wise and text-wise knowledge
from multiple domains; (iii) Datasets. We collect a
real-world dataset from finance domain to leverage
cross-domain knowledge, along with a synthetic
dataset to evaluate TESSA. (iv) Experiments.
Extensive experiments on multiple synthetic and
real-world datasets demonstrate the effectiveness
of TESSA in producing high-quality annotations.

2 Related Work

Time Series Annotation. Time series anno-
tation aims to assign labels or descriptions to
specific segments, events, or patterns within a
time series dataset to highlight significant fea-
tures for further analysis. Traditionally, this pro-
cess has relied on manual annotation (Reining
et al., 2020), which is often time-consuming, labor-
intensive, and requires substantial domain exper-
tise. To reduce the effort needed for creating
large-scale, high-quality annotated datasets, sev-
eral studies have proposed semi-automatic annota-
tion approaches (Cruz-Sandoval et al., 2019; Nino
et al., 2016) that require minimal manual input or
post-annotation revisions. Despite these advance-
ments, fully automated time series annotation re-
mains underexplored due to the challenges of cap-
turing semantic and contextual information from
the data (Yordanova and Kriiger, 2018).

LLMs for Time Series Analysis. Recent advance-
ments in LLMs have showcased their strong capa-
bilities in sequential modeling and pattern recog-
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Figure 2: Overall framework of TESSA. It consists of two main agents: a general annotation agent, which
generates domain-independent annotations by selecting salient time-series and textual features, and a domain-
specific annotation agent, which refines these annotations by incorporating domain-specific terminology.

nition, opening up promising new directions for
time series analysis. Several studies (Shen et al.,
2025; Xue and Salim, 2023; Yu et al., 2023; Gru-
ver et al., 2024; Jin et al., 2024; Li et al., 2024)
have explored this potential. For instance, Prompt-
Cast (Xue and Salim, 2023) is a pioneering work
that applies LLMs to general time series forecast-
ing using a sentence-to-sentence approach. Time-
LLM (Jin et al., 2024) reprograms time series
into textual prototypes for LLaMA-7B, enhanced
by natural language prompts incorporating expert
knowledge. More recently, retrieval-augmented de-
signs have been proposed for zero-shot forecast-
ing. TS-RAG (Ning et al., 2025) retrieves se-
mantically relevant time-series segments from a
knowledge base and fuses them with a forecasting
backbone to improve robustness and interpretabil-
ity. In contrast, BRIDGE (Li et al., 2025a) fo-
cuses on text-controlled time-series generation, us-
ing natural-language descriptions and an LLM-
based multi-agent pipeline to synthesize paired
text—time-series data. Unlike these forecasting-
or generation-oriented approaches, our work tar-
gets cross-domain time-series annotation, aiming
to produce general and domain-specific semantic
annotations that support interpretability and down-
stream tasks. Additional related work is discussed
in Appendix A.1.

Cross-modality Knowledge Transfer Learning
through Pre-trained Models. There has been
growing interest in leveraging pre-trained models
for cross-modality knowledge transfer, particularly
between the language, vision, and time series do-
mains (Bao et al., 2022; Lu et al., 2022; Wang et al.,
2024; Yang et al., 2021; Zhou et al., 2023). Re-

cently, Zhou et al. (2023) have applied pre-trained
language and image models to time series analysis
tasks. To the best of our knowledge, no previ-
ous work has specifically explored cross-modality
knowledge transfer for time series annotation. Our
work fills this gap by exploring how cross-modality
transfer learning can enable automatic time series
annotation. More details on the related work are
provided in the Appendix A.3

3 Methodology

In this section, we define the problem and present
the details of our proposed TESSA framework,
which aims to generate both general and domain-
specific annotations for time series data.
Cross-Domain Time Series Annotation Problem.
Given several source domains {D,, Ds,, . ..} and
a target domain @y, let {el,¢e2 ...} denote the
domain-specific annotations from the source do-
main D;,, and {e},e?,...} represent the limited
domain-specific annotations from the target domain
@;. Suppose X = (x1,--- ,Xy) is a time series in
¢, where L is the number of past timestamps and
xX; = (215, -+ ,2c;)T € R represents the data
from C different channels at timestamp 4. The ob-
jective of cross-domain time series annotation is to
generate the general annotation e, and the domain-
specific annotation e; for X based on the anno-
tations from both the source and target domains.
More notations are provided in Appendix B.
Overview of TESSA. As illustrated in Fig. 2, the
proposed TESS A comprises two key components:
a general annotation agent and a domain-specific
annotation agent. The general annotation agent is
responsible for generating domain-independent an-



notations and consists of several modules: a time
series feature extraction module to capture time-
series-specific features, a domain decontextualiza-
tion module to convert domain-specific text into
common language, a text feature extraction module
to retrieve textual features from the decontextual-
ized text, two policy networks for selecting the top-
k most salient time-series and textual features, and
a general annotator to produce general annotations
based on the selected features. The domain-specific
annotation agent refines the general annotations to
generate domain-specific annotations. It includes
a domain-specific term extractor to identify key
terminology from a limited set of target-domain an-
notations and a domain-specific annotator to adjust
the general annotations accordingly. An annota-
tion reviewer further enhances the quality of the
domain-specific annotations. Next, we introduce
details of each component.

3.1 Multi-modal Feature Extraction

To address the challenge of extracting common
knowledge from source domains, we introduce two
feature extraction modules: a time-series feature
extractor and a text-wise feature extractor, which
extract features from time series data and source-
domain annotations. We also propose a domain
decontextualizer to enhance the extraction of com-
mon knowledge from multi-source annotations.
Time Series Feature Extraction. We extract fea-
tures from time series data through a structured
process 111,.. Formally, for each channel ¢ € C, the
set of time-series features F; is denoted as:

Fo={fl, -, fi"} = M (X), (1

where 771, denotes the feature extraction frame-
work applied to X, f} is the i-th extracted feature
of X, and n; is the number of extracted features.
For multivariate time series data, inter-variable fea-
tures (e.g., Pearson correlation) are also included.
Details of 171, are provided in Appendix C.
Domain Decontextualization. In addition to
time-series-wise features, textual annotations from
source domains often contain valuable information
(such as support or resilience in finance time se-
ries annotations) for interpreting time series data. A
straightforward method to extract this knowledge is
to use LLMs on domain-specific annotations, lever-
aging their real-world knowledge. However, in
practice, many domains lack sufficient high-quality
annotations, and domain-specific terminology can
further hinder effective extraction.

To address these challenges and facilitate knowl-
edge transfer from source to target domains, we
introduce a domain decontextualization LLM to
convert domain-specific annotations into general
annotations by removing domain-specific termi-
nology. This makes it easier to extract common
knowledge across domains. Specifically, given a
domain-specific annotation e’ in domain d;, the
decontextualized annotation e'él is obtained as:

e = Ma(pac (e, di)), ©)

where 771, is the domain decontextualization LLM.
Details of the prompt template pg. and examples
can be found in Appendix C.2.

Text Feature Extraction. After decontextualiza-
tion, we use an LLM 171; to extract textual features
from multiple source domains. Formally, given a
set of decontextualized annotations {e};4; and
the text feature extractor 771;, the extracted textual
features are denoted as:

Fi={fl, 'y = Mo ({ei}i4)), 3)

where p; is the prompt for text feature extraction
to guide 171; to output the text-wise features explic-
itly or implicitly mentioned in the decontextualized
annotations. The complete prompt template is pro-
vided in Appendix C.3.

3.2 Adaptive Feature Selection

With a diverse set of features extracted from time
series and text data, it becomes essential to fo-
cus on the most relevant ones to ensure the gener-
ated annotations remain concise and interpretable.
Moreover, repeatedly querying LLMs with both the
old and new data' each time wastes computational
resources and incurs additional costs, especially
when using non-open-source models.

To address these issues, we propose a hybrid
strategy for adaptive feature selection that com-
bines Offline LLM-based Feature Selection with In-
cremental Reinforcement Learning-based Feature
Selection. The incremental method builds on the
offline approach, minimizing the need to re-query
LLMs with both old and new data as it arrives.
Offline LLM-based Feature Selection. Lever-
aging LL.Ms’ reasoning abilities, we introduce a
feature selection method using LLM-generated fea-
ture importance scores to identify the top-k most

'To avoid redundancy, unless specified otherwise, ‘data’ in
this paper refers to time series and their corresponding textual
annotations from various domains.



important time-series-wise and text-wise features.
Features mentioned more frequently—either ex-
plicitly or implicitly—in annotations are assigned
higher importance scores.

Specifically, given an LLM as the feature
selector 11z, we prompt 171, with domain-
decontextualized annotations {e};¢; and the ex-
tracted features {f/}"*, and {f/}I, to gener-
ate numerical feature importance scores: s; =

[s1, -, S, | for time-series-wise features and s; =
[s1, -, Sp,] for text-wise features.
S5 = mSCl(pSCOTE(ftj7 {62}?i1))7 V] € {17 e 77’Lt}, (4)
Sk = nzSel(pSCOTﬁ(flka {ezd}?:dl))7 vk € {15 e ,TL[},

Here, pscore is the prompt used to score fea-
ture importance. Higher scores, s; and s, €
R™T, indicate that the features ftj and flk appear
more frequently, either explicitly or implicitly, in
the domain-decontextualized annotations {e’, }4; .
The templates for pscore are shown in Fig. 14 and
Fig. 15, respectively. To ensure that explicitly men-
tioned features receive higher importance scores,
we instruct 171,.; to assign greater weight to fea-
tures that are explicitly referenced in the annota-
tions. More details are provided in Appendix D.1.
Incremental Reinforcement Learning-based
Feature Selection. When new data' arrives, the
offline LLM-based approach requires re-querying
both old and new data, which becomes burden-
some due to LLMs’ limited context window. As
annotations increase, re-querying all data becomes
impractical and costly, leading to higher resource
consumption and reduced cost-effectiveness.

To address the limitations of the offline ap-
proach, we propose an Incremental Reinforcement
Learning-based Feature Selection method that is
more cost-effective for dynamic environments with
evolving data. Specifically, we introduce a multi-
agent reinforcement learning (MARL) framework
to train two policy networks, F# and F, to select
the top-k most important time-series-wise and text-
wise features, respectively. These policy networks
store knowledge from existing annotations and are
incrementally updated as new data arrives. This
reduces the need to re-query the LLM with all the
data, requiring only the new data during updates.
As shown in Fig. 2, each policy network is ini-
tialized with the first three layers of a small LLM,
such as GPT-2 (Radford et al., 2019), which remain
frozen during training. A trainable multi-head at-
tention layer and a language model (LM) head from

GPT-2 follow these layers, using the smallest ver-
sion of GPT-2 with 124M parameters.

During training, only the multi-head atten-
tion layer is updated. For time-series-wise fea-
tures, given the candidate features {f{}I, and
their corresponding feature name tokens Y =
{yi, -+ ,yb,}. the policy network F computes
action-values (Q-values) q. = [q, 4, tnz]
based on the mean logits of the feature names:

A softmax function generates a probability distri-
bution over the features, and the top-k features are
selected based on the highest probabilities.

At each timestep, the selected top-k features are
passed to the LLM 771; to obtain their importance

scores s;,Vi € {1,---,k}. The agent receives a
reward r; defined as:
. ZLI Si, S8 >T ©)
b —0.5, otherwise,

where 7 is a threshold to discourage selecting unim-
portant features. The text-wise feature policy net-
work F; undergoes a similar training process.

After training, the policy networks are incremen-
tally updated with only new data, eliminating the
need to re-query the LLM with both old and new
data. This approach improves the scalability and
efficiency of feature selection while reducing com-
putational costs, effectively overcoming the offline
approach’s limitations. By incrementally updating
the policy networks, we ensure that feature selec-
tion remains scalable and cost-effective in dynamic
environments with evolving data. More discussion
of the necessity of the RL component is provided
in Appendix D.2.

3.3 General Annotation Generation

After selecting the top-k most important features
from both time-series and text, a general annotator
is introduced to generate general annotations by
analyzing these selected features. An LLM, serv-
ing as the general annotator, interprets the given
time series data based on the selected features. For-
mally, given time series data X = {x;}*, and
the selected time-series-wise and text-wise features
{fiYk and {f/}*, the generation of a general
annotation e is represented as:

eg = Mgen(Pgen({xi iy, (VL UYL, D



where pyen is the prompt for generating general
annotations. By emphasizing the signal from the
selected common knowledge, the general annota-
tions capture richer patterns that may be overlooked
when directly applying LLMs. An example of the
prompt template is shown in Fig. 16.

3.4 Domain-specific Annotation Generation

Generating domain-specific annotations for time
series is crucial as different domains rely on spe-
cialized jargon and context-specific terminology
to accurately interpret and understand data. Time
series data from financial markets, healthcare sys-
tems, or industrial processes can exhibit patterns,
trends, and anomalies that are unique to each do-
main. General annotations may overlook critical
nuances, whereas domain-specific annotations cap-
ture contextual relevance, improving the precision
and reliability of downstream analysis or model
predictions. By tailoring annotations to a domain’s
specific lexicon, we can detect meaningful patterns
more accurately and make informed decisions.
Domain-specific Term Extractor. To address
the challenge of learning domain-specific terminol-
ogy, we introduce a domain-specific term extractor.
Given limited domain-specific annotations {e}}; <}
from the target domain, an LLM 171, is employed
to extract domain-specific terms. We prompt 171,
with the annotations {e}};“" to extract a set of
domain-specific terms {§° Lg 1

{9 HL) = Mewr (pear({er1:2)), ®

where n ¢ is the number of extracted terms, and pey¢
is the prompt for domain-specific term extraction.
Fig. 17 provides the template for pey:.
Domain-specific Annotator. To ensure alignment
between domain-specific and general annotations,
an LLM 171, acting as a domain-specific annota-
tor, applies the extracted terms {§?}."7, to general
annotations eg4, converting them into target-domain
annotations e;. Formally, this is represented as:

et = nlspE(pSPe(egv {gz}::ql))v ©)

where pge is the prompt for generating domain-
specific annotations, shown in Fig. 18.

Annotation Reviewer. To improve the quality
of domain-specific annotations and ensure better
alignment with general annotations, we introduce
an annotation reviewer. This LLM, 171,..,,, reviews
the generated annotations and extracted terms, pro-
viding feedback ey to the extractor and annotator:

ef = Myeoy (prev (eg7 €t, {gl}?:q1)): (10)

where py¢, is the prompt for reviewing annotations.
An example is shown in Fig. 19. This feedback
loop ensures more precise term extraction and bet-
ter alignment between general and domain-specific
annotations. Based on the feedback, the extractor
M., refines the extraction process, and the anno-
tator /71, enhances its annotations accordingly.

4 Experiments

This section presents the experimental results. We
first evaluate the TESSA’s annotations in down-
stream tasks and on a synthetic dataset, then exam-
ine domain-specific annotations, and finally assess
the contribution of key TESSA components.

4.1 Experimental Setup

Dataset. To evaluate the effectiveness of TESSA,
five real-world datasets from distinct domains are
considered: Stock, Health, Energy, Environment,
Social Good, Climate and Economy. Specifically,
the stock dataset includes 1,935 US stocks with
the recent 6-year data, collected by ourselves. The
other four datasets come from the public bench-
mark Time-MMD (Liu et al., 2024a). In this paper,
the Stock and Health datasets serve as the source
domains, while the rest five datasets are treated as
the target domains. Additionally, we generate a
synthetic dataset containing both time series and
ground-truth annotations to directly assess the qual-
ity of general annotations. More details on these
datasets can be found in Appendix F.1.

LLMs. Our experiments utilize one closed-source
model, GPT-40 (Achiam et al., 2023) and two open-
source models, LLaMA3.1-8B (Dubey et al., 2024)
and Qwen2-7B (Yang et al., 2024).

4.2 Evaluating General Annotations in
Downstream Tasks

To evaluate the quality of the general annotations,
we apply the generated annotations to the multi-
modal downstream tasks (i.e., time series forecast-
ing and imputation) by following the experimental
setup in Time-MMD (Liu et al., 2024a). As in
Fig. 4, time series data and textual annotations are
processed independently by unimodel TSF mod-
els and LLLMs with projection layers. The model-
specific outputs are then fused through a linear
weighting mechanism to generate final predictions.
Incremental RL-based selection in Section 3.2 is
used in TESSA to select the top-k£ most important
features for generating annotations. The implemen-
tation details are provided in Appendix F.3 and G.1.



Table 1: Forecasting results with GPT-40 as the LLM
backbone. NT, TM, and DL refer to No-Text, Time-
MMD, and DirectLLM, respectively. MSE is shown in
the top half and MAE in the bottom half.

Domain NT ™ DL TESSA
Environment | 1.2542 0.8483 0.7714 0.4629
Energy 2.0117 0.2172 0.0575 0.0482
Social Good |2.1457 1.6072 0.4639 0.1935
Environment | 0.7387 0.6865 0.6604 0.4424
Energy 1.1663 0.2139 0.0055 0.0040
Social Good | 1.1205 0.9731 0.3801 0.0825

Baselines. TESSA is, to the best of our knowledge,
the first work on cross-domain multi-modal time
series annotation. We compare it with several rep-
resentative single-domain methods: No-Text, Time-
MMD (Liu et al., 2024a), and DirectLLM (which
directly uses LLM-generated annotations). Details
of these methods are provided in Appendix F.2.
Evaluation Metrics. For time series forecasting
task, we use MSE (Mean Squared Error) and MAE
(Mean Absolute Error) as evaluation metrics, where
lower values for them mean better annotations.
Experimental Results. Table 1 presents the com-
parison results for the time series forecasting task,
where Informer (Zhou et al., 2021) is the forecast-
ing model and GPT-40 (Achiam et al., 2023) serves
as the LLLM backbone. Additional forecasting re-
sults using different LLM backbones are available
in Appendix G.2. The following observations can
be made: (1) No-Text shows the worst performance
across all datasets, validating the need for annota-
tions to improve performance in downstream tasks.
This suggests that better downstream task perfor-
mance indicates higher-quality annotations. (2)
TESSA achieves the best performance among all
compared methods, demonstrating its effectiveness
in generating high-quality general annotations. Ad-
ditional results of time series imputation tasks, can
be found in Appendix G.3.

4.3 Evaluating General Annotations in
Synthetic Datasets

We construct a synthetic dataset with time se-
ries data and ground-truth annotations to validate
TESSA’s performance. Implementation details are
provided in Appendix H.1.

Evaluation Metrics. We apply the LLM-as-a-
judge approach (Bubeck et al., 2023; Dubois et al.,

Table 2: General annotation results on the synthetic
dataset with GPT-40 as the LLM backbone.

Metric Method Mean P(T>D) (%)
Clarity E]iarift?:LM gfgg 69.76
Compre. E]iarift?:LM ‘1‘?‘5“5' 87.10
Overall EI:}SCE{ELM ;;2 82.71

2024), evaluating two metrics: Clarity and Compre-
hensiveness. Two distinct LLMs score the gener-
ated annotations on a scale of 1 to 5 for each metric,
with an overall score calculated as the mean of the
two metrics. Further details on the metrics and the
LLM-judge prompts can be found in Appendix H.2.
Experimental Results. We compare TESSA
with DirectLLM in Table 2. The “Mean” de-
notes the average score of generated annotations
for each method, and P(T>D) is the percentage of
TESSA’s annotations that receive higher scores
than DirectLLM’s. The results show that TESSA
outperforms DirectLL.M on both metrics, with av-
erage scores of 3.90 in Clarity and 4.44 in Compre-
hensiveness, compared to DirectLLM’s 3.79 and
1.55. Additionally, 82.71% of TESSA’s annota-
tions receive higher scores, indicating that TESSA
produces more essential and easily understandable
features, further demonstrating its effectiveness.

4.4 Domain-specific Annotation Evaluation

In this subsection, we evaluate the quality of do-
main specific annotations. Similar to Section 4.3,
we adopt a LLM-as-a-Judger strategy to evalu-
ate the performance of domain-specific annotation
agent from three perspectives: Clarity, Comprehen-
siveness, and Domain-relevance. The overall score
is the average of these three metrics. Further details
on these metrics are provided in Appendix I.1.

Experimental Results. We present the compar-
ison results of TESSA and DirectLLM on the
Environment dataset in Table 3, with GPT-40 as
the LLM backbone. The key observations are:
(1) TESSA significantly outperforms DirectLLM
across all metrics, achieving an overall score of
4.64 compared to DirectLLM’s 3.41. Notably,
98.51% of TESSA’s annotations receive higher
scores, demonstrating its effectiveness in generat-
ing high-quality domain-specific annotations. (2)



Table 3: Domain-specific annotation results on the En-
vironment dataset using GPT-4o0 as the LLM. Dom. Rel.
is the domain-relevance metric used in Section 4.4.

Metric Method Mean P(T>D) (%)
Clarity EiErzféLM gg‘z‘ 99.81
Compre. gfrseft?,LM ‘3‘8? 97.04
Dom. Rel. gfr?:féLM ggg 94.72
Overall EiiftlltLM gg;‘ 98.51

TESSA scores 4.74 in Clarity and 4.38 in Com-
prehensiveness, while DirectLLM scores 3.32 and
3.01, respectively. This shows that TESSA ’s an-
notations are clearer, more concise, and cover more
important features. (3) TESSA also excels in do-
main relevance, with 94.72% of its annotations
scoring higher, achieving an average of 4.30, sig-
nificantly outperforming DirectLLM’s 3.41. This
indicates that TESSA produces highly accurate
annotations that effectively use domain-specific ter-
minology and maintain strong contextual relevance.
More results on other datasets are in Appendix 1.3.
We also conduct human-in-the-loop validate to fur-
ther demonstrate that the annotations generated by
TESSA can assist humans in analyzing time-series
data, where more details are in Appendix J.

4.5 In-depth Dissection of TESSA

Adaptive Feature Selections. We compare our
two feature selection methods: offline LLM-based
selection and incremental RL-based selection. To
assess their effectiveness in selecting the top-k
most important features, we evaluate the quality
of the generated general and domain-specific an-
notations, following the procedures in Sections 4.2
and 4.4. Environment is set as the target domain,
with results shown in Fig. 3. The results indicate
that TESS A performs comparably in both general
and domain-specific annotation generation using
either selection method. Specifically, as shown in
Fig. 3(a), both approaches achieve MSE and MAE
around 0.46 and 0.44 for general annotations. Sim-
ilarly, in Fig. 3(b), both methods score consistently
high across all domain-specific metrics, demon-
strating their effectiveness in selecting important
features. However, incremental RL-based selection

= Offline == Offline

Ne® Incremental

=N Incremental

MSE MAE Clr. Com. Rel.

(a) General (b) Specific

Figure 3: Comparison of offline vs. incremental feature
selection. GPT-40 is the LLM backbone, with Envi-
ronment as the target domain. (a) General annotation
results; (b) Domain-specific annotation results.

proves more cost-effective by reducing redundant
re-querying of previously used data.

Ablation Studies. We perform ablation studies to
assess the importance of domain decontextualiza-
tion and adaptive feature selection in TESSA. For
domain decontextualization, we introduce a variant,
TESSA/D, which bypasses the domain decontex-
tualization LLM and directly extracts text-wise fea-
tures from domain-specific annotations. Table 19
shows that TESSA/D captures irrelevant features,
such as higher prices over time and fun, which are
unrelated to time series analysis. This confirms
that domain-specific terminology can hinder the
accurate extraction of time-series-relevant features.

To prove the importance of adaptive feature se-
lection in TESS A, we remove the adaptive feature
selection module to create a variant, TESSA/F. We
apply an LLM-as-a-judger to compare the quality
of the generated annotations between TESS A and
its variants. The evaluation metrics are introduced
in Appendix L.1. The comparison results on the
Social Good dataset are in Table 5, with qualitative
examples in Appendix L.2. We observe: TESSA
consistently outperforms TESSA/F. Specifically,
TESSA achieves a clarity score of 4.41, compared
to 3.66 for TESSA/F. This demonstrates the ne-
cessity of adaptive feature selection. Furthermore,
according to Table 21 in Appendix L.2, the annota-
tions generated by TESS A/F tend to include many
features without proper analysis. This shows that
involving too many features can hinder the clarity
of the annotations, further emphasizing the impor-
tance of adaptive feature selection in improving
annotation quality. Additional ablation studies ex-
amining the contributions of other components of
TESSA are in Appendix L.3. And discussions on
data contamination are in Appendix L.4.

Comparison with Multi-agent Systems. To bet-
ter contextualize TESSA’s contributions against



general-purpose multi-agent frameworks, such as
AutoGen (Wu et al., 2024), MetaGPT (Hong
et al., 2024), CAMEL (Li et al., 2023), we argue
that while general-purpose systems like AutoGen,
MetaGPT, and CAMEL have shown promise in
task planning and code generation, they are not
tailored for time series annotation. To evaluate
their suitability, we conducted a new experiment
by adapting AutoGen for our task.

To ensure a fair comparison, we configured Au-
toGen with the same backbone and prompts as
TESSA. Following the setup in Section 4.4, we
evaluated all models on the SocialGood dataset us-
ing our LLM-as-a-Judge framework. Results in Ta-
ble 10 show that while AutoGen improves upon Di-
rectLLM, it underperforms TESSA. This gap arises
because AutoGen’s general sequential coordination
lacks TESSA’s specialized architectural features:
LLM-guided feature selection (Sec. 3.1) for robust
cross-domain patterns, a Domain-Specific Term
Extractor (Sec. 3.3) to leverage jargon from sparse
annotations, and a bi-directional Annotation Re-
viewer loop (Sec. 3.4) for iterative refinement. Ul-
timately, this highlights that specialized agent roles
and domain adaptation mechanisms are essential
for high-quality time series annotation. More de-
tails of the comparison are in Appendix F.5.
Strengthened Baseline Evaluations. Beyond
multi-agent systems, we substantially expand our
baseline comparisons to ensure a rigorous evalu-
ation. We assess annotation utility using strong
forecasting backbones, including PatchTST and
Reformer (Appendix E.7), together with a joint
fine-tuning baseline on combined source and tar-
get data (Appendix F.4). To examine whether
TESSA remains effective when the LLM back-
bone has no exposure to time-series—specific data,
we conduct an ablation study using a fully open
model, OLMo-7B (Groeneveld et al., 2024) (Ap-
pendix L.4). We further evaluate generalizability
on both the Social Good benchmark and the tradi-
tional ETT-small_h1 (Zhou et al., 2021) dataset
(Appendix F.6). Collectively, these results demon-
strate the effectiveness of TESSA for high-quality
time-series annotation.

4.6 Case Study of TESSA

We conduct a case study to further validate the
effectiveness of TESSA. A representative time
series from the Social Good domain (Fig. 6(b)) is
selected, and both TESS A and DirectL.LM are ap-
plied to generate general and domain-specific anno-

Table 4: Comparison between TESSA and AutoGen
on domain-specific annotation. The target dataset is
SocialGood, with Qwen2-7B as the LLM backbone.
Stock and Health serve as the source datasets.

Metric DirectLLM AutoGen TESSA
Clarity 3.28 3.89 4.68
Compre. 3.26 3.93 4.49
Dom. Rel. 3.33 4.01 4.45
Overall 3.29 3.94 4.48

Table 5: Ablation studies in the SocialGood dataset.
GPT-40 is the LLM backbone.

Metric Method Mean P(T>D) (%)

Claity TESSA 441
Y TESSA/F 3.66

83.3

tations, summarized in Table 28. To assess the qual-
ity of the annotations, we use an LL.M-as-a-judger
to evaluate the domain-specific annotations from
both methods, with results shown in Table 20. Our
findings indicate that: (1) TESSA’s general anno-
tations capture more meaningful patterns, aiding
user understanding and downstream tasks, whereas
DirectLLM only highlights basic trends; and (2)
TESSA’s domain-specific annotations consistently
outperform DirectLLM across all metrics, offering
clearer, more comprehensive, and contextually rel-
evant insights. More case studies of multivariate
time series data are provided in Appendix M.

5 Conclusion

In this work, we introduce TESS A, a multi-agent
system for automatic general and domain-specific
time series annotation. TESS A incorporates two
agents, a general annotation agent and a domain-
specific annotation agent, to extract and leverage
both time-series-wise and text-wise knowledge
from multiple domains for annotations. TESSA
overcomes the limitations of directly applying
LLMs, which often capture only basic patterns
and may hallucinate, by effectively identifying
and emphasizing significant patterns in time series
data. Our experiments on synthetic and real-world
datasets from diverse domains demonstrate the ef-
fectiveness of TESSA in generating high-quality
general and domain-specific annotations.



6 Limitations

Potential limitations of this work include the need
for limited target-domain annotations to learn
domain-specific jargon for generating domain-
specific annotations. Additionally, our approach
relies on annotations from source domains to trans-
fer knowledge to target domains. If the chosen
source domain annotations are all of low quality or
lack sufficient common knowledge, it may affect
the overall performance of TESSA.

7 Ethics Statement

We adhere to the ACM Code of Ethics in our re-
search. All datasets and models used in this study
are either publicly accessible or synthetically gen-
erated. Specifically, we created a synthetic dataset
comprising time series data with generated gen-
eral annotations to facilitate our experiments while
avoiding the use of any personal or sensitive real-
world data. We acknowledge the potential risks and
harms associated with LLMs, such as generating
harmful, offensive, or biased content. Moreover,
LLMs are often prone to generating incorrect in-
formation, sometimes referred to as hallucinations.
We recognize that the models studied in this paper
are not exceptions to these limitations. Previous
research has shown that the LLMs used in this
study suffer from bias, hallucinations, and other is-
sues. We emphasize the importance of responsible
and ethical use of LLMs and the need for further
research to mitigate these challenges before deploy-
ing them in real-world applications. The models
used in this work are licensed under the terms of
OpenAl, LLaMA, and Qwen.
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A More Related Work
A.1 LLMs for Time Series Analysis

The rapid advancement of LLMs in natural lan-
guage processing has unveiled unprecedented ca-
pabilities in sequential modeling and pattern recog-
nition, which can be leveraged for time series anal-
ysis. Three primary approaches are commonly
adopted (Jiang et al., 2024): direct querying of
LLMs (Xue and Salim, 2023; Yu et al., 2023;
Gruver et al., 2024), fine-tuning LLMs with task-
specific modifications (Chang et al., 2023; Cao
et al., 2024; Jin et al., 2024; Sun et al., 2024), and
incorporating LLMs into time series models to en-
hance feature extraction (Li et al., 2024).

Direct querying involves using LLMs to gener-
ate predictions or identify patterns from the data
without modifying the underlying architecture. For
example, PromptCast (Xue and Salim, 2023) ap-
plies LLMs to time series forecasting through a
sentence-to-sentence paradigm. Yu et al. explore
the use of LLMs for domain-specific tasks like
financial time series forecasting (Yu et al., 2023),
while LLMTime (Gruver et al., 2024) demonstrates
how LLMs can function as effective learners by to-
kenizing time series data in a text-like format.

Fine-tuning LLMs enables them to better cap-
ture the intricacies of time series data by adapting
them to specific datasets or tasks. For instance,
LLMA4TS (Chang et al., 2023) shows that fine-
tuning pre-trained models can enhance forecasting
performance. Additionally, TEMPO (Cao et al.,
2024) and TEST (Sun et al., 2024) introduce archi-
tectures tailored for time series prediction, further
demonstrating the power of specialized designs.

Lastly, LLMs can also act as feature enhancers
within traditional time series models, enriching
data representations and boosting performance. For
example, (Li et al., 2024) illustrates how a frozen
LLM can augment zero-shot learning for ECG time
series analysis, highlighting the potential of LLMs
to provide valuable features for complex datasets.

More recently, retrieval-augmented designs have
been proposed for zero-shot forecasting. TS-
RAG (Ning et al., 2025) retrieves semantically
relevant time-series segments from a knowledge
base and fuses them with a forecasting back-
bone to improve robustness and interpretabil-
ity. In contrast, BRIDGE (Li et al., 2025a) fo-
cuses on text-controlled time-series generation, us-
ing natural-language descriptions and an LLM-
based multi-agent pipeline to synthesize paired

text—time-series data. Unlike these forecasting-
or generation-oriented approaches, our work tar-
gets cross-domain time-series annotation, aiming
to produce general and domain-specific semantic
annotations that support interpretability and down-
stream tasks.

A.2 Domain Specialization of LLMs

Domain specialization of LLMs refers to the pro-
cess of adapting broadly trained models to achieve
optimal performance within a specific domain.
This is generally categorized into three approaches:
prompt crafting (Ben-David et al., 2022; Zhang
etal., 2023; Xu et al., 2024; Lin et al., 2025a), exter-
nal augmentation (Izacard et al., 2023), and model
fine-tuning (Malik et al., 2023; Pfeiffer et al., 2020;
Lin et al., 2025b). One of the earliest efforts in
this area is PADA (Ben-David et al., 2022), which
enhances LLMs for unseen domains by generat-
ing domain-specific features from test queries and
using them as prompts for task prediction. Auto-
CoT (Zhang et al., 2023) advances domain special-
ization by prompting LLMs with the phrase “Let’s
think step by step,” helping guide the models in
generating reasoning chains. Additionally, Izac-
ard et al. (2023) propose integrating a relatively
lightweight LLM with an external knowledge base,
achieving performance comparable to much larger
models like PaLM (Chowdhery et al., 2023). These
studies highlight the flexibility of LLMs in adapt-
ing to specific domains through various strategies
for domain adaptation.

A.3 Cross-modality Knowledge Transfer
Learning through Pre-trained Models

There has been growing interest in leveraging pre-
trained models for cross-modality knowledge trans-
fer, particularly between the language, vision, and
time series domains (Bao et al., 2022; Lu et al.,
2022; Yang et al., 2021; Zhou et al., 2023). For
instance, Bao et al. (2022) proposes a stagewise
pre-training strategy that trains a language expert
using frozen attention blocks pre-trained on image-
only data. Similarly, Lu et al. (2022) examines
the transferability of language models to other do-
mains, while Zhou et al. (2023) applies pre-trained
language and image models to time series analysis
tasks. To the best of our knowledge, no previ-
ous work has specifically explored cross-modality
knowledge transfer for time series annotation. Our
work aims to fill this gap by investigating the ap-
plication of cross-modality transfer learning in the



context of automatic time series annotation.

B Notations

Table 6 presents all the notations we used in this
paper.

Table 6: Notation Table

Symbol  Description
X Input time series data
€s Domain-specific annotation from source do-
mains
et Domain-specific annotation from target do-
main
eqd Domain-decontextualized annotation
eg General annotation
ft Time-series-wise feature
fi Text-wise feature
g Domain-specific term (jargon) from target
domain
ni, Domain decontextualizer
ni,; Time-series-wise feature extractor
m, Text-wise feature extractor
Mser Feature selector
Mgyer,  General annotator

Mar domain-specific term extractor

Mpe Domain-specific annotator
Myeo Annotation reviewer
Pde prompt of domain-decontextualization
|41 prompt of text-wise feature extraction
Pscore prompt of scoring
Dgen prompt of general annotation
Peat prompt of domain-specific term extraction
Dspe prompt of domain-specific annotation
Prev prompt of annotation review

Additionally, we also provide some specific ex-
amples of domains, annotations, and features to
improve the clarity of the problem settings of cross-
domain time series annotation defined in Section 3.
Specifically, our paper consider six distinct do-
mains, i.e., Stock, Health, Environment, Social
Good, Climate and Economy. For instance, the
stock dataset includes multivariate time series data
(e.g., stock price, volume, RSI, moving average)
with corresponding annotations capturing features
like support levels and resilience. More examples
of text-wise features can be found in Table 19.
More examples of domain-specific annotations are
provided in Tables 33, 34, 35, 36, 37 and 38 of
Appendix M.*

C More Details of Multi-modal Feature
Extraction
C.1 Time-series Feature Extraction

Given a time series data X = {(x1,---,x1)},
we develop a time series extraction toolbox

{fL, ..., fN} to extract time-series-wise features
from X. Specifically, we include seasonality, trend,
noise, moving average, lag feature, rolling window
feature, and Fourier frequency as intra-variable
time-series-wise features. For multivariate time
series, we also consider inter-variable time-series-
wise features, i.e., mutual information, Pearson
correlation, and canonical correlation.

In particular, we employ Seasonal-Trend de-
composition (STL) (Cleveland et al., 1990)
to extract seasonality, trend, and noise from
the given time series data. To extract
Fourier frequencies, the Fast Fourier Transform
(FFT) (Almeida, 1994) is applied to convert a
time-domain signal into its frequency compo-
nents. For the inter-variable time-series fea-
tures, we use np.corrcoef to compute the Pear-
son correlation. To calculate mutual informa-
tion, two time series are first discretized, followed
by sklearn.metrics.mutual_info_score. To
calculate canonical correlation, we first use
sklearn.cross_decomposition to decompose
two time series data, and then use np.corrcoef
to obtain the correlation.

C.2 Domain Decontextualization

We present the prompt template for domain decon-
textualization in Fig. 13.

C.3 Text Feature Extraction

Table 39 shows the prompt template for textual
feature extraction.

D More Details of Adaptive Feature
Selection

D.1 Offline LLM-based Feature Selection

The templates for pseore in Eq. (4) are shown in
Fig. 14 and Fig. 15, respectively.

In some cases, we cannot input all the annota-
tions to LLMs for calculating scores. We may split
the annotations into several small batches and input
the annotations in the small batches to calculate the
score using Eq. (4). After that, we will accumulate
the scores from all batches to get the final scores
of each feature/token and then select the features
with the top-k highest scores.

D.2 Incremental Reinforcement
Learning-based Feature Selection

The necessity of this component. In the proposed
LLM-based feature selection from Section 3, when



new annotations exhibit different distributions or
feature characteristics compared to the old data,
it becomes necessary to re-query both old and
new data to select the top-k£ most important fea-
tures. This process is computationally intensive
and resource-inefficient, especially as the volume
of data grows. To address this issue, we propose
the incremental reinforcement learning (RL)-based
feature selection method. This approach provides
the following benefits:

* Cost-Efficiency: Instead of re-querying LLMs
with all the data, the RL-based method incre-
mentally updates the knowledge stored in policy
networks, requiring only the new data during up-
dates.

* Scalability: By reducing redundant computa-
tions, the incremental RL-based method ensures
scalability in dynamic environments with evolv-
ing data.

E Time Complexity Analysis

To analyze the time complexity of TESSA, we
consider each component of TESSA separately,
focusing on the computational cost associated with
feature extraction, feature selection, and annotation
generation and review.

Feature Extraction. Extracting intra-variable and
inter-variable features has a complexity of ©O(C? -
n) , where C' is the number of channels in the time
series and 7 is the number of time points.
Feature Selection. For offline LLM-based fea-
ture selection, the complexity is O(k - M - L?),
where k is the number of features, M is the model
size (number of parameters) of the LLM, and L is
the input sequence length. Incremental RL-based
selection reduces this overhead by incrementally
updating policy networks without re-querying old
data.

Annotation Generation and Review. Each LLM
inference for annotation generation or review has
a complexity of O(M - L?). Given T samples, the
overall complexity becomes O(T - M - L?).
Overall Complexity. The combined complexity
can be expressed as:

O(T-[C* -n+k-M- L),

where 7' is the number of time series samples.

F Experimental Settings

F.1 Dataset Statistics

Datasets. To evaluate the effectiveness of TESSA,
five real-world datasets from distinct domains are
considered: Stock, Health, Energy, Environment,
and Social Good. Specifically, the stock dataset
includes 1,935 US stocks with the recent 6-year
data, collected from Investtech?. The other four
datasets come from the public benchmark Time-
MMD (Liu et al., 2024a). The dataset statistics are
summarized in Table 7.

Additionally, we generate a synthetic dataset
containing both time series and ground-truth an-
notations to directly assess the quality of the gen-
eral annotations. The synthetic dataset is created
by combining several key components from the
time-series data:

¢ Trend: Introduces an overall direction, which
can be upward, downward, or mixed.

* Seasonality: Adds cyclical patterns, modeled
using sine waves.

* Fourier Feature: Incorporates complex periodic
behavior by combining multiple sine and cosine
waves.

* Noise: Adds Gaussian noise to simulate random
fluctuations and real-world imperfections.

* Rolling Window Features: Captures smoothed
trends (mean) and local variability (max/min).

* Lag Features: Uses past values to capture auto-
correlation in the time series.

Ground-truth annotations are then generated by
summarizing the key components of the synthetic
time series.

In our synthetic dataset, we conduct 100 times
random generation of each components and then
combine them together to get 100 synthetic time
series data, each with corresponding textual anno-
tation.

F.2 Baseline Methods

Three baselines are applied in our general annota-
tion evaluation for downstream tasks:

¢ No Text: No textual data are utilized in the fore-
casting process.

*https://www.investtech.com/



Table 7: Dataset Statistics

Domain Frequency # Channels # Timestamps # Samples
Stock Daily 4 854,878 1,758
Health Weekly 1 1,389 1,356
Social Good Monthly 1 916 497
Energy Daily 1 1,622 1,586
Environment Daily 1 11,102 1,935
Climate Monthly 5 496 177
Economy Monthly 3 423 410
* Time-MMD (Liu et al., 2024a): A multimodal
benchmark for time series analysis that incorpo-
. . . N | Model ¥
rates both time series and text data. To adapt this E 1 l ll
method to our setting, we apply the original text = X
data from the target datasets in (Liu et al., 2024a) £ % Open | p g | £
he f . K = Source 8
to the forecasting task. LLM % 2
Input NIM-TSFLib

* DirectLLM: Directly uses the annotations gener-
ated by LLMs for time series forecasting. In this
paper, we compare several representative LLMs
in our evaluations.

F.3 Framework for Multi-modal Downstream
tasks

To evaluate the quality of general annotations,
we leverage the multi-modal time series analysis
framework proposed in Time-MMD (Liu et al.,
2024a), illustrated in Fig. 4. Using time series
forecasting as a representative task, this frame-
work employs an end-to-end pipeline that combines
open-source language models with diverse time-
series forecasting (TSF) models. Time-series data
and textual annotations are modeled independently
through dedicated unimodal TSF architectures and
language models (LLMs) equipped with projection
layers. The outputs of these modalities are fused
via a dynamic linear weighting mechanism to gen-
erate final predictions. To optimize computational
efficiency, we keep the LLM parameters frozen
during training and update only the projection lay-
ers. Additionally, pooling layers are introduced
to resolve dimension mismatches between textual
variables and time-series features. The framework
supports end-to-end training with minimal parame-
ter overhead, ensuring both scalability and practi-
cality.

F.4 Comparing TSSA with End-to-End
Single-modal Fine-tuning

To further validate the effectiveness of TESSA,
we implement another baseline that jointly fine-
tuning one LLM on both source and target domain

Figure 4: Overall framework of MM-TSFlib from Time-
MMD (Liu et al., 2024a) used in our multi-modal down-
stream tasks. MMTSFlib uses a model-agnostic multi-
modal integration framework that independently models
time-series and textual annotations within an end-to-
end training manner. MM-TSFlib slightly increases the
number of trainable parameters, balancing effectiveness
and efficiency.

datasets. Specifically, we fine-tune Qwen2-7B-
Instruct (via LoRA) on source (Stock, Health) and
target (SocialGood) datasets. The time series fore-
casting results and the LLM-as-a-Judge results are
provided in Table 8 and Table 9, respectively. From
these tables, we observe that (i)the fine-tuning base-
line slightly outperforms DirectLLM in time se-
ries forecasting, but largely underperforms TESSA
across both MSE and MAE,; (ii) The fine-tuning
baseline improves domain relevance slightly over
DirectLLM, but it does not improve clarity or com-
prehensiveness and still underperforms TESSA
across all metrics. This supports our design hy-
pothesis: monolithic models struggle to balance
general and domain-specific reasoning, while our
modular approach enables more effective and spe-
cialized annotation.

F.5 Comparison with Existing Multi-agent
Systems

To better contextualize TESSA’s contributions
against general-purpose multi-agent frame-
works, such as AutoGen (Wu et al., 2024),
MetaGPT (Hong et al., 2024), CAMEL (Li et al.,
2023), we argue that while general-purpose



Table 8: Forecasting results with Qwen2-7B-Instruct as the LLM backbone. Informer is the time series forecasting
model. SocialGood is the target dataset. Stock and Health are the source datasets. Finetuned is the baseline jointly
fine-tuning the LLM on both source and target domain datasets.

Metric NoText TimeMMD DirectLLM Finetuned TESSA

MSE
MAE

2.1457
1.1205

1.6072
0.9731

0.5550
0.4850

0.4612
0.3792

0.3651
0.2838

Table 9: Domain-specific annotation results on the So-
cial Good dataset with Qwen2-7B as the LLM backbone.
SocialGood is the target dataset. Stock and Health are
the source datasets. Finetuned is the baseline jointly
fine-tuning the LLM on both source and target domain
datasets.

Metric DirectLLM Finetuned TESSA
Clarity 3.28 3.23 4.68
Compre.  3.26 3.18 449
Dom. Rel. 3.33 3.53 4.45
Overall 3.29 3.33 4.48

systems like AutoGen, MetaGPT, and CAMEL
have shown promise in task planning and code
generation, they are not tailored for time series
annotation.

To evaluate their suitability, we conducted a new
experiment by adapting AutoGen for our task. We
defined three roles:

* A general annotator to produce initial time se-
ries descriptions,

* A domain-specific annotator to specialize these
with in-domain terminology, and

* An annotation reviewer to provide iterative feed-
back.

We configured AutoGen to use the same LLM
backbone and prompt templates as TESSA to en-
sure a fair comparison. Following the setup in Sec-
tion 4.4, we evaluated all models on the SocialGood
dataset using our LLM-as-a-Judge framework. Re-
sults are reported in Table 10. These results show
that while AutoGen improves over DirectLLM, it
does not match TESSA’s performance. We believe
this is due to key architectural differences. Au-
toGen supports sequential agent coordination but
lacks explicit mechanisms for (i) cross-domain fea-
ture identification, and (ii) conditioning on domain-
specific terminology extracted from limited target-
domain annotations.

In contrast, TESSA incorporates:

* LLLM-guided feature selection, which pro-
motes the extraction of robust general patterns
across domains (Sec. 3.1),

* A Domain-Specific Term Extractor, which
identifies key jargon from sparse annotations
(Sec. 3.3).

* A tightly integrated Annotation Reviewer,
which forms a bi-directional loop that itera-
tively refines annotation quality (Sec. 3.4).

This comparison highlights that careful design of
agent roles and domain adaptation mechanisms is
essential for time series annotation.

Table 10: Comparison between TESSA and AutoGen
on domain-specific annotation. The target dataset is
SocialGood, with Qwen2-7B as the LLM backbone.
Stock and Health serve as the source datasets.

Metric DirectLLM AutoGen TESSA
Clarity 3.28 3.89 4.68
Compre.  3.26 3.93 449
Dom. Rel. 3.33 4.01 4.45
Overall 3.29 3.94 4.48

F.6 Additional Experiments on Traditional

Time Series Data

In this subsection, we adopt TESSA to a widely
used dataset ETT-small_hl (Zhou et al., 2021),
which is a traditional time series dataset without
accompanying textual inputs. To adopt TESSA to
this setting, we use OpenAl’s 04-mini to generate
domain-relevant terminology that represents the
kind of specialized language that would typically
accompany this dataset. These generated domain-
specific terms are then fed into the Domain-Specific
Annotator to guide annotation. Following the eval-
uation setup in Section 4.4, we compare TESSA
with DirectLLM in generating domain-specific an-
notations. The results are summarized in Table 11.
These results demonstrate that TESSA can still
generate high-quality time series annotations on
traditional datasets, even without explicit textual



inputs, outperforming DirectLL.M across all met-
rics.

Table 11: Comparison results on the ETT-small_h1 tar-
get dataset with GPT-40 as the LLM backbone. Stock
and Health are the source datasets.

Metric DirectLLM TESSA
Clarity 3.32 4.69
Compre. 3.45 4.57
Dom. Rel. 3.07 4.54
Overall 3.28 4.59

F.7 Comparison with More Traditional Time
Series Models

In this subsection, to further enrinch the evalua-
tion, in addition to Informer, we add two more
strong traditional baselines (i.e., Reformer (Kitaev
et al., 2020) and PatchTST (Nie et al., 2023)) for
the Energy dataset. The restuls are reported in Ta-
ble 12. These results show that TESSA consistently
improves forecasting performance across different
backbone models. This highlights its ability to gen-
erate semantically meaningful annotations that
benefit downstream time series tasks, even when
integrated with traditional models.

G Additional Results for General
Annotation Evaluation in Downstream
Tasks

G.1 Implementation Details

Time Series Forecasting Models. We use In-
former (Zhou et al., 2021) as the forecasting model
for the time series forecasting task. The model is
configured with a dropout rate of 0.1 and a learning
rate of 0.0001.

Large Language Models. We utilize GPT-
40 (Achiam et al., 2023), along with two open-
source models: LLaMA3.1-8B (Dubey et al., 2024)
and Qwen2-7B (Yang et al., 2024). For the
open-source models, we set temperature=1 and
max_tokens=2048, while all other settings follow
the defaults.

Each experiment in our paper is conducted five
times, with the average result reported. All models
are trained on an Nvidia A6000 GPU with 48GB
of memory.

G.2 Evaluation in Time Series Forecasting
Tasks

The full results are presented in Table 13. From the
table, we can observe the following: (1) TESSA

Table 12: Forecasting results with GPT-40 as the LLM
backbone. Energy is the target dataset. Stock and Health
are the source datasets.

Backbone Metric NoText DirectLLM TESSA

Reformer | MSE 00305 00287 00238
MAE 01234 01198  0.1100
MSE 02440  0.1432  0.0942
PatchTST | \iag 02321 02104  0.1844

consistently outperforms all baselines across all set-
tings, demonstrating its effectiveness in generating
high-quality general annotations. (2) Among the
three LLMs, GPT-40-backed TESS A achieves the
best performance, outperforming both LLaMA3.1-
8B and Qwen2-7B. We attribute this to the higher
quality of the annotations generated by GPT-40
compared to the other models, further emphasiz-
ing that high-quality annotations can significantly
enhance downstream task performance.

G.3 Evaluation in Time Series Imputation
Tasks

To demonstrate the effectiveness of TESSA in im-
proving the performance of various downstream
tasks, we further apply the generated general anno-
tations in time series imputation task. Specifically,
time series imputation task refers to the process
of filling in missing or incomplete data points in
a time series dataset, where some values are ran-
domly mask.

Implementation Details. We implement the multi-
modal time series imputation based on TSLib (Wu
etal., 2023). We use Informer (Zhou et al., 2021) as
the forecasting model for the time series forecasting
task. The model is configured with a dropout rate
of 0.1 and a learning rate of 0.0001. GPT-4o0 is set
as the LLM backbone. Other settings follow these
in Section G.1.

Experimental Results. The experimental results
are shown in Table 14. From the table, we observe
that TESSA consistently outperforms baselines in
all datasets, demonstrating that TESSA’s annota-
tions can significantly benefits various downstream
tasks, including forecasting and imputation.



Table 13: Comparison results in forecasting. Informer is the time series forecasting model.

Domain Backbone Metrics No Text Time-MMD DirectLLM TESSA
CPTdo MSE 12542 0.8483 07714 0.4629

MAE 07387  0.6865 0.6604  0.4424

Environment MSE 1.2542 0.8483 0.8108 0.5654
LLaMA3.1-8B \iag 07387 0.6865 0.6805  0.5128

Owen7p  MSE 12542 08483 07956 0.5824

MAE 07387  0.6865 06729  0.5419

CPTdo MSE 20117 02172 00575  0.0482

MAE 11663 02139 0.0055  0.0040

Energy MSE 20117 02172 0.1023  0.0531
LLaMA3.1-8B \iap 11663 0.2139 0.0130  0.0049

Owenz7p  MSE 20117 02172 00824  0.0522

wen.z- MAE 1.1663 0.2139 0.0097  0.0048

CPTdo MSE  2.1457  1.6072 04639  0.1935

MAE 11205 09731 03801  0.0825

Social Good MSE  2.1457  1.6072 06720  0.3422
LLaMA3.1-8B \rap 11205 09731 0.6138  0.2489

Owenz7p  MSE 21457 L6072 05550  0.3651

MAE 11205 09731 04850  0.2838

Table 14: Imputation results with GPT-40 as the LLM backbone. Informer is the imputation model.

Metric Domain

NoText TimeMMD DirectLLM TESSA

Environment | 0.9718 0.9657 0.9453 0.5698
MSE  Energy 0.9109 0.9081 0.9018 0.8690
Social Good | 1.4971 0.9784 0.6873 0.5492
Environment | 0.6872 0.6867 0.6973 0.5438
MAE  Energy 0.8216 0.8176 0.8111 0.8075
Social Good | 0.8371 0.7806 0.6036 0.5116

H Additional Details of General
Annotation Evaluation in Synthetic
Datasets

H.1 Implementation Details

To evaluate the effectiveness of TESSA in gener-
ating general annotations for synthetic time series
using an LL.M-as-a-judger approach, we set GPT-
40 as the backbone of the judger. Two metrics,
Clarity and Comprehensiveness, are used to assess
the quality of the annotations:

* Clarity: Evaluates the clarity and readability of
the annotations.

¢ Comprehensiveness: Assesses whether the an-
notations cover the most important patterns.
H.2 Prompt Templates of LLLM-as-a-judger

The prompts for evaluations are shown in Table 40
and Table 41.

I Additional Results of Domain-specific
Annotation Evaluation

I.1 Evaluation Metrics

We use the following three metrics to evaluate the
quality of domain-specific annotations:

* Clarity: Assesses the clarity and readability of
the annotations.

* Comprehensiveness: Checks whether the anno-
tations cover the most important patterns.

* Domain-Relevance: Evaluates whether the an-
notations correctly apply domain-specific knowl-
edge.

1.2 Prompt Template

The prompts used to evaluate the domain-specific
annotations based on the three metrics are shown
in Table 42, Table 43, and Table 44, respectively.



1.3 Additional Results on Other LLM
Backbones

We report the evaluation results of the domain-
specific annotations on the Energy and Social Good
datasets in Table 15 and Table 16, respectively.
Similar observations are made in Section 4.4, fur-
ther demonstrating the effectiveness of TESSA
in generating high-quality domain-specific annota-
tions.

Table 15: Domain-specific annotation results on the
Energy dataset with GPT-40 as the LLM backbone.

Metric Method Mean P(T>D) (%)
Clarity ~ poosa 37 9935
Compre. E];:rigtjﬁ,LM g?g 98.01
Dom. Rel. oo 323 9524
Overall TESSA 4.57 98.31

DirectLLM  3.35

Table 16: Domain-specific annotation results on the
Social Good dataset with GPT-40 as the LLM backbone.

Metric Method Mean P(T>D) (%)
Clarity E]iiriftjiLM ggg 99.61
Compre.  pLost 399 97.54
Dom. Rel. DE958 345 9534
Overall TESSA 4.48 97.16

DirectLLM  3.29

J Experimental results of Human in Loop

In this section, we demonstrate that the annota-
tions generated by TESSA can assist humans in
analyzing time-series data. To evaluate this, we se-
lected 60 time-series samples from three domains,
Environment, Energy, and Social Good, with 20
datasets per domain. We compared annotations
generated by TESSA and DirectLLM, asking 20
PhD stduents, researchers, and professors as the
participants to assess which annotations were more
informative and useful. The results of this human-
in-the-loop evaluation, summarized in Table 17,
reveal that TESSA consistently outperforms Di-
rectLLM across all three domains. Participant as-
sessments indicate that 88.3% of TESSA’s gen-
eral annotations and 93.3% of its domain-specific

annotations are more informative compared to Di-
rectLLM’s outputs. This substantiates TESSA ’s
capacity to produce semantically meaningful anno-
tations that enhance human interpretability during
time-series analysis workflows.

Table 17: Comparison results of general and domain-
specific annotations. GPT-4o0 is the LLM backbone.

Domain Method P(T>D) (%)
Environment General 83.3
Specific 91.7
Ener General 88.3
gy Specific 93.3
Social Good General 85.8

Specific 92.5

K Additional Results on Multivariate
Time Series

In this section, we aim to demonstrate the effec-
tiveness of TESSA in generalizing to multivariate
time series. Specifically, We use Stock and Health
datasets as the source domains, Climate and Econ-
omy datasets as the target domains.

Domain-specific Annotations Evaluation. Sim-
ilar to Section 4.4, we adopt a LLM-as-a-Judger
strategy to evaluate the performance of TESSA
and DirectLLM in generating domain-specific an-
notations. Other settings follow these in Sec-
tion 4.4. We present the comparison results on
the two datasets in Table 18. From the table, we ob-
serve that similar to these of univariate time series
in Section 4.4, TESSA significantly outperforms
DirectLLM across all metrics in both two multivari-
ate time series datasets, aciving an overall score of
4.51 and 4.55 compared to DirectLLM’s 3.38 and
3.42 in Climate and Economy dataset, respectively.
This demonstrates the effectiveness of TESSA in
generalizing to multivariate time series. Additional
case studies of TESSA applied to multivariate time
series are presented in Appendix M.

L Additional Details of Ablation Studies

L.1 Evaluation Metric

To evaluate the effectiveness of the adaptive feature
selection, we use an LL.M-as-a-judger to evaluate
the general annotations generated by TESSA and
its variant TESS A/F. We propose to evaluate it by
using the prompt in Table 45.



Table 18: Comparison results of domain-specific anno-
tations for multivariate time series in the Climate and
Economy datasets using GPT-40 as the LLM backbone.

Domains Metric Method Mean P(T>D) (%)
Claity ~ [ESS% 338 9917

Climate ~ COmPre- giariftjliLM gg; 9643
Dom. Rel. L9533 9620
Overall Eliarf:ftiLM gg; 97.26
Claity it gfgg o7.14

Economy Compre. giirigt?LM gi? 9681
Dom. Rel. pE95R 21 9670
Overall Eﬁig&iLM ‘3‘;51; 96.88

Table 19: Ablation studies of the impact of domain de-
contextualization. Red denotes the irrelevant features.

TESSA’s extracted text-wise features:

support level, resistance level, volume correlation,
breakthrough, trend reversal, relative strength index,
negative signal, positive signal, channel boundaries

TESSA/D’s extracted text-wise features:
higher prices over time , autocorrelation,

price increase , trend channel, stationary, fun,

lower prices , outliers, breakdown, rising trend

L.2 Qualitative Examples

We present a qualitative example of extracting
text-wise features using TESSA and TESSA/D,
shown in Table 19. From the table, we observe
that TESSA/D captures irrelevant features, such
as higher prices over time and fun, which are un-
related to time series analysis. This supports our
claim that domain-specific terminology can hin-
der the accurate extraction of time-series-relevant
features.

We also provide another qualitative example in
Table 21 to demonstrate the effectiveness of adap-
tive feature selection. The annotations generated
by TESSA/F tend to include numerous features
without proper analysis. This illustrates that includ-
ing too many features can reduce the clarity of the
annotations, further emphasizing the importance of
adaptive feature selection in improving annotation
quality.

Table 20: Case study: Evaluation results of domain-
specific annotation of time series data in Fig. 6 from the
Environment dataset. GPT-4o is the LLM backbone.

Metric Method Score
Clarit TESSA 5.0
Y DirectLLM 3.0
Comore.  TESSA 3.0
P DirectLLM 3.0
TESSA 5.0

Dom. Rel. 1y eotlIM 3.0
overall  TESSA 43

DirectLLM 3.0

L.3 Additional Ablation Studies on the
Contributions of TESSA’s Components

In Section 4.5, we conduct ablation studies to as-
sess the importance of domain decontextualization
and adaptive feature selection in TESSA. To fur-
ther understand the contributions of TESSA’s com-
ponents, we conduct additional ablation studies on
domain-specific term extractor and annotation re-
viewers, respectively.

Domain-specific Term Extractor. To understand
the ability of LLMs to process domain-specific
jargon to generate useful features, we implement
a variant TESSA/S, which removes the domain-
specific term extractor in TESS A and directly gen-
erate domains-specific annotations from general
annotations. We provide the comparison results in
Stock and SocialGood datasets in Tables 22 and 23,
which demonstrate that TESS A is able to capture
more jargon-rich in information, such as resistance
levels in the Stock dataset and reactive bounds in
the SocialGood dataset. In contrast, TESSA/S
merely converts general features into basic domain-
specific features. This highlights that LLMs, when
used as domain-specific term extractors, can effec-
tively generate valuable jargon that enhances the
generation of domain-specific annotations.
Annotation Reviewer. To evaluate the impact
of the annotation reviewer component, we intro-
duce a variant TESS A/A that excludes this module.
We assess the quality of domain-specific annota-
tions generated by TESSA and TESSA/A using
an LL.M-as-a-judger framework, focusing on two
criteria: (1) Clarity (readability and coherence of
annotations) and (2) Domain-Relevance (alignment
with domain-specific context). An overall score,
calculated as the average of these metrics, provides
a holistic performance measure. As shown in Ta-
ble 24, TESSA achieves statistically significant



Table 21: Ablation studies of the impact of adaptive feature selection. Two compared methods are used for
generating general annotation ploted in Fig. 6(a). 'Purple highlights basic patterns, green highlights general

patterns.

TESSA’s generated general annotation:
The time series data tracks a single variable over time, showing a gradual 'upward trend from around 6.96 to over

10.4. There are clear seasonal patterns, with regular cycles of peaks and troughs, hinting at periodic influences
like seasonal demand. The data exhibits strong support and resistance levels , where it hesitates at specific values
before continuing its rise, demonstrating resilience . There is a consistent | upward indicator trend , suggesting

stable or improving underlying factors driving this increase. Overall, the data indicates a positive growth trajectory ,
with predictable cyclical fluctuations due to natural or recurring factors.

TESSA/F’s generated general annotations:
The provided time series data shows a | clear upward trend , indicated by the gradual increase in |trend values

over time. Initially, fluctuations are minor, but as the series progresses, we observe larger increases, especially

towards the end of the sequence, suggesting a strong positive momentum . The occasional deviations from the

trend, as shown by the residue , hint at short-term fluctuations or potential anomalies . Seasonality seems to
have minimal impact with slight cyclical patterns, possibly reflecting periodic but non-dominant effects. Overall,

if this time series pertains to a scenario where higher values are desirable, such as sales or economic indicators ,

this upward trend and increased values could be considered as positive signals or a breakthrough .

improvements over TESSA/A across all metrics.
This quantitative comparison demonstrates that
the annotation reviewer critically enhances both
the clarity and contextual relevance of generated
annotations, ensuring they better capture domain-
specific nuances.

L.4 Additional Ablation Studies of Data
Contamination

To investigate whether TESSA retains its effec-
tiveness when the LLMs used are not exposed to
data describing the time series, we conduct an ab-
lation study using fully open LLMs, specifically
OLMo-7B (Groeneveld et al., 2024). The cate-
gories of the training data for the LLM are listed in
Table 25. In this study, we carefully select time se-
ries with textual annotations that neither appear in
the training data of OLMo-7B nor describe the time
series themselves. We use the Stock and Health
datasets as source domains, and the Energy dataset
as the target domain. We then apply TESSA and
DirectLLM to generate both general and domain-
specific annotations for the time series data in the
Energy dataset.

The results are presented in Table 26. From the
table, we observe that: (1) despite using a fully
open LLM that has not been exposed to data de-
scribing the time series, TESSA with OLMo-7B
as the LLM backbone is still able to understand
and generate informative annotations with richer
general and domain-specific patterns, using more

natural language. In contrast, DirectLLM only of-
fers a simplistic description of the basic trend of
the time series data. This further underscores the
effectiveness of TESS A even in a scenario of strict
data non-contamination.

Additionally, we employ an LLM-as-a-Judger
strategy to evaluate the domain-specific annota-
tions generated by TESSA and DirectLLM, as
shown in Table 26. The evaluation is conducted
from three perspectives: Clarity, Comprehensive-
ness, and Domain-relevance. GPT-4o0 serves as the
LLM judger, and the other settings follow those in
Sec. 4.4. The comparison results are presented
in Table 27. We observe that TESSA consis-
tently achieves full scores in all three metrics, sig-
nificantly outperforming DirectLLM. This further
demonstrates TESSA ’s effectiveness in generat-
ing high-quality domain-specific annotations with
stronger clarity, comprehensiveness, and domain-
relevant contextual precision.

M Additional Details of Case Studies

More Details of the Case Studies in Section 4.6
In this section, we provide additional details of the
case studies in Section 4.6. We select a represen-
tative time series from the Social Good domain,
shown in Fig. 6(b). In Table 28, both the general
and domain-specific annotations generated by Di-
rectLLLM and TESSA are reported. We also quan-
titatively evaluate the domain-specific annotations
of TESSA and DirectLLM, following the setup



Table 22: Ablation studies of the impact of the domain-
specific term extractor in Stock dataset. |Purple high-

lights basic patterns, green highlights general patterns,
yellow highlights domain-specific patterns and blue

highlights correlations between variables in multivariate
time series data.

TESSA:
Compass Digital Acquisition Unit’s stock price shows a no-

table pattern of rising and falling periodically , indicating
seasonality with stable long-term trend s interrupted by

short-term | fluctuations . There are key resistance levels

around intervals 134,270, and 403, where prices peak
before dipping. The stock volume demonstrates significant
spikes at specific points, suggesting irregular activity,
particularly around values 7,000 and 80,500, which may
indicate volume bursts or unusual market events. The rel-

ative strength index (RSI) also reveals a recurring pattern,

gradually | trending upward before a sharp decline, reflect-
ing a cycle of growth and subsequent drop. Overall, the
mild  positive correlation between stock price and RSI

indicates that periodic changes in price are somewhat
echoed in RSI patterns, potentially offering predictive
insights for future stock movements.

TEESA/S:
Compass Digital Acquisition Unit’s stock price ex-
hibits a distinct cyclical pattern , suggesting seasonality ,

with occasional |fluctuations |.
index (RSI) shows a

The relative strength

repeating trend, gradually

rising before experiencing a sharp drop, indicating
a pattern of growth followed by a decline. The
mild positive relationship between stock price and RSI

suggests that changes in price tend to be mirrored in the
RSI, offering potential clues for predicting future price
movements.

outlined in Section 4.4. The evaluation results are
presented in Table 20.

From the table, we observe that (1) TESSA’s
general annotations capture more meaningful pat-
terns, enhancing user understanding and supporting
downstream tasks, while DirectLLM only high-
lights basic trends; and (2) TESSA’s domain-
specific annotations consistently outperform those
of DirectLLM across all metrics, providing clearer,
more comprehensive, and contextually relevant
insights. Specifically, TESSA’s annotations are
more fluent, more detailed and provide a richer
analysis using domain-specific jargons, like eco-
nomic momentum and labor market resilience,
while the annotations of DirectLLM only simply
analyze the trend of the unemployment rate, pro-
viding less insights.

Case Study for Multivariate Time Series We then

Table 23: Ablation studies of the impact of the domain-
specific term extractor in SocialGood dataset. | Purple

highlights basic patterns, green highlights general pat-

terns and yellow highlights domain-specific patterns.

TESSA: The unemployment rate displays a ' clear upward

trend over time, starting from the mid-5s and progress-
ing to the mid-7s toward the end of the series, signal-

ing persistent growth in unemployment. This movement

is influenced by volatility periods , suggesting that eco-
nomic cycle phases are periodically impacting employ-
ment levels. The observed resistance thresholds around
the mid-5s and mid-6s mark critical threshold levels ,
where unemployment temporarily stabilizes before con-
tinuing its upward momentum. Analyzing lag features ,

past values like 5.5 and 6.0 serve as baselines, help-
ing to understand how unemployment has evolved over
time. This steady upward movement, punctuated by
cyclical variations, highlights the need for strategies that
address both economic momentum indicators and short-

term reactive bounds , ensuring a robust response to both
long-term trends and periodic disruptions in the labor mar-
ket.

TEESA/S: The unemployment rate data reveals a con-
sistent |upward trend over time, starting from 5.18
and rising to approximately 7.24. This suggests an
increasing trend in unemployment, which might pose
socio-economic challenges if it persists. The data also

exhibits seasonal fluctuations , indicating periods of ele-
vated unemployment that could align with specific eco-
nomic or legislative cycles. These recurring ups and downs

highlight how external factors might periodically impact

the job market. Recognizing these cyclical variations can
help policymakers craft effective strategies to mitigate the
potential socio-economic risks of rising unemployment in
the future.

conduct a case study to demonstrate the effective-
ness of TESSA in generating high-quality anno-
tations for multivariate time series data. Specifi-
cally, we set the Stock dataset as the target domain.
Health and Environment datasets are then applied
in the source domains. The example multivariate
time series data is shown in Fig. 8, where the multi-
variate time series data has four variables, i.e., price,
volume, relative strength index (RSI) and simple
moving average (SMA). The generated annotations
are shown in Table 29. From the table, we observe
that (1) TESSA’s generated annotations are more
natural than DirectLLM; (2) DirectLLM interprets
each variable independently by only focusing their
trends. However, TESS A can capture the correla-
tion between variables. This shows TESSA is able
to analyze inter-variable patterns. These further
imply the effectiveness of TESSA in generating



Table 24: Ablation studies for the annotation reviewer
in the Social Good dataset with GPT-40 as the LLM
backbone.

Metric Method P(TESSA>TESSA/A) (%)
Clarity %%SSSS‘/: A 95.4
Dom. Rel. ’"?ESSSSAA /A 87.6
Overall 1294 91.6

Table 25: The categority of the training data used to
pre-train OLMo-7B (Groeneveld et al., 2024), which is
from OLMo’s technical report (Groeneveld et al., 2024).

UTF-8

Source Type bytes Docs  Tokens
yp (é p) (millions)(billions)
Common Crawl  web pages 9,812 3,734 2,180
GitHub code 1,043 210 342
Reddit social media 339 377 80
Semantic Scholar  papers 268 38.8 57
Project Gutenberg  books 20.4  0.056 5.2

Wikipedia encyclopedic 16.2 6.2 3.7

11,519 4,367 2,668

Total

high-quality domain-specific annotations for multi-
variate time series data.

Case Study in the Synthetic Dataset. We fur-
ther select an example from the synthetic dataset
to conduct similar experiments to generate gen-
eral annotations. The selected time series data is
in Fig. 7. The qualitative example of the annota-
tions of this time series data is shown in Table 30.
From the table, we observe a discrepancy in Di-
rectLL.M’s analysis, as it detects 138 values in the
time series data, despite there being only 120 val-
ues. This leads to inaccurate annotations. More-
over, DirectLLM captures only the basic trend of
the time series, whereas TESSA identifies more sig-
nificant patterns, such as the rolling window feature,
seasonality, and resilience. This demonstrates the
effectiveness of TESSA in providing more com-
prehensive and accurate annotations. We analyze
the reason TESS A mitigates the hallucination seen
in DirectLLM is that it highlights important pat-
terns overlooked by LLMs, such as seasonality. By
focusing on these patterns rather than just basic
trends, LLMs can analyze and interpret time series
data from multiple perspectives, leading to fewer
hallucinations in the annotations.

Additional Examples on Various Domains. Ad-
ditional examples are presented for the synthetic,
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Figure 5: Selected time series data from Energy dataset
for ablation studies on data contimination. This time
series data has 30 data points. The corresponding gen-
erated annotations of TESSA and DirectLLMs are pro-
vided in Table 26.
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Figure 6: Selected time series data from Social Good
dataset for ablation studies and case studies. (a) for
ablation studies ; and (b) is for case studies.

environment, energy and social good datasets, re-
spectively. Specifically, the general annotations of
selected time series on the synthetic dataset that
in Fig. 9 are shown in Tables 31 and 32. The
domain-specific annotations of selected time series
on the environment dataset (Fig. 10) are shown
in Tables 33 and 34. And the domain-specific
annotations of time series on the energy dataset
(Fig. 11) are shown in Tables 35 and 36. Similarly,
the domain-specific annotations of time series on
the social good dataset (Fig. 12) are shown in Ta-
bles 37 and 38. Similar observations to those in
Table 20 and Table 30 are found.



Table 26: Ablation studies on data contamination using OLMo-7B-Instruct. We select a time-series in the Energy
dataset, which is shown in Fig. 5. | Purple highlights basic patterns, green highlights general patterns, and yellow
highlights domain-specific patterns.

TESSA’s general annotations The time series data shows a | trend of increasing and decreasing values with some
seasonality , which can be observed from the values of the intra-variable time series features such as trend,
seasonality , and moving average . The values of the intra-variable moving average are not stable, indicating that

the time series data is volatile and prone to fluctuations . The values of the intra-variable lag features are not
significant, indicating that there is no strong correlation among the time series data points.
DirectLLM’s general annotations This time series data represents a process with high | variability in the values,

with an | increasing trend . The data is separated by ’I’ tokens, which could represent different stages or conditions
of the process. The highest value of 1.108 is observed at the 11th instance, which might indicate a bottleneck
or peak in the process. The series shows a |decreasing trend from instances 9-12, which suggests that certain
measures or interventions were put in place to address the bottleneck. Overall, the data suggests that the process is
subject to | fluctuations |, but can be managed by identifying and addressing the root causes of the bottlenecks.

TESSA’s domain-specific annotations The natural gas price is exhibiting a volatile pattern with significant fluc-
tuations, suggesting a lack of stability in the market. This volatility hints at underlying market dynamics
that are affecting price movements, potentially tied to factors such as supply and demand shifts

or external economic variables . A closer examination of the trend channels indicates intermittent

rising and falling trends , pointing towards a potential cyclical behavior in natural gas prices. Currently, the
market does not show strong correlation from lag features, suggesting that recent | price changes are not strongly
influenced by past values. Support and resistance levels could play a crucial role, as breaking through these levels
may signal a significant trend shift in the gas market’s future pricing.

DirectLLM’s domain-specific annotations Gasonline prices in the Energy domain are |fluctuating , ranging
from 1.04 to 1.10 per unit, with occasional spikes above 1.10, and drops below 1.00. These prices |fluctuate
consecutively, indicating a dynamic market for Gasonline.

Table 27: Ablation studies of data contamination. 120 — OT
We use an LLM-as-a-Judger to compare a domain-
specific annotation in the Energy dataset generated 100:
by DirectLLM and TESSA. OLMo-7B is the LLM- o
backbone. GPT-4o0 is used as the LLM judger. = 80
©
Metric Method Mean = 60
Clarity EEEEQLM g
40
Compre. TESSA N
DirectLLM 2 0 50 100
TESSA 5 Time
Dom.Rel. pirecim 3
TESSA 5 Figure 7: Case study: A selected time series data from
Overall DirectLLM  2.67 the synthetic dataset. The time series data has 120 data

points. OT denotes the target variable.



Table 28: A case study in Social Good dataset. The target time series data is shown in Fig. 6 (a). |Purple highlights

basic patterns, green highlights general patterns, and yellow highlights domain-specific patterns.

TESSA'’s general annotations

The time series data shows a generally | decreasing trend |, initially rising until a midpoint before consistently declin-

ing. Seasonal patterns are evident, with regular peaks around specific intervals. The series experiences rapid posi-

tive and negative fluctuations, reflecting significant changes in the measured system. Support and resistance levels

are observed, with values frequently pausing near 7.0 and struggling to exceed 10.5. Past values have an impact on
current data, indicating that recent patterns help predict future outcomes.

DirectLLM’s general annotations

The uni-variate time series data exhibits | fluctuating values with an overall | descending trend . Initially, the data is

relatively stable around the 9.5 to 10.5 range, peaking at 11.4 before descending gradually. Midway through the
series, after reaching a peak, there is a noticeable decline as values drop from approximately 11 to levels around 8.
By the end, the values stabilize somewhat but decline further, reaching a low near 7. This pattern suggests an initial

increase followed by a |downward trend and final stabilization at lower levels, indicating a potential cycle or shift

in the underlying phenomenon being measured.

TESSA’s domain-specific annotations

The unemployment rate shows a pattern consistent with trends in labor market resilience and economic momentum.
Initially stable, with rates between 9 and 10, there is a gradual upward movement indicating early signs of
economic growth and potential tightening in the labor market, peaking around 11. This is followed by a downturn,

reflecting possible macroeconomic constraints or shifts that reduce economic momentum , as the rate drops to
approximately 7.5 towards the end of the period. The rates around 9 and 11 can be seen as support and resistance

thresholds for employment, where the market experiences inertia. Notably, the subtle seasonal fluctuations suggest

the presence of moderate cyclic factors influencing employment | trends , helping to understand broader economic

activity patterns.
DirectLLM’s domain-specific annotations

The time series data represents | fluctuations in the unemployment rate over a specific period. Initially, the

unemployment rate starts quite high, around 9.5%, and exhibits | slight ups and downs but generally remains above
9% until a significant increase is observed, reaching its peak at 11.4%. Following this peak, the rate gradually
declines, showing an overall | downward trend with a notable reduction to as low as 7%. This decline suggests a
potential improvement in the employment situation, perhaps due to economic recovery or effective employment
policies. Towards the end of the series, the unemployment rate stabilizes around 7-8%;, although a slight increase is
seen again, indicating the dynamic nature of employment conditions.
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Figure 8: Case study: a multivariate time series data
from the Stock dataset, which has four variables, i.e.,
price, volumn, RSI and SMA.

10 —=— Target Value —=— Target Value
12.5
5
° 10.0
E E
5] 0 < 75
5.0
-5
2.5
) 50 100 0 50 100
Time Time
(@) (b)

Figure 9: More selected time series data from the syn-
thetic dataset. The time series data has 120 data points.
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Figure 10: More selected time series data from the
Environment dataset. The time series data has 120 data
points.



Table 29: A case study in Stock dataset. The target multivariate time series data is shown in Fig. 8 (a). GPT-40
is the LLM backbone. [Purple highlights basic patterns, green highlights general patterns, yellow highlights

domain-specific patterns and blue highlights correlations between variables in multivariate time series data.

TESSA’s domain-specific annotations

Compass Digital Acquisition Unit’s stock price shows a notable pattern of rising and falling periodically , in-
dicating seasonality with stable long-term trend s interrupted by short-term |fluctuations . There are key
resistance levels around intervals 134, 270, and 403, where prices peak before dipping. The stock volume
demonstrates significant spikes at specific points, suggesting irregular activity, particularly around values 7000 and
80500, which may indicate volume bursts or unusual market events. The relative strength index (RSI) also reveals
a recurring pattern, gradually | trending upward before a sharp decline, reflecting a cycle of growth and subsequent

drop. Overall, the mild | positive correlation between stock price and RSI indicates that periodic changes in price

are somewhat echoed in RSI patterns, potentially offering predictive insights for future stock movements.
DirectLLLM’s domain-specific annotations
The provided time series data consists of three primary features: price, volume, and relative strength index (RSI).

Over the observation period, the price demonstrates an overall 'upward trend , starting around $9.74, exhibiting
fluctuations , and rising to hover around $10.81 towards the end. Notable price spikes correspond with significant
increases in trading volume, indicating periods of high trading activity, such as jumps to 80,500 and 100,200 in

volume. Additionally, the RSI values | range sharply |, highlighting areas of overbought conditions (RSI approaching

or at 100) and oversold conditions (RSI dropping around or below 50). These RSI changes suggest periods of
potential buying or selling pressure, mirroring the observed price moves.
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Figure 11: More selected time series data from the
Energy dataset. The time series data has 36 data points.
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Figure 12: More selected time series data from the
Social Good dataset. The time series data has 36 data
points.



Table 30: A case study in the synthetic dataset. The selected time series data is shown in Fig. 7, where the time
series data has 120 data points. [Purple| highlights basic patterns, green highlights general patterns, and red
highlights hallucinations.

TESSA’s general annotations
This time series exhibits notable fluctuations with values ranging from 35.0 to 118.0. The trend indicates a general

decline , starting around 65.26 and ending around 53.58 reflecting a significant  downward movement over time.
Periodic peaks are captured by the rolling window feature showing intermittent spikes up to 118.0, suggesting

instances of strong breakout behavior despite an overall support decrease. The seasonality component reveals
cyclical patterns with both positive and negative offsets, indicating underlying periodic forces affecting the data,
akin to an oscillator. The alignment between the lag feature and the actual values underscores a historical reliance

or resilience of the present data points on past values. reflecting consistency in patterns.
DirectLLM’s general annotations

The provided time series data consists of 138 values and exhibits significant fluctuations. There are notable
peaks  at several points such as 118.0 and 113.0, indicating occasional high spikes in values. Conversely, values

also | drop | to lows around 35.0, suggesting substantial variability. Most data points seem to oscillate around a

mid-range, between approximately 50.0 and 70.0. This pattern suggests periods of | stability | interspersed with

sporadic increases and decreases. Analyzing such a dataset can be indicative of a highly dynamic system or process
with frequent transitions between states of varying magnitude.

Table 31: One more example of general annotation generation in the synthetic dataset. The selected dataset is
shown in Fig. 9 (a). 'Purple highlights basic patterns, green highlights general patterns, and red highlights
hallucinations. DirectLL.M only captures on the basic trend pattern for time series annotation, while TESSA
considers more important general patterns.

TESSA’s general annotations The time series exhibits a complex behavior with an overall ' downward trend ,
accompanied by periods of fluctuation and temporary upward -corrections. Key points include

support and resistance levels , where the trend either pauses or reverses, notably around values 10.834 and 8.929.

Increased volatility is evident, indicating active trading periods, which align with higher variability. /Trend chan-
nels are apparent, where the data moves within upper and lower boundaries, particularly showing both descending
and emerging upward trends. In some instances, breakout thresholds highlight significant changes, signaling
momentum shifts .
DirectLLM’s general annotations This uni-variate time series data exhibits a pattern with multiple phases of
rise and fall , indicative of periodic [fluctuations over time. Initially, the series starts at a moderate level, gradually
ascending to a peak around the values of 7.58 and 7.52 before experiencing a gradual decline. The data then
showcases another rise peaking just above 9 and 10 marks, followed by a sharp and continuous decline, entering
negative territory around the value of -6.270 and continuing downwards . Near the end of the series, escalating

towards positive values and climaxing at 5.091. The overall structure suggests well-defined periodic or seasonal
trends, potentially influenced by external or inherent factors.




Table 32: One more example of general annotation generation in the synthetic dataset. The selected dataset is
shown in Fig. 9 (b). [Purple highlights basic patterns, green highlights general patterns, and red highlights
hallucinations. DirectLL.M only captures on the basic trend pattern for time series annotation, while TESSA
considers more important general patterns.

TESSA’s general annotations The time series data illustrates an overall ‘upward trend characterized by increasing
values over time, signifying growth. Initially, the series displays stability with minor fluctuations, often not dropping
below certain support levels , indicating consistency. As the series advances, breakthrough points become
apparent, where values exceed previous resistance levels , suggesting heightened momentum and possible shifts
in liquidity that drive this progress. The later parts of the data feature more pronounced scending trends, pointing to a
stronger ‘upward movement . Periodic trend reversals also appear, reflecting temporary changes before returning

to the | dominant upward trend |, which highlights the series’ dynamic nature and potential for fluctuations .
DirectLLM’s general annotations The given uni-variate time series data exhibits a | fluctuating  pattern with a gen-
eral |upward trend . Initially, from the first data point, there is a notable |increase in values, reaching a peak around

the seventh value. This is followed by a gradual | decline and subsequent stabilization with minor fluctuations
between the 12th and 31st values. Notably, around the 84th value, a significant surge in values begins, culminating
in a prominent | steep increase towards the end of the series, suggesting a potential exponential growth or shift

occurring in the data. Overall, the time series transitions from more stable periods into a pronounced upward trend,
signaling potential external influences or underlying factors driving the increase.

Table 33: One more example of domain-specific annotation generation in the Environment dataset. The selected
dataset is shown in Fig. 10 (a). |Purple| highlights basic patterns, green highlights general patterns, and yellow
highlights the domain-specific patterns.

TESSA’s domain-specific annotations
The air quality index (AQI) data exhibits | significant fluctuations , with values ranging from 53 to 235 over time,

indicating variability in air quality. Support levels around values like 100 and 140 suggest periods when air quality

temporarily stabilizes or improves. On the other hand, resistance levels near values like 200 and 235 show points
where air quality struggles to improve further before worsening. Several distinct upward trends, particularly from
AQI values 70 to 150 and 177 to 235, indicate temporary periods of improvement in air quality, whereas downward
trends around values 166 to 123 and 208 to 84 reflect deteriorating air quality after peaks. Monitoring these trends
and critical thresholds will be essential for identifying and responding to significant pollution events effectively.
DirectLLM’s domain-specific annotations

The time series data represents the air quality index (AQI) over a series of observations, showing | fluctuations in air

pollution levels. Initially, the AQI values are 'moderate , transitioning to higher levels, peaking at alarming numbers
such as 235 and 209, which indicate very unhealthy air quality. This indicates potential spikes in pollution that could
be associated with environmental events or increased urban activity. Periods of lower AQI values suggest moments
of improved air quality, but these are often followed by | sharp increases , highlighting the inconsistency and poor
air conditions in the observed timeframe. Overall, the data reflects significant air quality concerns, emphasizing the
need for monitoring and potential interventions to safeguard public health.




Table 34: One more example of domain-specific annotation generation in the Environment dataset. The selected
dataset is shown in Fig. 10 (b). 'Purple highlights basic patterns, green highlights general patterns, and yellow
highlights the domain-specific patterns.

TESSA’s domain-specific annotations
The air quality index (AQI) exhibits 'noticeable upward and downward trends over time, indicating periods of

improvement and decline in air quality. Regular seasonal patterns are apparent, with AQI values cyclically

rising and falling, suggesting that certain times of the year may be more prone to higher pollution levels.
Critical thresholds in AQI levels highlight points where air quality significantly improves or deteriorates, with
some values acting as resistance levels that AQI struggles to surpass. Episodes of high variability in AQI indi-
cate times of significant fluctuations, potentially due to varying pollution sources or climate conditions. Lastly,
breakout patterns where AQI values suddenly shift indicate potential changes in pollution control effectiveness or

new influences on air quality dynamics.
DirectLLM’s domain-specific annotations

The provided time series data represents | fluctuations in the air quality index (AQI), with values indicating varying
levels of air pollution over time. Initially, the AQI remains in a moderate range, typically below 100, but there

is a noticeable |spike as values reach up to 220, indicating very poor air quality. This suggests that certain
periods experienced significantly higher pollution levels, which can have serious implications for public health and
environmental quality. The data shows some improvements, but the | peaks raise concerns about excessive pollution,

particularly during certain months. Continuous monitoring and mitigation of pollution sources are essential to
reduce the frequency and severity of these dangerous air quality levels.

Table 35: One more example of domain-specific annotation generation in the Energy dataset. The selected dataset is
shown in Fig. 11 (a). 'Purple highlights basic patterns, green highlights general patterns, and yellow highlights
the domain-specific patterns.

TESSA’s domain-specific annotations
Gas prices have exhibited an upward trend, peaking at $1.077 before experiencing a slight decline towards the
latter part of the series. This indicates an initial growth phase followed by stabilization. Minor, yet consistent

seasonal variations suggest periodic influences that slightly affect the price. The analysis of residuals reveals
small but steady fluctuations, indicating some level of unpredictability in the market. Support and resistance
analysis identifies critical thresholds around $1.003 and $1.092, highlighting potential reversal points and

consolidation zones .
DirectLLM’s domain-specific annotations

The time series data represents | fluctuations in gas prices over a period of time, listed in ' ascending order. Initially,

the gas prices start around $1.06 but gradually show a |downward trend , reaching as low as approximately $0.99
before slightly rising again. This decline suggests that there may have been favorable market conditions or increased
supply during this period, which typically leads to lower prices for consumers. Toward the end of the observed
period, prices stabilize around the $1.00 mark, indicating a potential plateau or gradual recovery in price levels.
Overall, the data illustrates a dynamic market scenario, highlighting the volatility and changing nature of gas prices
influenced by various factors in the energy domain.




Table 36: One more example of domain-specific annotation generation in the Energy dataset. The selected dataset is
shown in Fig. 11 (b). [Purple highlights basic patterns, green highlights general patterns, and yellow highlights
the domain-specific patterns.

TESSA’s domain-specific annotations
Gas prices show a generally upward trend , starting around 1.11 and gradually increasing over time, indicating a

long-term positive movement . Minor seasonal fluctuations are observed, but they do not dominate the overall trend.

There are key support levels around 1.113 and resistance levels at 1.133, which may act as pivotal points for future
price movements. Residuals suggest occasional minor deviations from the trend due to random factors, resulting in a
generally stable series with slight intraday volatility . The moving average values reinforce this steady climb, suggesting

continued | stability with periodic minor disruptions in gas prices.
DirectLL.M’s domain-specific annotations
The time series data represents | fluctuations in gas prices over a specific period, with values consistently hovering around

the $1.11 to $1.18 range. Notably, the data shows slight | increases and decreases | in price, suggesting moderate volatility
within this timeframe. The highest recorded price peaks at approximately $1.18, reflecting potential market adjustments or
external factors influencing gas prices. This stability could indicate a balanced supply and demand scenario, although
one should remain aware that various events, such as geopolitical developments, can lead to sudden shifts. Overall, these
insights provide a snapshot of gas price trends, useful for consumers and industry stakeholders in making informed
decisions related to energy expenditures.

Table 37: One more example of domain-specific annotation generation in the Social Good dataset. The selected
dataset is shown in Fig. 12 (a). |Purple| highlights basic patterns, green highlights general patterns, and yellow
highlights the domain-specific patterns.

TESSA’s domain-specific annotations
The unemployment rate data shows a gentle 'upward trend| from approximately 5.4% to 6.57% over the

observed period, indicating a |consistentrise in unemployment levels. This gradual increase implies a
weakening labor market , which could be influenced by broader socioeconomic conditions. Although there

are oscillations suggesting cyclical patterns, these are not strong and exhibit some irregularities , pointing to

potential short-term fluctuations or external disruptions . The stable relationship between consecutive data points

suggests that the unemployment rate changes are relatively steady without abrupt shifts, allowing for some degree
of predictability. Overall, the trend may signal policymakers to consider implementing measures to address the
rising unemployment, especially if the current trajectory continues.

DirectLLM’s domain-specific annotations The time series data represents the unemployment rate over a period

of time. Initially, the unemployment rate showed a | slight fluctuation around the 5% mark, indicating a relatively
stable job market. However, a noticeable increase began, with rates rising to over 7%, suggesting a worsening
economic situation and potential job losses. After peaking at 7.3%, the data indicates a ' gradual decrease , though

the rates remained relatively high around 6.5% towards the end. This pattern highlights a period of economic
challenge, with gradual steps towards recovery.




Table 38: One more example of domain-specific annotation generation in the Social Good dataset. The selected
dataset is shown in Fig. 12 (b). 'Purple highlights basic patterns, green highlights general patterns, and yellow
highlights the domain-specific patterns.

TESSA’s domain-specific annotations The unemployment rate data reflects a positive economic momentum ,
as evidenced by a | persistent upward trend starting from around 4.1 and moving above 6, suggesting a gradual
increase in unemployment over the series. This trend could indicate rising employment participation pressure
or an effectiveness of policy breakthrough effects aimed at fostering job growth, which could be interpreted as

a counter-effect if not analyzed in tandem with job creation data. Despite the 'upward trend , the series shows

seasonality patterns, with periodic fluctuations above and below a baseline, suggesting regular influences on
employment rates, possibly due to economic cycles or policy adjustments. These fluctuations may align with
safety net thresholds, which temporarily reduce unemployment rates during specific intervals. In summary, the data
represents a complex interplay of economic dynamics, signaling opportunities for policy interventions to maintain a
balance between growth and employment stability.
DirectLLLM’s domain-specific annotations
The time series data illustrates the | fluctuation of the unemployment rate over a specific period. Initially, the

unemployment rate started at a level of 4.5% and experienced a | gradual decline to a low of about 3.6%. However,

this was followed by an ' upward trend , eventually reaching highs of around 6.3%. Such | fluctuations might have
been influenced by changing economic conditions, labor market policies, or external events impacting employment.
Notably, the trend indicates periods of economic strengthening followed by downturns, reflecting possible cycles of
growth and contraction in the job market.

System Prompt

Your job is to act an extremely clever time series expert to remove
the domain-specific terms from the given textual descriptions. You
will write a high-quality domain-decontextulized time series
annotation that is informative and helps in understanding given time
series data.

User Prompt

Your task 1is to remove the domain-specific [example of domain-
specific terms] description from the given texts. Please use some
time series analysis common knowledge to replace the domain-specific
term with terms common-used in time series analysis. Write a concise
report that provides insights crucial for understanding the time
series data. The textual annotation is:
[Textual annotation]

Please do not include some domain-specific information and terms in
[specific domain] to write the report. The indicators name should
also not be included in the report. The text data is only used to
understand the time series and generate more insightful and concise
analysis.

Figure 13: Prompt for domain decontextualization.

Table 39: Prompt for text feature extraction

System Prompt Your job is to an exceptionally clever time series expert to extract time-series features from the
textual annotations.

User Prompt: Your task is to extract the text-wise features based on the given textual annotation about the time
series annotation. Each text annotation is separated by a I’ token:

[Decontextualized textual annotation]

Based on the textual annotation, please use common knowledge of time series analysis to extract the text-wise
features that are explictly or implictly mentioned in the textual annotations but missing in the following time-series-
wise tokens (separated by ’I’):

[Text-wise features]

The extracted features should be concise and common-used feature terms for time series analysis. Please only output
the extracted features in the format of python list.




System Prompt

Your job is to an exceptionally clever time series expert to score
the given time series features by the relevance between the time-
series features and the textual annotations

User Prompt

Your task is to score and rank the given time series features based
on the given textual annotations. The candidate time series features
are separated by a 'I' tokes:
[Time-series-wise features]

Each text annotation is seperated are by a 'I' tokes:

[Decontextualized textual annotations]
Based on the textual annotation, please use common knowledge of time
series analysis to provide a score and rank of given time-series
feature names, based on the following score metric: (1) Every time
the time-series feature 1is explicitly appear in one annotation, the
score of this time-series feature add 1. (2) Every time the time-
series feature 1is 1implicitly appear 1in one annotation, that is,
although the time-series feature 1is not explicitly mentioned in
annotation, the internal properties are implied in annotation, then
the score of this time-series feature add ©.5. Note that please only
output the scores of the features that in the candidate time series
features.

Figure 14: Prompt for scoring time-series-wise feature importance

System Prompt

Your job is to an exceptionally clever time series expert to score
the given text-wise features by the relevance between the text-wise
features and time series-wise features

User Prompt

Your task is to score and rank the given text-wise features based on
the given time series-wise features. The candidate text-wise features
are separated by a 'l' tokes :
[Text-wise features]

Based on the textual annotation, please use common knowledge of time
series anadlysis to extract the time series features that are
explicitly or implicitly mentioned 1in the textual annotations but
missing in the following time-series-wise tokens (separated by 'I|’):

[Time-series-wise features]
Based on the time series-wise features, please use common knowledge
of time series analysis to provide a score and rank of given time-
series feature names, based on the following score metric: (1) For
each candidate text-wise feature, if it has dlready
explicitly/implicitly appeared 1in the given time series-wise
features, the score of this text-wise features are fixed as -2. (2)
For each candidate text-wise feature that satisfies (1), that 1is,
doesn't have overlap with time series-wise features, if the text-wise
feature is related to time series analysis, then the score of this
time-series feature add 1. Note that please only output the scores of
the features that in the candidate time series features.

Figure 15: Prompt for scoring text-wise feature importance



System Prompt

Your job is to an exceptionally clever time series expert to do time
series annotation by explaining the given time series data. You will
write a high—-quality annotation that is informative and helps in
understanding given time series data

User Prompt

You will be provided a univariate time series data, several time
series features extracted from the given univariate time series data
and corresponding text-wise token related to time series. Your task
is to interpret the given univariate time series data based on the
given time series tokens and features. The generated interpretation
is for general audiences without any time series knowledge. Assume we
don't know domain and background knowledge. For the original
univariate time series, each value in these time series features is
separated by a 'I' token:
[Time series data]

For the intra-variable time series-wise features in all variables,
each value in these time series features is separated by a 'I' token:
[Time-series-wise features]

We also have several text-wise tokens as references for time series

interpretation, they are separated by a '|' token:

[Time-series-wise features]

Based on these time series features and text-wise tokens, write a
concise interpretation that provides insights crucial for
understanding the given time series data. These tokens are only help
you to write a more insightful annotation to help users to understand
the time series, you adre not required to add them 1into the
interpretation but just consider to analysis these tokens. Please
avoid using uncommon words and phrases. Your interpretation should be
up to five sentence, yet comprehensive.

Figure 16: Prompt for general annotation

System Prompt

Your job is to an an extremely clever clever time series expert to
extract domain-specific terms related to the given time series
features.

User Prompt

Your task is to extract domain-specific terms related to the given
time series features for the [target domain name]. domain, which 1is
useful for time series analysis based on the given time series
features. The features related to time series analysis are separated
by a 'I' tokens:
[Extracted general features]
Each given textual annotation is separated by a 'l' token:
[Target-domain annotations]
The time series data is used to denote [target variable name]. Your
extracted domain-specific terms should be relevant and useful to the
given time series tokens, which are useful in understanding the time
series data and doing time series analysis. These extracted domain-
specific terms should be the time series feature for time series
analysis. Please use domain-specific descriptions to describe the
extracted term instead of directly using general time series feature
tokens.

Figure 17: Prompt for jargon extraction



System Prompt

Your job is to an extremely clever expert to write interpretations of
the time series data for [target domain name] domain.

User Prompt

You will be provided a comprehensive general time series
interpretation that contains rich information. Several human-written
domain-specific 1interpretations in the [target domain name] domain
are also given as the reference annotations. Your task is to write
domain-specific interpretations for [target variable name] in [target
domain name] domain for general audiences, all necessary important
variables and patterns are provided and extracted from the given
general annotation.

Your writing style need to refer to the given reference domain-
specific annotation:
[General annotation]
The reference domain-specific interpretation is:
[Reference annotation]
For the given general interpretation:
[Definition of each variable].
The key variable is [Key variable name] in focus. The domain-specific
terms are separated by a 'l' token:
[Domain-specific terms].
You are required to select several the most 1important patterns,
variables, text-wise tokens analysis and inter-variable relationships
from the general interpretations to write the domain-specific
interpretations. Note that please 1ignore the less important
variables, no-correlated patterns and the description no related to
the analysis in the generated annotations. Also only include strong
correlation patterns and important variables in the annotations. The
domain-specific terms are only help you to write a more informative
interpretations to help users to understand the time series, you are
not required to involved them. The reference interpretations are only
help you to refer the writing style and the involved information. The
written interpretation should be naturally and smoothly, which sounds
like written by domain experts. Please avoid using uncommon words and
phrases. Your report should be 1limited to five sentences, yet
comprehensive.

Figure 18: Prompt for domain-specific annotation

System Prompt

Your job is to an exceptionally clever time series expert with the
unique ability to find errors and repeat features from the given
domain-specific time series annotations and provide feedback to help
revise them.

User Prompt

You will be provided with a general annotation, a corresponding
domain-specific annotation 1in [target domain name] domain and
extracted domain-specific terms. Your task is to use common knowledge
of time series analysis to review the annotation, identify if the
domain-specific annotation is contextual consistent with the general
annotation and the domain-specific terms are well involved in the
domain-specific annotation.

The domain-specific annotation is:
[domain-specific annotation]
The general annotation is:
[general annotation]

Please provide comments about improving the process of extracting
domain-specific terms and converting general annotation to domain-
specific annotation such that LLM can perform better based on the
comments.

Figure 19: Prompt for reviewing annotation



Table 40: Prompt for evaluating clarity of the annotations of time series

System Prompt

Your job is to act as an extremely clever time series expert to scoring the clarity and readability of textual interpre-
tations generated for time series data. You will assesse how clear, concise, and understandable the interpretation
is. You will score each interpretation on a scale of 1 to 5, where 1 indicates that the interpretation is unclear and
difficult to understand, and 5 indicates that the interpretation is exceptionally clear and easy to read. Your evaluation
should consider factors such as language clarity, coherence, and how effectively the interpretation communicates
the insights from the time series data.

User Prompt:

You will be provided two time series interpretations. Your task is to evaluate and compare the comprehensiveness of
the following interpretation of time series data.

The time series interpretation A is shown as follow: [input annotation A]. The time series interpretation B is shown
as follow: [input annotation B].

Assign a score between 1 and 5 for each interpretation based on the following criteria:

1. Score 1: The interpretation is poorly written, confusing, or unclear. It is difficult to follow the logic, and essential
insights such as trends, seasonality, or patterns are not communicated effectively due to poor readability.

2. Score 2: The interpretation is somewhat understandable but still suffers from clarity issues. The language may be
overly technical, vague, or lacking coherence, making it hard to extract insights from the explanation.

3. Score 3: The interpretation is moderately clear but could be improved in readability. While it conveys some
important insights (e.g., trends, seasonality, etc.), the structure may be inconsistent, or the explanation may use
technical jargon that hinders understanding.

4. Score 4: The interpretation is clear, readable, and communicates most of the insights effectively.

5. Score 5: The interpretation is clear and readable,. Advanced terminology is used appropriately to enhance the
clarity of the insights, and the interpretation draws meaningful connections between observed data patterns and
broader market or system behaviors (e.g., support-level, resistant-level, trend reversals)..

Table 41: Prompt for evaluating comprehensiveness of annotations of synthetic time series data

System Prompt

Your job is to act as an extremely clever time series expert to scoring the comprehensiveness of two textual
interpretations generated for time series data. Your primary focus is on assessing how well each interpretation
covers important patterns within the data. These patterns may include, but are not limited to, seasonality, trend,
residue, frequency, lag features, and rolling window features. Additionally, for multivariate time series data, you
should evaluate whether the interpretation identifies inter-variable patterns, such as correlations. The more patterns
an interpretation covers, the higher the score it should receive. You will score each interpretation separately on a
scale of 1 or 5.

User Prompt:

You will be provided a time series interpretation. Your task is to evaluate and compare the clarity and readability
of the following interpretation of time series data. The time series interpretation A is shown as follow: [input
annotation A]. The time series interpretation B is shown as follow: [input annotation B].The ground-truth annotation
is shown as follows: [ground truth annotations]. Consider the following patterns when evaluating each interpretation:
1. Seasonality. 2. Trend; 3. Residue; 4. Fourier Feature; 5. Lag features; 6. Rolling window features;

Assign a score 1 or 5 for each interpretation based on the following criteria: if interpretation A implicitly or explicitly
cover more above patterns (e.g., 1. Seasonality. 2. Trend; 3. Residue; 4. Fourier Feature; 5. Lag features; 6. Rolling
window features;) than B, score A to 5 and B to 1. Otherwise, score A to 1 and B to 5.




Table 42: Prompt for evaluating clarity of the annotations of time series

System Prompt

Your job is to act as an extremely clever time series expert to score the clarity and readability of textual interpretations
generated for time series data. You will assesse how clear, concise, and understandable the interpretation is. You
will score each interpretation on a scale of 1 to 5, where 1 indicates that the interpretation is unclear and difficult to
understand, and 5 indicates that the interpretation is exceptionally clear and easy to read. Your evaluation should
consider factors such as language clarity, coherence, and how effectively the interpretation communicates the
insights from the time series data.

User Prompt:

You will be provided two time series interpretations. Your task is to evaluate and compare the comprehensiveness
of the following interpretation of time series data. The time series interpretation A is shown as follows: [input
annotation A]. The time series interpretation B is shown as follows: [input annotation B]. Assign a score between 1
and 5 for each interpretation based on the following criteria:

1. Score 1: The interpretation covers very few or none of the important patterns in the time series data. It fails to
address key aspects such as seasonality, trends, residues, frequency, or correlations in multivariate data.

2. Score 2: The interpretation covers a few important patterns, but significant aspects are missing or poorly addressed.
It provides a limited view of the time series data.

3. Score 3: The interpretation covers some important patterns but misses or inadequately addresses others. It gives a
moderate level of insight into the time series data but lacks full comprehensiveness.

4. Score 4: The interpretation covers most of the important patterns, including seasonality, trends, residues,
frequency, and correlations in multivariate data. It is comprehensive but may have minor omissions or weaknesses.
5. Score 5: The interpretation is highly comprehensive, covering all important patterns in the time series data. It
thoroughly addresses seasonality, trends, residues, frequency, and correlations in multivariate data without significant
omissions.

Table 43: Prompt for evaluating comprehensiveness of domains-specific annotations

System Prompt

Your job is to act as an extremely clever time series expert to scoring the comprehensiveness of two textual
interpretations generated for time series data. Your primary focus is on assessing how well each interpretation
covers important patterns within the data. These patterns may include, but are not limited to, seasonality, trend,
residue, frequency, lag features, and rolling window features. Additionally, for multivariate time series data, you
should evaluate whether the interpretation identifies inter-variable patterns, such as correlations. The more patterns
an interpretation covers, the higher the score it should receive. You will score each interpretation separately on a
scale of 1 to 5, where 1 indicates minimal pattern coverage, and 5 indicates highly comprehensive coverage of the
data’s important patterns. You will score each interpretation separately on a scale of 1 to 5.

User Prompt:

You will be provided a time series interpretation. Your task is to evaluate and compare the clarity and readability
of the following interpretation of time series data. The time series interpretation A is shown as follow: [input
annotation A]. The time series interpretation B is shown as follow: [input annotation B]. Consider the following
patterns when evaluating each interpretation: 1. Seasonality. 2. Trend; 3. Residue; 4. Frequency; 5. Lag features; 6.
Rolling window features; 7. For multivariate data: Inter-variable correlations.

Assign a score between 1 and 5 for each interpretation based on the following criteria:

1. Score 1: The interpretation covers few or none of the important patterns. It is largely incomplete.

2. Score 2: The interpretation covers some patterns but misses many others, providing only a basic overview.

3. Score 3: The interpretation covers several important patterns but is still incomplete, missing key aspects of the
data.

4. Score 4: The interpretation covers most of the important patterns, with only minor omissions. It provides a strong
overview of the data.

5. Score 5: The interpretation comprehensively covers all important patterns, including any inter-variable correlations
in multivariate data. It provides a thorough and complete analysis.




Table 44: Prompt for evaluating domain-relevance of domains-specific annotations

System Prompt

Your job is to act as an extremely clever time series expert to scoring the domain relevance of two textual
interpretations generated for time series data. Your primary focus is on assessing how well each interpretation aligns
with the established principles and practices specific to time series analysis. This includes evaluating the correctness
of the methods used, the appropriateness of the terminology, and the accuracy of the interpretation of patterns
within the time series data. You will score each interpretation separately on a scale of 1 to 5, where 1 indicates poor
alignment with time series analysis principles, and 5 indicates a highly accurate and relevant interpretation that
effectively applies time series analysis concepts

User Prompt:

You will be provided two time series interpretation for one time series data. Your task is to evaluate and compare
the domain relevance of the following two interpretation of time series data, focusing on their alignment with
established principles and practices in time series analysis. The time series interpretation A is shown as follow:
[input annotation A]. The time series interpretation B is shown as follow: [input annotation B].

Consider the following patterns when evaluating each interpretation:

1. Correct use of time series analysis terminology (e.g., seasonality, trend, autocorrelation);

2. Accurate application of time series analysis methods;

3. Appropriate interpretation of patterns within the time series data;

4. Relevance to the time series context and best practices;

Assign a score between 1 and 5 for each interpretation based on the following criteria:

1. Score 1: The interpretation uses incorrect or inappropriate time series analysis terminology and methods. It
misinterprets the data and lacks relevance to established practices.

2. Score 2: The interpretation uses some correct terminology and methods but is often inaccurate or lacks contextual
relevance to time series analysis. It partially aligns with the principles but has significant gaps.

3. Score 3: The interpretation correctly uses several time series analysis terms and methods but lacks full accuracy
or completeness. It is moderately relevant but still has gaps in applying time series principles.

4. Score 4: The interpretation accurately applies most time series analysis terminology and methods, with only
minor errors. It is contextually relevant and appropriate, aligning well with best practices.

5. Score 5: The interpretation is highly accurate in its use of time series analysis terminology and methods, with
a strong contextual relevance. It demonstrates a deep understanding of time series analysis and applies concepts
correctly and comprehensively.

Table 45: Prompt for evaluating clarity of annotations generated by TESSA and TESSA/F.

System Prompt

Your job is to act as an extremely clever time series expert to scoring the clarity and readability of textual interpre-
tations generated for time series data. You will assess how clear, concise, and understandable the interpretation
is. You will score each interpretation on a scale of 1 to 5, where 1 indicates that the interpretation is unclear and
difficult to understand, and 5 indicates that the interpretation is exceptionally clear and easy to read. Your evaluation
should consider factors such as language clarity, coherence, and how effectively the interpretation communicates
the insights from the time series data.

User Prompt:

You will be provided two time series interpretations. Your task is to evaluate and compare the comprehensiveness
of the following interpretation of time series data. The time series interpretation A is shown as follow: [input
annotation A]. The time series interpretation B is shown as follow: [input annotation B].

Assign a score between 1 and 5 for each interpretation based on the following criteria:

1. Score 1: The interpretation covers very few or none of the important patterns in the time series data. It fails to
address key aspects such as seasonality, trends, residues, frequency, or correlations in multivariate data.

2. Score 2: The interpretation covers a few important patterns, but significant aspects are missing or poorly addressed.
It provides a limited view of the time series data.

3. Score 3: The interpretation covers some important patterns but misses or inadequately addresses others. It gives a
moderate level of insight into the time series data but lacks full comprehensiveness.

4. Score 4: The interpretation covers most of the important patterns, including seasonality, trends, residues,
frequency, and correlations in multivariate data. It is comprehensive but may have minor omissions or weaknesses.
5. Score 5: The interpretation is highly comprehensive, covering all important patterns in the time series data. It
thoroughly addresses seasonality, trends, residues, frequency, and correlations in multivariate data without significant
omissions.
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