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Abstract
Large Language Models (LLMs) exhibit poten-
tial artificial generic intelligence recently, how-
ever, their usage is costly with high response
latency. Given mixed LLMs with their own
strengths and weaknesses, LLM routing aims
to identify the most suitable model for each
query in the stream to maximize response qual-
ity and minimize cost and latency. However,
the challenges involve: (1) dynamic trade-offs
among quality, cost, and latency; (2) enabling
continual learning in deployed systems; and
(3) navigating a varying (e.g., new LLM addi-
tion or old LLM removal) set of LLM candi-
dates over time. To bridge these gaps, we de-
velop MixLLM, a dynamic contextual-bandit-
based routing system for query-LLM assign-
ment. Specifically, we first leverage query tags
to enhance query embeddings for the routing
task. Next, we design lightweight prediction
models to estimate the response qualities and
costs of queries over LLMs. We then devise a
meta-decision maker to choose the query-LLM
assignments to best tradeoff response quality,
cost, and latency. Finally, the system benefits
from continual training, allowing it to adapt to
evolving queries and user feedback over time.
Our extensive experiments show that MixLLM
achieves the best trade-offs in response quality,
cost, and latency (97.25% of GPT-4’s quality at
24.18% of the cost under the time constraint).

1 Introduction

Large Language Models (LLMs) have exhibited
abilities to understand massive texts, generate ac-
tionable knowledge, enable contextual reasoning,
and innovate diverse applications (Radford et al.,
2018, 2019; Brown et al., 2020; Raffel et al., 2020;
Chowdhery et al., 2023; Touvron et al., 2023).
However, deploying LLMs presents unique chal-
lenges in managing computational resources, opti-
mizing response times, and ensuring scalability.

*Work done during an internship at NEC Labs America.
†Corresponding author.

Figure 1: Which is the most suitable LLM?

As shown in Figure 1, the diversity of available
LLMs (Jiang et al., 2024; Wang et al., 2022; Li
et al., 2024; Wang et al., 2024b; Li et al., 2023;
Wang et al., 2024a), each with different strengths
and weaknesses, poses a challenge when select-
ing the most appropriate model for a given task.
More powerful models, such as GPT-4 (Achiam
et al., 2023), can deliver high-quality responses,
but the pricy cost and computational requirements
limit their accessibility. Thus, LLM routing, which
chooses the most suitable LLMs for incoming
queries in mixed LLM candidates, is needed to
balance the trade-offs between response quality,
cost, and latency.

Existing LLM routing methods can be catego-
rized into non-predictive methods and predictive
methods. Non-predictive methods, like cascad-
ing (Chen et al., 2023; Madaan et al., 2023), firstly
exploit smaller LLMs and then switch to larger
LLMs based on a reviewer model, but this in-
creases both cost and latency as multiple LLMs
are involved (Tay et al., 2022). Predictive meth-
ods predict the performance of candidate LLMs to
select the best one for each query. For example,
HybridLLM (Ding et al., 2024) exploits a binary
classifier to predict the query difficulty for routing,
RouterBench (Hu et al., 2024) predicts response
quality directly, and FORC (Šakota et al., 2024)
optimizes quality and cost at the set level.

However, the challenges involved in existing
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work are multifaceted. Firstly, a key limitation of
current methods is the lack of consideration of high
latency when too many queries are routed to the
same LLM. Ignoring latency can create bottlenecks,
reduce system efficiency, and impact user experi-
ence. Secondly, continual learning in a deployed
system poses a significant challenge: LLMs must
adapt to evolving queries and learn from user feed-
back over time to maintain relevance and accuracy,
necessitating robust mechanisms for incorporating
feedback. Lastly, flexibly managing the addition
and removal of candidate LLMs is essential; as ad-
vancements in model architectures and techniques
emerge, the routing system needs to integrate new
models and retire outdated ones to ensure users
benefit from the latest advancements.

To address these challenges, we propose
MixLLM, a dynamic contextual-bandit-based rout-
ing system for query-LLM assignment. First, we
propose a tag-enhanced embedding model by us-
ing tags generated from the InsTag (Lu et al.,
2023) model. These tags help improve the query
representations from noises. Next, we design
lightweight prediction models for each LLM to
estimate response quality and cost. These LLM-
specific predictions do not require system-wide
retraining when new LLMs are introduced. The
meta decision-maker then selects the best LLM for
each query based on the predictions. It balances
trade-offs between response quality, cost, and la-
tency to optimize query-LLM assignments. Finally,
MixLLM benefits from continual training, allow-
ing the system adapts to evolving queries and user
feedback over time, improving the performance in
real-world deployment.

Our extensive experiments demonstrate that
MixLLM effectively balances response quality,
cost, and latency, achieving 97.25% of GPT-4’s
quality at only 24.18% of the cost. By incorporat-
ing a latency penalty, MixLLM avoids congestion
and high-latency issues, ensuring efficient system
performance even under heavy load. Additionally,
we extend the RouterBench dataset by incorporat-
ing the latest Llama 3.1 model, showcasing the
framework’s scalability and adaptability. The re-
sults from online training further validate the effec-
tiveness of the continual training approach.

Our contributions are as follows:
• We propose MixLLM that leverages enhanced

query embeddings, latency penalties, and con-
tinual learning to balance response quality,
cost, and latency in LLM routing.

• MixLLM accounts for real-world query
streams by introducing a latency mechanism
that factors in hardware limitations.

• MixLLM offers key benefits, including select-
ing the optimal LLM, handling the latency
constraint, and adapting over time to chang-
ing environments and user feedback.

• We extend the RouterBench dataset by in-
corporating the latest Llama 3.1 model and
adding prompt and response length.

2 Related Work

The studies of selecting the most suitable LLM can
be categorized into non-predictive and predictive
routing systems.

2.1 Non-predictive Routing System
Non-predictive systems incorporate LLM inference
during routing. A common approach is cascading,
where smaller models are used first, switching to
larger ones if needed. FrugalGPT (Chen et al.,
2023) introduced three strategies to reduce cost
while maintaining response quality: prompt adapta-
tion, LLM approximation, and LLM cascade form
a chain of LLMs, selecting LLMs from small to
large. AutoMix (Madaan et al., 2023) introduced
a similar cascading strategy, where a self-reviewer
judges the answer and a meta-reviewer decides
whether switching to a larger model is needed.
However, in non-predictive routing systems, one
query may need to be answered by several LLMs
which increases both cost and resource usage.

2.2 Predictive Routing System
Predictive systems estimate the quality of LLM re-
sponse before making routing decisions and route
each query to only one LLM. These systems typi-
cally fall into categories such as classification, qual-
ity prediction, optimization, and bandit-based solu-
tions, each offering unique strategies.

Classification-based approaches predict the best
LLM for a query by treating LLMs as labels. Hy-
bridLLM (Ding et al., 2024) trained a binary classi-
fier to assign ”easy” queries to smaller models. ME-
Switch (Liu et al., 2024b) extended to a multi-label
domain classifier, improving memory and computa-
tion efficiency. Other methods like Zooter (Lu et al.,
2024) introduced a reward model for ranking re-
sponses from different LLMs, using tag-based label
enhancement for training data. RouteLLM (Ong
et al., 2024) introduced four distinct routing strate-
gies, including similarity-weighted ranking, matrix
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Figure 2: Overview of the MixLLM Framework

factorization, and supervised and prompting clas-
sification. However, query labels may shift when
new and powerful LLMs emerge.

Response quality prediction methods focus on
predicting the quality of each LLM’s response for
a given query. Shnitzer et al. (Shnitzer et al., 2023)
used 3 different ways to predict “correctness” (re-
sponse quality) for each LLM and select the best
one. RouterBench (Hu et al., 2024) optimized
the quality-cost trade-off by a “willingness to pay”
parameter. It also introduced a large benchmark
dataset for routing tasks. However, they did not
predict cost and ignored latency.

Optimization-based methods treat LLM routing
as a set-level optimization problem. FORC (Šakota
et al., 2024) employed predicted response quality
and cost for quality-oriented and cost-oriented lin-
ear programming strategies. OptLLM (Liu et al.,
2024c) optimized the routing problem with a multi-
label classification model. But these approaches
potentially ignore low cost-effective queries.

Bandit-based methods like MetaLLM (Nguyen
et al., 2024) adopted a single bandit approach,
where the system learns to balance quality and cost
trade-offs over time. However, the dependency be-
tween arms can limit scalability when adding or
removing LLMs.

3 Methodology

3.1 The Dynamic LLM Routing Task
We study the problem of dynamic LLM routing
with streaming queries. Given queries that arrive
sequentially, our goal is to assign each query to
the most appropriate LLM selected from a set of
candidates to trade off response quality, cost, and
latency. Formally, let the set of streaming queries
be: Q = {qn}|Q|

n=1, and the set of LLM candidates
be: M = {ml}|M |

l=1. The objective is to select the
most suitable LLM m∗

n for the query qn.

3.2 Overview of The MixLLM Framework

Figure 2 shows that MixLLM consists of four com-
ponents: (1) tag-enhanced query embedding, (2)
LLM-specific prediction, (3) meta decision maker,
and (4) continual learning mechanism. This frame-
work allows MixLLM to route queries to LLMs
in a dynamic system while achieving quality-cost-
latency trade-offs and continual learning with a
changing LLM candidate set.

3.3 Tag-enhanced Query Embedding via
Unsupervised Fine-tuning

A query can be seen as a token sequence, thus, its
embedding can be generated using a pre-trained
encoder (e.g., BERT (Devlin et al., 2019)): en =
Encoder(qn), where en represents the embedding
of n-th query qn in a query stream. However,
such general-purpose query embeddings contain
too much noises and are not tailored for LLM rout-
ing. To address this limitation, we propose en-
hancing the encoder by introducing tag knowledge,
which enriches the query embeddings and improves
their effectiveness for routing tasks.

Different LLMs can be proficient in different
domains (e.g., Science, Legal) (Liu et al., 2024a).
Using GPT-4 as an example, Figure 3 shows a clear
correlation between domain and response quality.
The query distribution after t-SNE dimension re-
duction is shown in Figure 3a, with each color
representing a specific domain. Figure 3b high-
lights GPT-4’s response quality. It is evident that
GPT-4 has a higher error frequency (orange points
in Figure 3b) in the “Legal” (red points in Fig-
ure 3a) and “Math” (purple points in Figure 3a)
domains. These observations inspire us to develop
the tag-enhanced embedding approach. By incorpo-
rating tags and their derived domains, we can guide
embeddings to capture these distinctions, making
them more suitable for LLM routing tasks.
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(a) Domain Visualization (b) Quality Visualization

Figure 3: Domain-Quality Correlation

Step 1: Automated Query Tag Generation. To
prepare, we employ the InsTag (Lu et al., 2023)
model to generate fine-grained tags for each query
and manually cluster the tags into a set of coarse-
grained domains, denoted as D. InsTag is an in-
struction tagging method designed to quantify the
diversity and complexity of human instructions,
and these tags contribute to model fine-tuning.
Step 2: Unsupervised Fine-tuning of Encoder.
While the InsTag model, backed by Llama-2 13B,
is too large to be used during inference, we fine-
tune the BERT encoder during the training stage.
We develop an unsupervised optimization objective
that integrates intra-domain similarity (Lintra) and
inter-domain separation (Linter):

L = Lintra + Linter, (1)

where the intra-domain similarity loss encourages
embeddings within the same domain cluster to be
close to their center µj :

Lintra = − 1

|Q|

|Q|∑

i=1

log
exp(ei · µi)∑|D|
j=1 exp(ei · µj)

. (2)

The inter-domain separation loss ensures that dif-
ferent domain centers are distinct:

Linter =
1

|D|

|D|∑

j=1

log
∑

k ̸=j

exp(µj · µk). (3)

3.4 LLM-Specific Quality and Cost Prediction

Given a query embedding, we aim to predict both
the response quality and financial cost for each
candidate LLM on the query, so the meta decision-
maker can assign the most suitable model.
Step 1: Estimating the Response Quality of A
Query-LLM Pair. Since different LLMs have dif-
ferent response qualities, we learn an LLM-specific
regression function for each LLM. This function

estimates the response quality of the n-th query on
the l-th LLM:

p̂n,l = frq
l (en;θ

rq
l ), (4)

Step 2: Estimating the Financial Cost of A
Query-LLM Pair. The total cost of the n-th query
on the l-th LLM includes: 1) the known input cost
and 2) the predicted output cost, according to typi-
cal LLM pricing policies:

ĉn,l = lenprmn,l · price
prm
l︸ ︷︷ ︸

input cost

+ ˆlenresn,l · priceresl︸ ︷︷ ︸
output cost

,

(5)
where lenprmn,l is the prompt length of query qn,
and priceprml and priceresl are unit prices of input
prompt and output response. The response length

ˆlenresn,l is predicted using a similar method as the
response quality predictors:

ˆlenresn,l = frl
l (en;θ

rl
l ), (6)

3.5 Meta Decision Maker
For the n-th query qn, the final decision score for
each candidate LLM is determined by three factors:
(1) straden,l , which trade-offs the predicted quality
and cost; (2) suncn,l , which accounts for potential
prediction uncertainty; and (3) spenl , which discour-
ages selecting candidates with long waiting time:

sn,l = straden,l + α · suncn,l − β · spenl . (7)

where α and β control the relative importance.
The willingness to pay λ is introduced in straden,l

to control the priority of quality over cost, leading
to different budgets accordingly:

straden,l =
λ

λ+ 1
· p̂n,l −

1

λ+ 1
· ĉn,l, (8)

To handle prediction errors, we introduce an un-
certainty measurement (suncn,l ) to enhance robust-
ness (Li et al., 2010):

suncn,l = eTn ·A−1
l · en, (9)

where A−1
l represents the inverse covariance ma-

trix for the l-th LLM. This measures the amount of
information gathered for each candidate and adjusts
the confidence of the prediction accordingly.

Considering hardware limitations, it is crucial
to avoid routing queries to candidates with exces-
sively long waiting times. The penalty is therefore
given by:

spenl = eγ·(wl−ξ·τ), (10)
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where γ is a scaling factor and τ represents the
maximum tolerable waiting time. The waiting time
wl for candidate l includes: 1) the initial latency
required for the LLMs to start and 2) the token out-
put time for generating each token in the response.
The coefficient ξ (smaller than 1) makes the penalty
stronger. By scaling the threshold to ξ · τ , the sys-
tem applies the penalty earlier, discouraging the
selection of candidates before their waiting time
reaches the full limit of τ .

Finally, the candidate with the highest score
among all candidates is selected as the most suit-
able one:

m∗
n = argmax

l
(sn,l) (11)

3.6 Continual Learning
To ensure effectiveness in real-world applications,
we designed both offline and online training modes.
The offline mode enables the model to achieve ro-
bust performance before deployment, while the
online mode allows the model to continuously im-
prove in response to changing environments and
user feedback.

Offline Training: Prior to deployment, we per-
form offline training using refined full feedback
from all candidate LLMs. The refined feedback
includes real response quality and length, which
involves updating the parameters of the predictive
models:

The parameters θrq
l for the response quality pre-

dictors are updated using gradient descent:

θrq
l := θrq

l − η1 · ∇θrq
l
L(pn,l, p̂n,l), (12)

Similarly, the response length predictor parame-
ters θRL

l are updated as:

θrl
l := θrl

l − η2 · ∇θrl
l
L(lenresn,l ,

ˆlenresn,l ), (13)

The uncertainty matrices Al are updated incre-
mentally by query embeddings:

Al := Al + eTn · en. (14)

This update accumulates information over time,
decreasing the inverse A−1

l , which leads to low
uncertainty, indicating increased confidence in pre-
dictions. Then the waiting time is adjusted based
on the LLM assignment.

Online Training: After deployment, the system
incrementally updates predictive models and uncer-
tainty matrices using refined single feedback from
the selected LLMs.

However, user feedback based on human satis-
faction with the LLM service, often binary (“good”
or “not good”), is challenging for training. To ad-
dress this, we introduce a Dynamic Feedback Score
(sdfn,l) based on the contextual bandit method to
capture the binary user feedback and dynamically
adjust the scoring mechanism.

The final score for each LLM is updated as:

s′n,l = sn,l + κn,l · sdfn,l, (15)

where sdfn,l represents the appropriateness of the l-
th LLM to answer the given query predicted by a
shared 3-layer MLP network:
[
sdfn,1, s

df
n,2, . . . , s

df
n,|M |

]
= fdf(en;θ

df). (16)

And κn,l is the confidence factor based on the
variance, to ensure the reliability of sdfn,l and prevent
over-reliance on unstable predictions:

κn,l =
1

Varn[s
df
n,l] + ϵ

, (17)

where ϵ is a small constant to avoid division by zero.
Low variance increases κn,l, which will enhance
the importance, while high variance decreases it,
which reflects instability. Then the candidate with
the highest score is selected:

m∗
n = argmax

l
(s′n,l) (18)

Since we cannot directly supervise the network
outputs with binary feedback rn, we apply the Pol-
icy Gradient method (Ban et al., 2021) to update
θdf. The probability of selecting candidate l is:

π(l | en;θdf) =
exp

(
sdfn,l

)

∑|M |
k=1 exp

(
sdfn,k

) . (19)

The goal is to maximize the expected reward:

J(θdf) = El∼π(·|en;θdf)[rn], (20)

with gradient on selected candidate m∗
n:

∇θdf log π(m∗
n | en;θdf) =

∇θdf

(
sdfn,m∗

n
− log

L∑

k=1

exp
(
sdfn,k

)
)

(21)

The parameters are updated as:

θdf := θdf − η3 · ∇θdf log π(m∗
n | en;θdf) · rn.

(22)
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4 Experiments

4.1 Experimental Settings
4.1.1 Dataset
We conduct our experiments utilizing the Router-
Bench dataset (Hu et al., 2024), which consists of
36,497 queries from 8 NLP datasets, including Chi-
nese and English. Each query is answered by 11
different LLMs, with records of responses, as well
as corresponding quality and cost metrics. More-
over, we extend the dataset with Llama 3.1 8B and
70B models 1 and add prompt and response lengths
of all the queries and responses. The dataset is split
into 80% training and 20% testing.

4.1.2 Baseline Algorithms
We compare MixLLM with both non-predictive
and predictive baselines in our experiments. For
non-predictive methods, the cascading approach
tests smaller models first and switches to larger
ones if needed. We extend AutoMix (Madaan et al.,
2023) by ordering multiple LLMs by size, with
cheaper models prioritized when sizes are equal.
For predictive methods, RouteLLM (Ong et al.,
2024) assigns queries to LLMs using a BERT-
based multi-label classifier, while Zooter (Lu et al.,
2024) is represented by an MLP-based classifier.
RouterBench (Hu et al., 2024) predicts response
quality to achieve a quality-cost trade-off. Both
FORC (Šakota et al., 2024) and OptLLM (Liu
et al., 2024c) predict quality and then perform set-
level optimization, while MetaLLM (Nguyen et al.,
2024) uses a bandit algorithm with a quality-cost
reward. For additional comparison, we also include
random routing and individual LLMs.

Since the baseline algorithms do not include on-
line training after deployment, we only compare
them with our offline training component for a fair
comparison in Section 4.2, while the online training
component is further evaluated in Section 4.3.

4.1.3 Evaluation Metrics
We evaluate the methods on the streaming test
queries based on the quality-cost trade-off under
the latency constraint. Specifically, the response
quality score for each query is scaled from 0 to 1,
while the query cost is measured in dollars. Any
query that exceeds the maximum tolerable waiting
time is assigned a quality score of 0. The total qual-
ity and total cost are calculated as the sum of qual-
ity scores and query costs for all the test queries.

1https://ai.meta.com/blog/meta-llama-3-1/

We evaluate the routing performance across vary-
ing budget levels using parameter λ, ranging from
10−6 to 106 in Equation (8), with a larger λ will
prioritize response quality.

4.1.4 Configurations
In our experiments, we set up a software environ-
ment consisting of Python 3.12, PyTorch 2.0, and
CUDA 12.1 running on Ubuntu 18.04 LTS. Most
experiments were conducted on a 12GB Titan-V
GPU, while tasks involving Llama models, such
as dataset extension and tag extraction, were per-
formed on two 80GB H100 GPUs.

All random seeds are set to 42 for reproducibility.
In Equation (7), α is set to 0.01, and β is set to 0.1.
In Equation (10), γ is set to 0.1.

As for learning rates, η1 and η2 are set to 1,
reflecting the use of simple machine learning algo-
rithms, while η3 is set to 0.001 due to the complex-
ity of the neural network.

Query streams are configured at a rate of 100
queries per 10 seconds. The maximum tolerable
waiting time τ is set to 30 seconds, and the waiting
time of LLMs will be updated every 10 seconds.
The prices of input and output, the average ini-
tial time, and response speeds of different LLMs
are publicly available 2. This website estimates the
costs of open-source LLMs based on computational
resources, including CPU, GPU, and memory us-
age, while API-based LLMs are priced directly
using their API rates.

As for quality and length regressors, we use ran-
dom forest (RF) for quality prediction across all
LLMs, while a combination of multi-layer percep-
tron (MLP), RF, and K-nearest neighbors (KNN)
is applied for length (cost) prediction depending
on the LLM. Those predictors are lightweight. For
example, the size of an MLP model is less than
2MB, so the inference and update time is shorter.

4.2 Overall Results
As shown in Figure 4, MixLLM consistently out-
performs the baselines, delivering strong perfor-
mance. For the baseline methods, response quality
can decline with larger budgets since queries may
exceed the latency constraint. Notably, MixLLM
achieves 97.25% of GPT-4’s quality at only 24.18%
of the cost when λ is 1.4. In comparison, the
best baseline method, OptLLM, reaches 96.39% of
GPT-4’s quality at 32.94% of the cost. However, be-
yond this point, OptLLM’s response quality drops

2https://artificialanalysis.ai/
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Figure 4: Overall Results

as many queries exceed the waiting time tolerance,
while MixLLM remains stable. The same situation
also happens on other baseline algorithms.

The Oracle result represents the most optimal
routing on this dataset, balancing response quality
and cost. It serves as a benchmark for the best pos-
sible assignment. In this context, a point closer to
the upper left (Oracle) signifies higher quality at
a lower cost. To obtain the Oracle result, all can-
didate LLMs are tested for each query. For each
query, the LLM that meets the quality threshold
and has the lowest cost is selected. While the final
results reflect only the quality and cost of the se-
lected LLM, the process of determining the Oracle
result requires significant computational resources.

Each single LLM provides one quality-cost point.
For instance, GPT-4 demonstrates superior quality,
while GPT-3.5 offers a better balance of cost and
quality. The “Random” routing serves as a base-
line; points above and to the left of this anchor are
superior in offering better quality at a lower cost.

AutoMix struggles because multiple LLMs han-
dle each query, quickly exhausting the budget and
reaching the latency constraint. RouteLLM and
Zooter fail to adjust budgets dynamically and can
only provide one quality-cost point. RouterBench
performs well at lower budgets but faces latency
issues as budgets increase. FORC and OptLLM
share the problem of ignoring some queries due
to set-level optimization, affecting user experience.
MetaLLM is less effective because it can’t consider
multiple LLMs simultaneously, underscoring the
need for a multi-armed bandit approach.

4.3 Study on Continual Training

To enable continual training, we simulate the real-
world query streams by splitting the training dataset

into different ratios (Table 1) for offline and online
training. For example, an 80:20 split means 80%
of the data are used in offline training, while 20%
of the data are used in online training. The offline
training uses refined feedback across these splits.
For online training, in addition to the refined feed-
back, user feedback is simulated by assuming the
user is satisfied if the response quality exceeds 0.7
and the waiting time is less than 15 seconds.

Table 1 presents the overall response quality for
each setting, calculated as the sum of the response
qualities divided by the total number of queries.
Higher percentages indicate better performance. To
ensure fairness, results within the same split ratio
(column) maintain similar costs, which means the
improvements reflect the impact of online training
feedback. Results show both types of feedback im-
prove model performance. Although the improve-
ment may seem modest, it’s important to note that
online feedback is only available for the selected
one, which limits the effectiveness compared to
offline training. Despite this limitation, the results
suggest that online training becomes more effective
as more data are available. In real-world scenarios,
where online training data are abundant, MixLLM
will have greater opportunities to adapt. Refined
feedback outperforms binary feedback due to its de-
tailed nature. Nevertheless, even the simpler binary
feedback contributes to improved performance.

Table 1: The Power of Continual Training

Setting Offline : Online

80:20 50:50 30:70

Without Online Training 75.54% 71.98% 69.74%

With Refined Feedback 76.45% 72.99% 71.29%
Improvement 1.21% 1.39% 2.22%

With Binary Feedback 75.93% 72.37% 70.65%
Improvement 0.52% 0.53% 1.31%

In our experiments, we implemented one online
test at the end of online training to demonstrate
the continuing improvement of learning from and
aligning with online feedback. Without loss of
generality, we believe our one-time finding (online
feedback can improve performance and alignment)
can be generalized to recurrent tests. It is feasible
to adapt our system to conduct recurrent tests at the
end of each cycle in a real-world scenario.

4.4 Study on Tag-Enhanced Embedding
To obtain tags for the tag-enhanced encoder train-
ing, we employ InsTag (Lu et al., 2023), a Llama-
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based tagging LLM to generate one or more tags for
each training query. InsTag is capable of produc-
ing over 6,000 tags, e.g., “data structure”, “legal
ethics”, which are manually categorized into 20
domains, e.g., “Computer Science”, “Legal”.

Table 2: Effect of Tag-Enhanced Embedding

Cost
Level

Cost
Range

General
Embedding

Enhanced
Embedding Improvement

Low < 1 53.14% 56.18% 5.72%
Middle 1 - 8 72.09% 73.43% 1.85%
High > 8 75.76% 76.36% 0.79%

The results in Table 2 demonstrate the effec-
tiveness of tag-enhanced embedding. The values
represent response qualities across different cost
levels, where each cost level corresponds to a spe-
cific cost range. To ensure fairness, the costs within
each level (row) are kept similar. As the cost level
increases, which corresponds to a higher budget
and a greater emphasis on response quality, the
improvement from tag-enhanced embedding di-
minishes. Nevertheless, at each cost level, tag-
enhanced embedding consistently enhances routing
performance, highlighting its importance.

4.5 Study on Latency Constraint

Theoretically, the trade-off between response qual-
ity and query cost often operates within the bounds
of limited hardware resources in the real world.
Effectively managing the workload on devices be-
comes essential. Different components, such as the
CPU, GPU, memory, and bandwidth, all have their
performance metrics, but these factors converge on
one critical metric: query waiting time. Therefore,
we employ the latency as the primary constraint.

We conducted a simulation to account for the la-
tency constraint. The total time required to answer
a query has two parts: 1) the initial time to begin
generating and 2) the response time, which depends
on the answer length. We use the average initial
time for each LLM and estimate the response time
by multiplying the output length by the correspond-
ing LLM’s generation speed. For closed-source
LLMs, the simulation is based on API statistics.
For open-source LLMs, we simulated under ideal
hardware conditions, assuming sufficient memory
and stable network connections to ensure optimal
performance. The average initial time and response
speed of different LLMs are publicly available 3.

3https://artificialanalysis.ai/

Figure 5: Results without Latency Constraint

Even without the latency constraint, MixLLM
still outperforms the baselines, as shown in Fig-
ure 5. When compared to results with latency
constraint (Figure 4), MixLLM maintains stable
performance due to the time penalty component.
However, the baselines show more variation.

In Figure 4, AutoMix’s performance drops the
most, primarily due to its cascading nature. Each
query starts with the first LLM, resulting in signif-
icantly increased waiting time. Other predictive
baselines also experience performance declines at
higher cost levels, as they tend to route queries to
more powerful LLMs with longer waiting times.
This results in many queries exceeding the maxi-
mum tolerable waiting time and going unanswered.

4.6 Study on Adaptive Training

Figure 6: Results with Updated Candidates

Each LLM in MixLLM operates independently,
ensuring scalability. Adding or removing candidate
LLMs does not require complete re-training, which
only affects the corresponding LLM. To demon-
strate this advantage, we extended the RouterBench
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dataset using new Llama 3.1 models. Specifically,
we utilized the Llama 3.1 8B and 70B models to an-
swer each query in the dataset. Then we record re-
sponses and measure their quality, cost, and length.
As shown in Figure 6, with the introduction of
the powerful Llama 3.1 models, MixLLM achieves
98.55% of GPT-4’s response quality while reducing
the cost to just 16.79% when λ is 1.8. Furthermore,
MixLLM continues to outperform other baselines.

4.7 Study on Out-of-Domain Generalization
Real-world queries often originate from new or un-
seen domains, presenting challenges for LLM rout-
ing systems. To evaluate the domain adaptation
and generalization capabilities of MixLLM, we
conducted an out-of-domain (OOD) experiment.
In this setup, we simulate an OOD scenario us-
ing the domains defined by tags. We maintain an
80:20 splitting ratio, where the testing set (20%
of the data) contains non-overlapping domains not
present in the training set (80% of the data). This
design ensures that some testing samples belong to
entirely unseen domains during training.

Table 3: Result on OOD Scenario

Splitting Policy Offline Only Offline + Online

Normal 80:20 Splitting 75.54% 76.45%
OOD 80:20 Splitting 71.43% 73.89%
Decrease 5.44% 3.35%

The results in Table 3 reveal that when using
only offline training, MixLLM’s performance de-
creases by 5.44% at the same price cost level. How-
ever, when integrating both offline and online train-
ing, the performance drop is mitigated to 3.35%.
This demonstrates that the integrated offline-online
training strategy effectively enhances domain gen-
eralization and adaptation. Furthermore, we iden-
tify MixLLM’s OOD problem as a novel routing
task, calling on the research community to explore
and incorporate advanced domain adaptation tech-
niques into frameworks like ours to better address
this pressing challenge.

4.8 Study on Different Choice Policy
During our experiments, a new question arises:
Can selecting more LLMs improve performance?
To explore this, we applied various selection poli-
cies, with the results presented in Figure 7.

“Top 1”, “Top 2”, and “Top 3” refer to poli-
cies where the LLM(s) with the highest 1, 2, or
3 scores are selected. When multiple LLMs are

Figure 7: Results on Choice Policy Study

chosen, the response quality reflects the best one,
while costs are summed. The “TOP 1.5” policy
introduces a dynamic adjustment, which selects the
top 1 LLM when the budget is low and expands to
include more LLMs as the budget increases. As
illustrated in Figure 7, increasing the number of
selected LLMs shifts the curve upwards and to the
right. This outcome is expected because selecting
more LLMs increases both cost and the likelihood
of choosing the most capable model. Notably, with
the same budget (red line in Figure 7), the “Top 3”
policy achieves the highest response quality, even
surpassing the most powerful single LLM, GPT-4,
at only 20% of its cost.

However, in practical scenarios, users typically
seek a single, definitive answer rather than multiple
options. How to select the final answer? Adding
a reviewer to choose the best answer is one po-
tential solution, but it requires additional time and
resources. Given the complexity, we did not incor-
porate a multi-choice selection into MixLLM. It
presents interesting engineering challenges, and we
welcome further exploration and collaboration for
those interested in addressing this problem.

5 Conclusion

We proposed MixLLM, a dynamic routing sys-
tem that selects the most suitable LLM for each
query by balancing response quality, cost, and la-
tency. By enhancing query embeddings with tag
knowledge and incorporating latency constraints,
MixLLM effectively addresses key challenges in
real-world LLM deployment. The system’s adapt-
ability, achieved through continual learning and
independent prediction for each LLM, ensures ef-
ficiency as queries evolve and new models are in-
troduced. Our results demonstrate that MixLLM
optimizes resource usage while maintaining strong
performance across varying budget levels.
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Limitations

Although MixLLM presents strong performance
in the experiments, some limitations are listed as
follows. (1) The training process assumes access
to refined feedback, including response quality and
cost, which may not always be available in real
world. Training-free methods could help, such as
scaling laws (Ruan et al., 2024). (2) MixLLM
may face challenges when routing queries from
brand-new domains, commonly referred to as the
out-of-domain (OOD) problem (see Section 4.7 for
further details). (3) MixLLM faces challenges in
practical scenarios requiring the selection of a sin-
gle definitive answer from multiple LLM outputs,
as discussed in Section 4.8. (4) While MixLLM
considers hardware limitation through the latency
constraint, more detailed dispatch strategies con-
sidering system information could further improve
its practicality. (5) More complex routing tasks re-
main unexplored, such as hierarchical routing. This
could involve first routing a query to a relevant do-
main, and then selecting the most suitable LLM
within that domain. (6) MixLLM’s performance
needs to be tested in real-world applications to en-
sure its robustness beyond idealized environments.
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