Multi-Agent Procedural Graph Extraction with Structural
and Logical Refinement

Wangyang Ying'*, Yanchi Liu?’, Xujiang Zhao?, Wei Cheng?,
Zhengzhang Chen?, Wenchao Yu?, Yanjie Fu', Haifeng Chen?

! Arizona State University, 2NEC Labs America
{wangyang.ying, yanjie.fu} @asu.edu
{yanchi, xuzhao, weicheng, zchen, wyu, haifeng } @nec-labs.com

Abstract

Automatically extracting workflows as proce-
dural graphs from natural language is promis-
ing yet underexplored, demanding both struc-
tural validity and logical alignment. While re-
cent large language models (LLMs) show po-
tential for procedural graph extraction, they
often produce ill-formed structures or misin-
terpret logical flows. We present text2flow, a
multi-agent framework that formulates proce-
dural graph extraction as a multi-round reason-
ing process with dedicated structural and logi-
cal refinement. The framework iterates through
three stages: (1) a graph extraction phase with
the graph builder agent, (2) a structural feed-
back phase in which a simulation agent diag-
noses and explains structural defects, and (3)
a logical feedback phase in which a semantic
agent aligns semantics between flow logic and
linguistic cues in the source text. Important
feedback is prioritized and expressed in natural
language, which is injected into subsequent
prompts, enabling interpretable and control-
lable refinement. This modular design allows
agents to target distinct error types without su-
pervision or parameter updates. Experiments
demonstrate that text2flow achieves substan-
tial improvements in both structural correctness
and logical consistency over strong baselines.

1 Introduction

Extracting workflows as structured procedural
graphs from natural language documents is a fun-
damental yet underexplored task (Ren et al., 2023a;
Du et al., 2024). A procedural graph is defined as a
directed graph representing a workflow described
by natural language, where nodes correspond to
defined procedural elements such as actors, actions,
decision points (a.k.a., gateways), constraints, and
designated start/end points, and edges denote se-
quential execution or conditional dependencies

“Work done during an internship at NEC Labs America.
Corresponding author.

among these elements (Herbst and Karagiannis,
1999; Magbool et al., 2018). This form of graph
explicitly encodes control-flow logic and procedu-
ral dependencies, differing from traditional knowl-
edge graph extraction that focuses on identifying
entities and relations. Procedural graphs serve as
executable structures, enabling downstream appli-
cations such as task digitization, automated compli-
ance checking, and providing structural knowledge
input to intelligent systems.

Procedural graphs require modeling not only se-
quential actions but also complex control structures,
such as conditionally executed branches and paral-
lel execution steps. In addition, it requires a com-
prehensive understanding of the global executabil-
ity and logical validity of the graphs they produce.
However, current methods only partially address
these complexities. (1) Traditional information ex-
traction techniques, such as entity extraction (Ma
and Hovy, 2016; Liu et al., 2025) and knowledge
graph construction (Ji et al., 2021; Pan et al., 2024),
mainly focus on identifying static entities and their
semantic relationships, lacking explicit modeling
of dynamic execution flows, conditional logic, or it-
erative loops inherent in procedural documents. (2)
Rule-based methods or customized neural architec-
tures demonstrated limited generalization beyond
predefined, simplified cases (Sholiq et al., 2022;
Bellan et al., 2023). They fail to adequately capture
complex, non-sequential scenarios such as "cus-
tomers can order only dishes, only drinks, or both,"
due to their intrinsic limitations in modeling non-
linear and conditional control flows. (3) Large lan-
guage models (LLMs) show promise in structured
extraction tasks (Zhao et al., 2025), but current
LLM-based methods mainly rely on one-pass zero-
shot or few-shot prompting, lacking explicit guid-
ance and iterative refinement. Moreover, current
self-refinement paradigms (Madaan et al., 2023a;
Hu et al., 2025) often rely on heuristic prompt-
ing or implicit internal feedback, which offer little

guidance when structural flaws block execution
paths or when gateway types are subtly inconsis-
tent with textual conditions. Consequently, these
methods struggle with reliably capturing intricate
conditional structures and execution logic in proce-
dural graphs (Bellan et al., 2022).

To overcome the above limitations, in this
work, we propose a multi-agent framework, named
text2flow, for procedural graph extraction via multi-
agent structural and logical alignment. Specifically,
we extract two explicit types of external feedback:
structural errors derived from multi-path simula-
tion, and logical inconsistencies revealed by com-
paring execution logic against textual descriptions.
We decouple the extraction process into three iter-
ative stages: (1) a graph extraction phase with the
graph builder agent, (2) a structural feedback phase
powered by a simulation agent to detect and explain
topological issues, and (3) a logical feedback phase
that uses a semantic agent to align between flow
logic and the linguistic patterns in the source text.
Important feedback is prioritized and expressed in
natural language, which is injected into the next-
round prompt, enabling interpretable and control-
lable refinement. By organizing these signals in
a unified sandbox and injecting them selectively
across iterative reasoning rounds, our framework
enables LLMs to revise graphs not only for surface
correctness, but with respect to grounded, exter-
nalized procedural reasoning. Crucially, although
LLM agents are employed to interpret and verbal-
ize feedback, all signals are grounded in observ-
able execution outcomes or explicit inconsistencies
between graph logic and text, making them trace-
able, interpretable, and independent of the gener-
ation model’s internal state. This design avoids
the compounding hallucinations often observed in
self-refinement loops, and enables grounded revi-
sions driven by externally validated failures. Exper-
iments demonstrate that our approach significantly
improves structural correctness and logical consis-
tency over baselines.

2 Related Work

Procedural graph extraction research has histor-
ically emphasized pipelines that detect events
and then link them into sequential relations, of-
ten realized through rules or templates, but these
approaches rarely generalize beyond linear ac-
tion flows (Pal et al., 2021; Lépez et al., 2021;
Ren et al., 2023b). Later work introduced non-

sequential structures such as branches and optional
steps, though coverage and robustness remain lim-
ited (Bellan et al., 2023; Honkisz et al., 2018; Epure
et al., 2015). Constraint modeling has also been
fragmented: data constraints were explored without
corresponding attention to action-level dependen-
cies (Friedrich et al., 2011). Small-sample neu-
ral models exist but raise doubts about scalabil-
ity. To systematically evaluate these shortcomings,
PAGED (Du et al., 2024) offers a benchmark of
paired documents and procedural graphs, showing
both classical and LLM-based methods still strug-
gle to construct coherent non-sequential structures.

Beyond extraction, recent work shifts to gen-
eration: Cascading LLMs first identify salient
events and then generate temporal/hierarchical/-
causal edges as code with iterative refinement (Tan
et al., 2024a); the Set-Aligning Framework treats
edges as an order-invariant set with regularizations
to boost recall and zero-shot generalization (Tan
et al., 2024b); G-PCGRL casts graph creation as
reinforcement learning over an adjacency matrix
under explicit constraints, enabling faster and more
controllable valid-graph generation than evolution-
ary or random search (Rupp and Eckert, 2024).

3 Problem Formulation

A procedural graph is a directed process flow graph
that represents the control structure of a multi-
step procedure, including both sequential and non-
sequential execution logic. Given a document, the
goal is to generate a graph G = (V, E), where 1) V'
is a set of nodes representing process components,
which includes: Start and End markers, Action
nodes that describe concrete procedural steps, Ac-
tor nodes denoting the responsible entity for each
action, Gateway nodes that encode control logic
(e.g., XOR, OR, AND), and Constraint nodes that
impose conditions or requirements. 2) E is a set
of directed edges, which represents directed flows
among these nodes, such as Sequence Flows (e.g.,
action-to-action transitions), Condition Flows (e.g.,
branching conditions at gateways), and Constraint
Flows (e.g., linking constraints to specific actions).

Our objective is to generate a graph that is both
structurally valid and logically faithful to the in-
put document. We formulate this as a multi-round
refinement problem, where a multi-agent system
iteratively improves the graph under guidance from
external structural and logical feedback.

XOR —[

Procedural Document: The
user must first log in to the
system. After logging in,
they can either view their

Extract actions,
dashboard or update their E>actors constraints, |::>

profile. If they view the
dashboard, the process
ends there. If they update
their profile, a confirmation i _l:
email will be sent. i

and gateways.
Build edges.

: Top-k

Initial Graph and

Procedural Graph

i
i

| Start —— Loginto system

i

! l—‘l

i

: Send.
; 4 Update Profile = 2506
i

i

i

Revised Procedural Graph I::>

; Start —— Log into system i * ’
3 i Dead Node! “Send email” Wrong Gateway! Should be OR
; Update Profile — 3¢ ! must reach on End node. (inclusive), not XOR (Exclusive)

Evaluation Sandbox

Check Check
Structure Logic

‘ Pnormzmg't'= 1

| Revisions |

;
i
' Revisions | W < 1 __7_Revisions Generation v

Figure 1: Overview of the fext2flow multi-agent framework. The Graph Builder Agent generates an initial procedural
graph from the document. The Evaluation Sandbox, with simulation and semantic agents, identifies structural and
logic errors. Prioritized revisions are iteratively applied to the Graph Builder Agent until a valid graph is produced.

4 The text2flow Multi-agent Framework

4.1 Overview

Figure 1 shows that our framework treats proce-
dural graph extraction as a multi-stage, feedback-
driven process, where a large language model
(LLM) iteratively generates and refines the output
graph under the guidance of structural and logical
feedback. Starting from a natural language doc-
ument, we first use few-shot prompting to elicit
an initial procedural graph that captures the core
actions, control structures, and execution flows de-
scribed in the original documents. Recognizing that
such initial outputs may contain structural flaws
(e.g., disconnected nodes, misused gateways) or
logical misalignments (e.g., incorrect interpreta-
tion of conditional logic), we introduce a set of
lightweight modules that serve as external evalua-
tors. These modules examine the generated graph
from two complementary perspectives: structural
validity and logical consistency. Each module pro-
duces natural language feedback that identifies po-
tential issues and suggests targeted revisions. The
LLM then incorporates this feedback in the next
round of generation, refining the graph through a
loop of diagnosis and revision. By delivering all
signals through language, our framework forms
a controllable “evaluation sandbox” that enables
interpretable, modular, and supervision-free correc-
tion of procedural graphs.

4.2 Graph Builder Agent

The first step in our framework is to construct an
initial procedural graph from the input document
using the graph builder agent. Given a natural

language paragraph that describes a multi-step pro-
cedure, the agent is prompted to output a structured
representation of the process as a graph, including
the nodes, their types, the control flow edges, and
the constraint flow edges. We adopt a few-shot
prompting strategy, where the graph builder agent
is provided with a small number of annotated ex-
amples in the prompt to guide its generation. Each
example consists of a natural language procedure
and its corresponding graph represented in a struc-
tured format. To make the format LLM-friendly
and easy to post-process, the graph is represented
as textual triples, such as ‘action -> action’ or ‘gate-
way -> (condition) action’.

The initial graph generated by the agent serves as
the first approximation of the underlying procedu-
ral structure described in the document. However,
due to the complexity of procedural logic and the
subtlety of control flow language (e.g., implicit
conditions, disjunctions, or parallelism), this initial
graph often contains structural errors or misinter-
pretations of gateway logic. These imperfections
motivate the next stage of our framework, where
feedback is collected to guide further refinement.

4.3 Evaluation Sandbox: Structural and
Logical Feedback Collection

To iteratively refine the procedural graph gener-
ated by the graph builder agent, we construct an
evaluation sandbox that identifies structural and
logical issues in natural language. The sandbox
operates through two complementary agents: (1) a
simulation agent that executes the graph to reveal
structural failures, and (2) a semantic agent that
verifies gateway logic based on textual cues. We

further define a scoring and selection strategy to
prioritize feedback items under prompt constraints.

4.3.1 Structural Feedback via Simulation
Agent

(1) Constructing a simulator to detect the structural
issues. Unlike heuristic-based graph checkers, we
treat the generated graph as an executable represen-
tation of procedural logic. We design a simulator
that mimics multi-path execution from the Start
node to the End node, traversing all valid branches
under stochastic or enumerative conditions. Each
simulation yields a trace-level execution record and
flags any violations encountered during traversal.
These violations are emitted in a structured form:

{(Tvivc)k}}?::l = S(G)7 (1)

where 7 is the execution trace (sequence of nodes),
¢ is the structured issue encountered (e.g., dead
node), c is the condition choice at each gateway in
the trace, n is the number of simulations, S is the
notation of the simulator, and G is the graph that
needs to be refined.

(2) Using LLM to provide revision feedback. Each
error trace is passed to an LLM-based structural
agent, which determines whether the issue reflects
a genuine structural flaw and, if so, returns a cor-
responding repair feedback. This feedback may
involve operations such as adding a missing edge,
modifying a gateway type, or reconnecting a dis-
joint node:

fi = LMy (7,3, 0)1), fx € F™, (2

where ¢ is the timestep of the current iteration.

4.3.2 Logical Feedback via Semantic Agent

(1) Gateway logical feedback. Procedural graphs
often rely on control flow nodes such as XOR, OR,
and AND gateways to represent conditional or par-
allel behaviors. However, unlike structural errors
that manifest during execution, gateway type mis-
matches arise from a misalignment between graph
logic and the linguistic cues in the original text.
To support this comparison, we first extract a lo-
cal textual span for each gateway node, capturing
the clause most relevant to its control logic. This
step isolates the relevant context and reduces noise
from surrounding text. The span is extracted using
a semantic retrieval agent:

Sg = LLMecytract (g, G, D) 3)

where s, is the textual span corresponding to the
gateway ¢, G is the graph that needs to be refined,
and D is the original document.

We then ask an LLM to transfer the gateway g
and related context back to text description d . In
this way, the comparison of logic between the raw
document and the procedural graph is under the
same semantic space. Then a semantic consistency
agent is used to judge whether the current gateway
type matches the logic expressed in s,. Crucially,
we only retain feedback when the agent determines
that the gateway type is inconsistent with the text,
ignoring cases deemed valid or ambiguous:

fg = LLMsem(Sm dg)a fg € ftsem' (4)

These feedback items flag specific gateway nodes
where the control logic is semantically incorrect.
(2) Flow logical feedback. In addition to the gate-
ways (XOR, OR, AND) which express branching
and merging of logic. Flows like sequence, condi-
tion, and constraint present logic between nodes.
To capture this flow logic, we segment the entire
graph into multiple gateway-to-gateway fragments.
For each gateway g, we extract its simulation trace
ty, defined as the subgraph that spans from g to
the closest downstream gateway along the flow se-
quence. This trace includes: flow-sequence edges
along the execution path from gateway g to the next
gateway; flow-condition edges that originate from
g and point to action nodes within the segment, rep-
resenting control decisions made by the gateway;
flow-constraint edges where constraint nodes point
to any action node within this segment, specifying
conditional requirements on their execution.
Similarly, we ask an LLM to transfer the trace
ty to a text description d;. In this way, the com-
parison of logic between the raw document and
the procedural graph is under the same semantic
space. The semantic consistency agent is used to
judge whether the current flow segment matches
the logic expressed in the original document. We
retain feedback when the agent determines that the
gateway segment is inconsistent with the text:

ft = LLMsem(Sta dt)a ft € J—_-tsem, (5

where s, is the textual span of trace ¢, in the origi-
nal document. This feedback highlights segments
whose assigned control types are semantically in-
correct. All of the above feedback is then routed
into the sandbox for prioritization and refinement
in subsequent iterations.

4.3.3 Prioritizing High-Impact and
Unresolved Feedback

Why prioritize feedback for refinement? In each
iteration, the LLM-based generator receives a lim-
ited number of natural language feedback prompts
due to context window and prompt clarity limita-
tions. Presenting too many suggestions simulta-
neously can overwhelm the model or dilute the
guidance signal. Therefore, we prioritize a sub-
set of feedback items that are most likely to yield
meaningful corrections. This motivates a scoring-
and-selection framework that ranks feedback based
on estimated utility.

(1) Prioritizing revisions by error frequency im-
pact. While each simulation provides only a local
view of structural issues, the distribution of errors
across a large number of simulations reveals their
global importance. Structural flaws that appear re-
peatedly across different execution traces are more
likely to lie along central or high-traffic paths in
the graph. Fixing such high-frequency errors can
unlock access to a broader set of paths and down-
stream nodes. In contrast, rarely encountered is-
sues may have limited procedural impact even if
technically incorrect.

To capture this intuition, we conduct a large num-
ber of simulations (e.g., 10,000 trials) using uni-
form sampling at each gateway to ensure broad
path coverage. We then count how frequently each
structural issue appears across all wrong simula-
tions. For a given repair suggestion, we define its
marginal utility as the normalized frequency of the
corresponding error simulation:

u(f) = cholunt((T,i,c)k)
=

frwe FM,(6)

count((7,4,¢);)

where count(-) indicates how many times a specific
trace was generated in the simulations.

(2) Promoting unresolved feedback from previous
rounds. To avoid repeatedly surfacing but ignoring
the same issue, we incorporate a RepeatFailure
score. A feedback item f € F; is considered a
repeat if its semantic meaning is highly similar to
a previously surfaced item that was not fixed. We
detect repetition using BLEU similarity:

R(f) =

max [BLEU(f, f)] (D
feF«

where F; is the feedback in previous iteration.
(3) Unified feedback scoring and selection. While
both structural and logical errors affect the over-
all correctness of the generated graph, structural

flaws undermine the executability and interpretabil-
ity of the graph as a whole. In particular, logic
judgments, such as whether a gateway is logically
consistent with its textual reference, are only mean-
ingful when the underlying structure is coherent
and complete. If a node is unreachable or a branch
is disconnected, any attempt to validate its logic
becomes unreliable or irrelevant.

Moreover, structural issues can be measured at
fine granularity via simulation frequency, yielding
a continuous estimate of procedural impact. In
contrast, logical errors (e.g., mis-typed gateways)
are assessed through discrete judgments and lack
trace-level grounding. We encode this asymmetry
in the scoring:

f c]:stru

f 6 f‘sem (8)
where u(f) is the simulation-derived impact of
structural feedback f, R(f) is a shared repair prior,
JF3UU denotes structural feedback, and F*™ de-
notes logical feedback. Consequently, structural
issues with broad procedural impact receive higher
priority during refinement, while logical feedback
is incorporated once the graph is structurally stable
enough to support reliable logical comparison.

(4) Budget-constrained selection. We solve a
knapsack-style problem to select the top-scoring
feedback items within a fixed token budget B:

w(f) st Y _U)<B, O

SCF:
fes fes

where /() denotes the token length of feedback f.
We greedily pick the top-k items by the efficiency
score w(f)/¢(f) under the prompt budget.

4.4 Multi-Round Prompting for Graph
Refinement

The feedback-guided graph construction process is
conducted in multiple rounds. Each round consists
of three stages: (1) generating a procedural graph
based on the current prompt, (2) collecting struc-
tural and logical feedback via simulation and agent-
based analysis, and (3) selecting a prioritized subset
of feedback to include in the next prompt. This it-
erative process enables the model to correct both
executional flaws and logical inconsistencies. The
refinement process continues for a fixed number of
rounds or until no high-impact feedback remains.
This multi-round setup allows us to decompose

complex graph construction tasks into incremen-
tal, feedback-driven revisions, improving structural
validity and logical consistency over time.

5 Experiments

5.1 Experimental Setup

Dataset Descriptions. We conduct our experi-
ments on the PAGED benchmark (Du et al., 2024),
a large-scale dataset constructed for procedural
graph extraction. The corpus contains 3,394 docu-
ments with 37,226 sentences and more than 560K
tokens in total. Each document is annotated with
diverse process elements. Table 4 in Appendix A
summarizes the statistics of these core compo-
nents. The dataset represents procedural knowl-
edge in a text-driven graph format, where sentences
are aligned with nodes such as actions, actors,
gateways, and constraints, and edges are explic-
itly labeled as flows (e.g., ‘element -> element’
or ‘element -> (condition) element’) to cap-
ture temporal and logical dependencies. In our
study, we exclusively utilize the official 20% held-
out test split of PAGED to evaluate model perfor-
mance. Since our framework operates in a fully
unsupervised setting, no training signals from the
benchmark are used; instead, we directly apply our
method to the test data for evaluation.

Evaluation Metrics. The PAGED dataset rep-
resents procedural knowledge as tuples in the
form of ‘element -> element’ or ‘element ->
(condition) element’. Model predictions are
evaluated by comparing predicted tuples with gold
tuples of the same type.

(1) Tuple Matching. For each predicted tuple, we
compute its BLEU score (Liang et al., 2023) with
all gold tuples. The gold tuple with the highest
score is selected as the candidate match if the score
exceeds 0.5. We then further check:

¢ Start and End Elements: considered matched
if its BLEU score exceeds 0.75.

» Condition (if present): compared against the
gold condition using BLEU.

(2) Element-Level Evaluation.

e Actions, Actors, and Constraints: Evaluated
with soft F1 (Tandon et al., 2020). A predicted
element is correct if it can be matched to a
gold element with BLEU above the threshold.

* Gateways: Evaluated with hard F1. A pre-
dicted gateway is correct only if both (i) its

type matches the gold gateway, and (ii) it con-
nects to at least one element that is correctly
matched (Dumas et al., 2018).

(3) Flow-Level Evaluation.

* A predicted flow is correct if its type and the
two connected elements both match the corre-
sponding gold flow.

* For Condition Flows, the condition text must
also achieve BLEU alignment with the gold
condition.

Baselines. (1) Machine Translation-like BPMN
(MT-BPMN): (Sonbol et al., 2023) which is
a semantic transfer-based machine translation
approach that generates BPMN models from
textual descriptions via intermediate Concept
Maps. (2) Beyond Rule-based Process extrac-
tion (BRP): (Neuberger et al., 2023) which is a
data-driven pipeline that extracts process models
from text by combining NER, entity resolution,
and relation extraction, outperforming rule-based
methods. (3) BPMN-Gen: (Sholiq et al., 2022)
which is a rule-based NLP method for generating
BPMN diagrams from textual requirements. (4)
PET: (Bellan et al., 2023) which uses Roberta-
large (Liu et al., 2019) as the backbone-model
and train the model on the PET dataset!. A to-
tal of 3 epochs are trained, the adopted optimizer
is AdamW and the learning rate is set to Se-6. (5)
CIS: (Bellan et al., 2022) which applies GPT-3
with in-context learning to incrementally extract
activities, participants, and control-flow relations
from process descriptions via conversational ques-
tion answering. (6) Self-Refine: (Madaan et al.,
2023b) which introduces an iterative refinement
framework where a single LLM alternates between
generating outputs, providing feedback on them,
and then refining its own responses. (7) Actor-
Critic: (Shinn et al., 2023) which frames LLM
agents in an actor—critic style, where an actor exe-
cutes actions and a critic provides verbal feedback
to guide iterative self-improvement. This paradigm
has become a widely used baseline for multi-agent
reasoning and self-correction in LLM research.
Models Details. We implement fext2flow on 5
LLMs to evaluate the effectiveness. The details
of the LLMs are described in Appendix B. And
the implementation details are described in Ap-
pendix C.

1https: //huggingface.co/datasets/
patriziobellan/PET

https://huggingface.co/datasets/patriziobellan/PET
https://huggingface.co/datasets/patriziobellan/PET

Table 1: Overall performance. We report the F1-score of each procedural graph component — including action
nodes, gateway nodes (XOR/OR/AND), and directed edges — to evaluate the extraction accuracy at both node and
structure levels. Higher values indicate better performance. Best results in bold; second-best underlined.

Model | Actor | Action | Constraint | Gateway | Flow
| | | Data Action | XOR OR AND | Sequence Condition Constraint
MT-BPMN 0.028 0.308 0.213 - 0.485 - 0.279 0.056 0.047 0.017
BRP 0.027 0.276 - - 0.469 - 0.337 0.074 0.061 -
BPMN-Gen - 0.387 - - 0.463 - 0.198 0.091 0.022 -
PET 0.085 0.430 0.069 - 0.493 - - 0.164 0.026 -
CIS 0.633 0.639 - - 0.455 - - 0.203 0.157 -
Few-Shot 0.403 0.649 0.534 0.151 0.701 0.141 0.366 0.315 0.186 0.288
Lamma3.1:8B Self-Refine | 0.568 0.708 0.562 0.172 0.702 0.152 0.347 0.368 0.204 0.399
Actor-Critic | 0.504 0.670 0.556 0.165 0.673 0.150 0.327 0.321 0.182 0.371
text2flow 0.577 0.742 0.644 0.178 0.703 0.144 0.370 0.395 0.238 0.436
Few-Shot 0.621 0.774 0.771 0.445 0.789 0.280 0.601 0.371 0.276 0.477
Gemma3:27B Self-Refine | 0.612 0.774 0.734 0434 0.784 0.239 0.642 0.475 0.280 0.638
Actor-Critic | 0.469 0.742 0.625 0.339 0.728 0.217 0.574 0.417 0.248 0.472
text2flow 0.642 0.786 0.791 0452 0.839 0.345 0.648 0.479 0.342 0.682
Few-Shot 0.623 0.762 0.816 0.421 0.762 0.201 0.557 0.339 0.232 0.499
Qwen3:30B Self-Refine | 0.653 0.762 0.846 0.421 0.792 0.201 0.587 0.339 0.252 0.499
Actor-Critic | 0.518 0.750 0.714 0388 0.734 0.237 0.584 0.344 0.246 0.555
text2flow 0.644 0.776 0.843 0.411 0.792 0.238 0.581 0.429 0.276 0.684
Few-Shot 0.711 0.778 0.776 0.461 0.765 0.192 0.613 0.423 0.280 0.611
Mistral3.1:24B | Self-Refine | 0.717 0.778 0.790 0.455 0.804 0.249 0.639 0.450 0.284 0.619
Actor-Critic | 0.660 0.754 0.709 0.335 0.815 0.256 0.633 0.455 0.291 0.556
text2flow 0.723 0.781 0.812 0460 0.832 0.282 0.677 0.476 0.317 0.653
Few-Shot 0.684 0.769 0.841 0.481 0.792 0.296 0.648 0.434 0.302 0.594
GPT-40 Self-Refine | 0.691 0.769 0.838 0.483 0.796 0.299 0.673 0.476 0.306 0.673
Actor-Critic | 0.617 0.706 0.760 0.441 0.726 0.225 0.651 0.425 0.237 0.581
text2flow 0.688 0.782 0.859 0.485 0.831 0.356 0.692 0.484 0.357 0.710
5.2 Overall performance compared with i a6 i e
: . M m 0.485 o
different baselines and LLM models osss || fim O7° .

This experiment tests whether a multi-agent
pipeline with an evaluation sandbox improves
procedural-graph extraction over non-LLM parsers
and strong LLLM baselines across five backbones.
Table 1 shows that our system attains the highest
F1 in most settings, with the largest gains in flow
constraints and sequence, and clear gains in gate-
ways follow the semantic consistency in the text.
The underlying driver is that the evaluation sandbox
provides verifiable signals of two kinds: structural
signals from simulation, reachability, and end node
checks that reveal broken or missing paths, and
logical signals from consistency checks between
the text and the candidate gateways. By convert-
ing simulation and semantic checks into verifiable
constraints, the evaluation sandbox turns free-form
generation into guided repair, producing graphs
that satisfy global structure and semantics. Com-
pared with Self-Refine, it provides checkable pass/-
fail signals that indicate what to revise and when
to stop; compared with Actor-Critic, specialized
critics use simulation traces and text—logic consis-
tency to target gateway typing, reachability, flow

- 0.82f
0.686 - o8F 0.480
: 0.80
0.684 m| [l 77, | i L L Ll W

4 L b
Action Const-Data Const-Action

0.485 _
035 0.69 m m| 035l 07F
0.480

0.681
1 | 067 0475, | 030l 065

030}
OR AND Flow-Seq Flow-Condi Flow-Const

Figure 2: Ablation Study on GPT-40 backbone. Each
bar shows the performance under different module re-
movals: w/o-sandbox — few-shot generation without
evaluation sandbox; w/o-simulator — iterative refine-
ment using only the semantic agent as feedback; w/o-
semantic — iterative refinement using only the simulator
as feedback; w/o-prioritizing — all revision candidates
are sent to the graph builder without filtering. text2flow
denotes the full model with all components enabled.

constraints, etc. Overall, the experiment shows that
injecting external signals enables the LLM to gen-
erate procedural graphs that are more accurate and
more globally consistent across backbones.

5.3 Ablation study

The purpose of this experiment is to examine the
contribution of each component in our framework

time +— Action —e— Const-Action OR Flow-Seq Flow-Const
XOR .

+- Actor Const-Data —e— AND - =~ Flow-Condi

425 425

o 050 P s

F1-Score
F1-Score
)

s
S

!

&
(s) aidwes sod sl
(s) oidwes sod swin|

-
R 030 #rm = 48

0 1 2 3 4 0 1 2 3 4

Iteration Epoch Iteration Epoch

Figure 3: Fl-scores and average time per sample across
iterations (0 = few-shot). Gains peak around 2 iterations,
after which improvements plateau while cost increases.

on the GPT-40 backbone by progressively remov-
ing the evaluation sandbox, simulator, semantic
agent, and prioritization mechanism. As shown
in Figure 2, the full model consistently outper-
forms all ablated variants across different struc-
tural dimensions. Without the sandbox, perfor-
mance drops notably on control-flow related met-
rics (e.g., OR, Flow-Condi), highlighting the neces-
sity of external evaluation signals to constrain gen-
eration. When relying solely on the simulator (w/o-
semantic) or solely on the semantic agent (w/o-
simulator), the model suffers on gateway recog-
nition and constraint alignment, suggesting that
the two types of feedback are complementary: the
simulator enforces structural validity while the se-
mantic agent preserves logical consistency. In ad-
dition, disabling the prioritization module (w/o-
prioritizing) leads to diminished accuracy on com-
plex node types, since indiscriminate revisions
propagate noise and overwhelm the graph builder.
These results indicate that each component pro-
vides unique benefits, and their integration yields
the most stable and robust improvements.

5.4 Performance-Cost Across Iterations

The purpose of this experiment is to evaluate the
scalability of our framework on the GPT-40 back-
bone by examining how performance and compu-
tational cost change with the number of refinement
iterations. As shown in Figure 3, F1-scores across
most structural categories improve notably from
the few-shot baseline (iteration 0) to the first two
refinement rounds, but the gains quickly plateau
afterwards. In contrast, the average time per sam-
ple grows steadily with more iterations, resulting
in diminishing returns. This phenomenon is driven
by the fact that early revisions effectively correct
major structural and semantic errors, while later
rounds tend to revisit already-correct patterns, in-
curring additional cost without substantial improve-
ment. Consequently, we adopt two iterations as the
default setting to strike a balance between accuracy

@ ZoroShot (O Few-Shot @ TextzFiow]

F1-Score
F1-Score

IS NS AR
”‘vza,"cﬂa,fOnsfgns,f;’w 00,200,059 Wi 4”/0,"%0,?%3%%,‘2» 204,20.305% >
)

S
% "t 7 ey Vs

(b) Qwen3:30B

e Se e
o9 07 sy

(a) GPT-40

Figure 4: Fl-score comparison of Zero-Shot, Few-Shot,
and text2flow on GPT-40 and Qwen3:30B. fext2flow
shows consistent gains across all categories.

and efficiency.

5.5 Fine-Grained Comparison with Zero- and
Few-Shot Prompts

To evaluate the effectiveness of text2flow, we con-
duct a detailed comparison against Zero-Shot and
Few-Shot prompting baselines across fine-grained
graph components. Figure 4 shows the results on
GPT-40 and Qwen3:30B. We observe that text2flow
consistently outperforms both Zero-Shot and Few-
Shot settings across nearly all components, with
especially notable improvements on logically com-
plex or sparsely supervised types such as gateways
and flows. These categories often require multi-hop
reasoning or global structural consistency, which
traditional prompting struggles to capture. The
underlying driver of this improvement lies in our
multi-agent feedback loop, which enables iterative
correction guided by external structural and seman-
tic constraints. Rather than relying solely on single-
pass generation, the system revises outputs based
on execution and alignment feedback, leading to
more accurate and consistent graph construction.

5.6 Comparisons with SFT on Procedural
Graph Extraction

Supervised Fine-Tuning with LoRA on Llama-3.1-
8B was explored to assess whether task-specific
adaptation can improve procedural graph extraction
under limited supervision. Experimental results in
Table 2 show that fine-tuning yields localized im-
provements on structurally explicit components,
most notably AND/OR gateway typing, where it
outperforms text2flow under the same model scale.
However, these gains do not translate into consis-
tent improvements across semantic roles or global
flow-level metrics, such as Flow-Seq and Flow-
Constrain, where fine-tuning remains inferior to
inference-based methods. Moreover, the overall
performance of the fine-tuned model is still sub-
stantially lower than that of larger models (e.g.,
Gemma-27B or GPT-40), while introducing non-

Table 2: Performance comparison of few-shot, reasoning-based, and supervised fine-tuning methods under the
Llama-3.1-8B SFT setting for procedural graph extraction.

Model \ Actor \ Action | Constraint | Gateway \ Flow
\ \ | Data Action | XOR OR AND | Sequence Condition Constraint
Few-Shot 0.403 0.649 0.534 151 0.701 0.141 0.366 0.315 0.186 0.288
Self-Refine | 0.568 0.708 0.562 0.172 0.702 0.152 0.347 0.368 0.204 399
Actor-Critic | 0.504 0.670 0.556 0.165 0.673 0.150 0.327 0.321 0.182 0.371
text2flow 0.577 0.742 0.644 0.178 0.703 0.144 0.370 0.395 0.238 0.436
Fine-tuning | 0.467 0.697 0.527 0.187 0.667 0.163 0.406 0.317 0.191 0.323

Table 3: Token Cost on different methods.

Method Zero-Shot
Num Tokens 305

Few-Shot Self-Refine
1256 1801

Actor-Critic
1887

text2flow
2489

trivial computational overhead. These results sug-
gest that, given limited annotated data and the se-
mantic complexity of procedural graph extraction,
supervised fine-tuning provides partial and comple-
mentary benefits, but cannot replace large-model
reasoning capabilities.

5.7 Token Cost Analysis

We further analyze the token cost of different meth-
ods by reporting the average prompt and comple-
tion token usage per sample. As shown in Table 3,
token consumption increases substantially with
more complex prompting and multi-step reasoning
strategies. Zero-shot inference is the most token-
efficient (305 tokens), while few-shot prompting
already incurs a notable increase (1,256 tokens).
Iterative reasoning methods, such as Self-Refine
and Actor-Critic, further amplify token usage due
to multiple generations and feedback cycles. In
contrast, text2flowexhibits the highest token cost
(2,489 tokens per sample), reflecting its reliance
on explicit reasoning steps and structured output
generation. These results highlight a clear trade-
off between performance gains and inference ef-
ficiency, suggesting that improvements achieved
by advanced reasoning-based methods come at a
nontrivial computational and cost overhead.

6 Conclusion

In conclusion, this work introduces fext2flow, a
multi-agent framework for procedural graph extrac-
tion that systematically addresses both structural
validity and logical consistency, two critical yet
often overlooked challenges in this domain. By de-
coupling extraction, structural refinement, and log-
ical refinement into iterative, agent-driven stages,

our approach provides an interpretable and modular
solution that enhances reliability without requiring
additional supervision or model training. Empiri-
cal results demonstrate that this framework yields
significant improvements over existing baselines,
underscoring the value of multi-round reasoning
and feedback-driven refinement. Moreover, we see
opportunities to extend this paradigm to broader
workflow understanding tasks, integrate domain-
specific simulators, and further explore multi-agent
collaboration as a general strategy for improving
structured reasoning in LLMs.

7 Limitations

Our framework is mainly evaluated on structured
procedural texts, and its generalizability to infor-
mal or domain-specific documents remains to be
verified. While the proposed multi-agent refine-
ment process substantially improves structural and
logical consistency, it also introduces additional
computational overhead compared to single-pass
generation. Moreover, the current simulator and
semantic agents rely on rule-based heuristics and
pretrained LLM judgments, which may not fully
capture domain-specific reasoning patterns. Fu-
ture extensions could incorporate adaptive reward
functions or lightweight feedback mechanisms to
improve scalability and robustness across diverse
procedural domains.

8 Acknowledgement

Dr. Yanjie Fu is supported by the National Science
Foundation (NSF) via the grant numbers: 2426340,
2416727, 2421865, 2421803.

References

Patrizio Bellan, Mauro Dragoni, and Chiara Ghidini.
2022. Leveraging pre-trained language models
for conversational information seeking from text.
Preprint, arXiv:2204.03542.

https://arxiv.org/abs/2204.03542
https://arxiv.org/abs/2204.03542

Patrizio Bellan, Han van der Aa, Mauro Dragoni, Chiara
Ghidini, and Simone Paolo Ponzetto. 2023. Pet:
An annotated dataset for process extraction from
natural language text tasks. In Business Process
Management Workshops - BPM 2022 International
Workshops, Revised Selected Papers, Lecture Notes
in Business Information Processing, pages 315-321.
Springer Science and Business Media Deutschland
GmbH. Publisher Copyright: © 2023, Springer
Nature Switzerland AG.; Workshops on AI4BPM,
BP-Meet-IoT, BPI, BPM and RD, BPMS2, BPO,
DEC2H, and NLP4BPM 2022, co-located with the
20th International Conference on Business Process
Management, BPM 2022 ; Conference date: 11-09-
2022 Through 16-09-2022.

Weihong Du, Wenrui Liao, Hongru Liang, and Wen-
qiang Lei. 2024. PAGED: A benchmark for pro-
cedural graphs extraction from documents. In
Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 10829-10846, Bangkok,
Thailand. Association for Computational Linguistics.

Marlon Dumas, L Marcello Rosa, Jan Mendling, and
A Hajo Reijers. 2018. Fundamentals of business
process management. Springer.

Elena Viorica Epure, Patricia Martin-Rodilla, Char-
lotte Hug, Rebecca Deneckere, and Camille Salinesi.
2015. Automatic process model discovery from tex-
tual methodologies. In 2015 IEEE 9th international
conference on research challenges in information
science (RCIS), pages 19-30. IEEE.

Fabian Friedrich, Jan Mendling, and Frank Puhlmann.
2011. Process model generation from natural lan-
guage text. In International conference on advanced
information systems engineering, pages 482—496.
Springer.

Joachim Herbst and DIMITRIS Karagiannis. 1999. An
inductive approach to the acquisition and adaptation
of workflow models. In Proceedings of the IJCAI,
volume 99, pages 52-57. Citeseer.

Krzysztof Honkisz, Krzysztof Kluza, and Piotr
Wisniewski. 2018. A concept for generating busi-
ness process models from natural language descrip-
tion. In International Conference on Knowledge
Science, Engineering and Management, pages 91—
103. Springer.

Shengran Hu, Cong Lu, and Jeff Clune. 2025. Au-
tomated design of agentic systems. In The
Thirteenth International Conference on Learning

Representations.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and Philip S Yu. 2021. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning
systems, 33(2):494-514.

Hongru Liang, Jia Liu, Weihong Du, Dingnan Jin,
Wengiang Lei, Zujie Wen, and Jiancheng Lv. 2023.

Knowing-how & knowing-that: A new task for ma-
chine comprehension of user manuals. arXiv preprint
arXiv:2306.04187.

Xuan Liu, John Ahmet Erkoyuncu, Jerry Ying Hsi Fuh,
Wen Feng Lu, and Bingbing Li. 2025. Knowledge
extraction for additive manufacturing process via
named entity recognition with llms. Robotics and
Computer-Integrated Manufacturing, 93:102900.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Hugo A Lépez, Rasmus Strgmsted, Jean-Marie Niy-
odusenga, and Morten Marquard. 2021. Declara-
tive process discovery: Linking process and textual
views. In International Conference on Advanced
Information Systems Engineering, pages 109-117.
Springer.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1064—1074, Berlin, Germany.
Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023a. Self-refine: itera-
tive refinement with self-feedback. In Proceedings
of the 37th International Conference on Neural
Information Processing Systems, NIPS °23, Red
Hook, NY, USA. Curran Associates Inc.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023b. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36:46534-46594.

Bilal Magbool, Farooque Azam, Muhammad Waseem
Anwar, Wasi Haider Butt, Jahan Zeb, Iqra Za-
far, Aiman Khan Nazir, and Zuneera Umair. 2018.
A comprehensive investigation of bpmn models
generation from textual requirements—techniques,
tools and trends. In International Conference on
Information Science and Applications, pages 543—
557. Springer.

Julian Neuberger, Lars Ackermann, and Stefan Jablon-
ski. 2023. Beyond rule-based named entity recogni-
tion and relation extraction for process model gener-
ation from natural language text. In International
Conference on Cooperative Information Systems,
pages 179-197. Springer.

Kuntal Kumar Pal, Kazuaki Kashihara, Pratyay Baner-
jee, Swaroop Mishra, Ruoyu Wang, and Chitta Baral.

https://doi.org/10.1007/978-3-031-25383-6_23
https://doi.org/10.1007/978-3-031-25383-6_23
https://doi.org/10.1007/978-3-031-25383-6_23
https://doi.org/10.18653/v1/2024.acl-long.583
https://doi.org/10.18653/v1/2024.acl-long.583
https://openreview.net/forum?id=t9U3LW7JVX
https://openreview.net/forum?id=t9U3LW7JVX
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101

2021. Constructing flow graphs from procedural cy-
bersecurity texts. arXiv preprint arXiv:2105.14357.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen,
Jiapu Wang, and Xindong Wu. 2024. Unifying
large language models and knowledge graphs: A
roadmap. IEEE Transactions on Knowledge and
Data Engineering, 36(7):3580-3599.

Haopeng Ren, Yushi Zeng, Yi Cai, Bihan Zhou, and
Zetao Lian. 2023a. Constructing procedural graphs
with multiple dependency relations: A new dataset
and baseline. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 8474—
8486, Toronto, Canada. Association for Computa-
tional Linguistics.

Haopeng Ren, Yushi Zeng, Yi Cai, Bihan Zhou, and
Zetao Lian. 2023b. Constructing procedural graphs
with multiple dependency relations: A new dataset
and baseline. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 8474—
8486.

Florian Rupp and Kai Eckert. 2024. G-pcgrl: Procedu-
ral graph data generation via reinforcement learning.
In 2024 IEEE Conference on Games (CoG), pages
1-8. IEEE.

Noah Shinn, Federico Cassano, Beck Labash, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with ver-
bal reinforcement learning, 2023. URL https://arxiv.
org/abs/2303.11366, 1.

Sholiq Sholiq, Riyanarto Sarno, and Endang Siti
Astuti. 2022. Generating bpmn diagram from
textual requirements. Journal of King Saud
University-Computer and Information Sciences,
34(10):10079-10093.

Riad Sonbol, Ghaida Rebdawi, and Nada Ghneim. 2023.
A machine translation like approach to generate busi-
ness process model from textual description. SN
Computer Science, 4(3):291.

Xingwei Tan, Yuxiang Zhou, Gabriele Pergola, and
Yulan He. 2024a. Cascading large language models
for salient event graph generation. arXiv preprint
arXiv:2406.18449.

Xingwei Tan, Yuxiang Zhou, Gabriele Pergola, and
Yulan He. 2024b. Set-aligning framework for auto-
regressive event temporal graph generation. arXiv
preprint arXiv:2404.01532.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi
Mishra, Dheeraj Rajagopal, Peter Clark, Michal
Guerquin, Kyle Richardson, and Eduard Hovy. 2020.
A dataset for tracking entities in open domain proce-
dural text. arXiv preprint arXiv:2011.08092.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,

Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, and
3 others. 2025. A survey of large language models.
Preprint, arXiv:2303.18223.

A Dataset Descriptions

We conduct our experiments on the PAGED bench-
mark (Du et al., 2024), a large-scale dataset con-
structed for procedural graph extraction. The
corpus contains 3,394 documents with 37,226
sentences and more than 560K tokens in total.
Each document is annotated with diverse pro-
cess elements. Table 4 summarizes the defini-
tions and statistics of these core components. The
dataset represents procedural knowledge in a text-
driven graph format, where sentences are aligned
with nodes such as actions, actors, gateways, and
constraints, and edges are explicitly labeled as
flows (e.g., ‘element -> element’ or ‘element
-> (condition) element’) to capture temporal
and logical dependencies. In our study, we exclu-
sively utilize the official 20% held-out test split of
PAGED to evaluate model performance. Since our
framework operates in a fully unsupervised setting,
no training signals from the benchmark are used;
instead, we directly apply our method to the test
data for evaluation.

B Model Details

(1) Llama3.1:8B is an instruction-tuned model
from Meta’s LLaMA 3.1 family, designed for ef-
ficient reasoning and alignment in downstream
tasks. (2) Gemma3:27B is a Google-released
instruction-following model optimized for struc-
tured generation and robust alignment, particularly
effective in long-context and knowledge-intensive
tasks. (3) QWen3:30B is a large-scale model from
Alibaba’s Qwen3 family, trained with rich mul-
tilingual and domain-specific corpora, achieving
strong performance in reasoning and information
extraction. (4) Mistral3.2:24B is a 24B-parameter
model from the Mistral 3.2 series, optimized for
efficiency and high-quality instruction following,
achieving competitive performance across reason-
ing and knowledge-intensive tasks. (5) GPT-40
is OpenAl’s flagship multimodal model support-
ing text, vision, and speech, widely regarded as
state-of-the-art in general-purpose reasoning and
instruction following.

https://doi.org/10.18653/v1/2023.findings-acl.536
https://doi.org/10.18653/v1/2023.findings-acl.536
https://doi.org/10.18653/v1/2023.findings-acl.536
https://arxiv.org/abs/2303.18223

Table 4: Statistics of the dataset. We present statistical information on the number of documents and various

elements in the dataset.

Component Num Definitions
Document 3,394 -
Sentence 37,226 -
Token 566,639 -
Action 36,537 A concrete operation or step that needs to be executed in the process.
Actor 22,775 The entity (human, system, or role) responsible for performing an action.

Exclusive Gateway (XOR) 7,024
Inclusive Gateway (OR) 1,204
Parallel Gateway (AND) 2,050

A branching point where exactly one of the outgoing paths can be taken.
A branching point where one or more of the outgoing paths may be taken.
A branching point where all outgoing paths must be executed in parallel.

Data Constraint 3,500 A specification of data required for an action.
Action Constraint 2,307 A restriction on how an action should be executed.
Sequence Flow 36,438 The directed edge that defines the temporal order between elements.
Condition Flow 10,598 A conditional dependency governing process transitions.
Constraint Flow 5,807 A relation capturing logical or structural restrictions between elements.

C Implementation Details

Our framework supports multiple LLM backbones,
including ChatGPT, Gemma, LLaMA, etc. The
initial procedural graph is generated via few-shot
prompting with 3 in-context examples. Refinement
proceeds for at most 2 iterations (epochs) and ter-
minates early if the evaluation sandbox proposes
no further edits. The simulator executes 10,000 tri-
als per graph, sampling each gateway branch with
equal probability. At each iteration, we apply no
more than three revision suggestions. Open-source
models run on 2x NVIDIA RTX A6000 GPUs,
while GPT models are accessed via APL.

D Prompts
D.1 Few Shot Graph Generation

Few Shot Graph Generation Prompt

Please generate procedrual graph based on the extraction rules and the procedural
document.

DEFINITIONS and RULES:
The Procedural Graph contains the following types of "Nodes" and "Flows":

"Nodes":

"Start": start node indicates the start of a procedure, represented as "Start".

"End": end node indicates the ending of a procedure, represented as "End".

"Action": action node indicates a specific step in a procedure, represented as the step
itself, such as "prepare the ingredients".

"XOR": exclusive gateway, indicates that only one of the following non-sequential
actions can be executed, distinguish by numbers, such as "XOR1".

"OR": inclusive gateway, indicates that one or more of the following non-sequential
actions can be executed, distinguish by numbers, such as "OR1".

"AND": parallel gateway, indicates that all of the following actions should be executed
in parallel, distinguish by numbers, such as "AND1".

"DataObject": DataObject indicates the constraints for the necessary data of the
actions, represented as "DataObject(data object)".

"TextAnnotation": TextAnnotation indicates essential notices need to be consid-
ered for the execution of the actions, represented as "TextAnnotation(essential notices)".

" Flows":

"SequenceFlow": flow that represents the execution of sequential actions, such as
"Start -> prepare the ingredients".

"ConditionFlow": the condition flow is used to indicate that the following action is
performed under the condition on the Condition Flow, such as "XOR1 -> (condition1)
choose the first one”.

"ConstraintFlow": flow that is used to connect the constraints with corresponding
actions, such as "prepare the ingredients -> TextAnnotation(essential notices)".

In addition, the actor of corresponding actions is put in the front of corresponding
elements to indicate the actor of the following actions if needed, such as "For actor]:".

You should generate the graph in the format of "Node -> Node" line by line until
generating the whole graph for the given Procedural Document, and keep the text of
the nodes and conditions consistent with the original Procedural Document.

Here are some examples:

"Procedural Document":

Firstly, the customer needs to find an empty seat. If the customer needs dishes, then
choose the desired dishes and specify the taste. If the customer needs drinks, then
order the drinks and specify the size. The customer then submits the order, which
is added to the order list. After enjoying the meal, the customer should choose
the payment method. If the credit card is available, the customer pays by credit
card; else if the credit card is not available, the customer should pay in cash. For
the restaurant, once receiving the order from the order list, it prepares the meal
according to the order and prepares the tableware for the customer at the same
time. The meal is then served for the customer to enjoy. After that, the restaurant
asks the customer to pay for the order and then confirms the payment. Note that
the restaurant should provide the receipt if the customer needs. And the procedure ends.

"Procedural Graph":

For the customer:

Start -> find an empty seat

find an empty seat -> OR1

ORI -> (needs dishes) choose the desired dishes
ORI -> (needs drinks) order the drinks

choose the desired dishes -> specify the taste
order the drinks -> specify the size

specify the taste -> OR2

specify the size -> OR2

OR2 -> submits the order

submits the order -> DataObject(order list)
submits the order -> enjoy the meal

enjoy the meal -> choose payment method
choose payment method -> XOR1

XORI -> (credit card is available) pay by credit card
XORI -> (credit card is unavailable) pay in cash
pay by credit card -> XOR2

pay in cash -> XOR2

XOR2 ->End

For the restaurant:

Start -> receive an order

receive an order -> DataObject(order list)

receive an order -> AND1

ANDI -> prepare the meal

ANDI -> prepare the tableware

prepare the meal -> AND2

prepare the tableware -> AND2

AND2 -> serve the meal

serve the meal -> ask the customer to pay for the order

ask the customer to pay for the order -> confirm the payment
confirm the payment -> TextAnnotation(provide the receipt if the customer needs)
confirm the payment -> End

"Procedural Document":

In the beginning, the staff will receive an order request, and then checks the order type.
If the order is standard type, the sufficience of the stock is checked according to the
stock table. If the order is special type, upload the order to the factory system. If the
stock is sufficient for standard order, the goods will be directly shipped out, else if the
stock is insufficient, they will need to be transferred from other warehouses. After that,
the staff updates the order status and provide order information to the user. At the same
time, the staff needs to bind order information to user account. Finally, the staff record
the request status and the procedure ends.

"Procedural Graph":

For the staff:
Start -> receive an order request

receive an order request -> check the order type

check the order type -> XOR1

XORI -> (the order is standard type) check the sufficience of the stock
XORI1 -> (the order is special type) upload the order to the factory system
check the sufficience of the stock -> DataObject(the stock table)

check the sufficience of the stock -> XOR2

XOR2 -> (the stock is sufficient) directly shipped out the goods

XOR?2 -> (the stock is insufficient) transfer the goods from other warehouses
directly shipped out the goods -> XOR3

transfer the goods from other warehouses -> XOR3

XOR3 -> XOR4

upload the order to the factory system -> XOR4

XOR4 -> AND1

ANDI -> update the order status

update the order status -> provide order information to the user

ANDI -> bind order information to user account

provide order information to the user -> AND2

bind order information to user account -> AND2

AND?2 -> record the request status

record the request status -> End

"Procedural Document":

Start the service by receiving the email from the electronic mailbox, then parse
the email content. If the email contains account query request, reply the account
information to the user. If the email contains account modification request, record the
information needs to be modified. After that, verify the validity of the account and
verify the legality of the modified information at the same time if there exists account
information to be modified. Otherwise update the verification timestamp of the account
directly. Finally, synchronize the email content to the system and the procedure ends.

"Procedural Graph":

For the process:

Start -> receive the email

receive the email -> DataObject(electronic mailbox)

receive the email -> parse the email content

parse the email content -> OR1

ORI -> (the email contains account query request) reply the account information to the
user

ORI -> (the email contains account modification request) record the information needs
to be modified

reply the account information to the user -> OR2

record the information needs to be modified -> OR2

OR2 -> XORI1

XORI -> (there exists account information to be modified) AND1

XORI -> (otherwise) update the verification timestamp of the account directly
ANDI -> verify the validity of the account

ANDI -> verify the legality of the modified information

verify the validity of the account -> AND2

verify the legality of the modified information -> AND2

AND2 -> XOR2

update the verification timestamp of the account directly -> XOR2

XOR2 -> synchronize the email content to the system

synchronize the email content to the system -> End

#it# Procedural document: {procedural_document}

D.2 Structure Check Prompt

Structure Check Prompt

You are **Structure Checker**, an expert in reviewing procedural graphs.
Your task is to review the Procedural Graph generated by **GraphBuilder** and
provide constructive feedback for refinement.

DEFINITIONS and RULES:
{extracted_rules}

INPUT:

1. The generated Procedural Graph: {generated_graph).

2. The original Procedural Document: {procedural_document}.

3. The Structure Issues from simulator, which lists structural errors or issues detected
in the graph: {structure_issues}.

Structure Feedback Check:

- For each *Structure Issue*, carefully check whether it is a real structural problem in
the graph.

- If the *Structure Issue* is correct, provide a clear, actionable suggestion for how
to modify the graph to fix the issue. Prioritize suggestions that add or reconnect
nodes/edges, rather than deleting, unless deletion is absolutely nec

- If the issue is due to missing information in the document, you may suggest minimal
additions to ensure graph connectivity, but avoid inventing unrelated content.

- Try to add reasonable nodes, edges, or conditions to the graph to fix the issues, but
avoid deleting nodes or edges unless absolutely necessary.

- If the structural issue involves auxiliary nodes (such as **DataObject** or
*#*TextAnnotation**), do **not remove** those nodes or their edges. Instead, **retain
them for documentation purposes**, and **add a separate edge to reconnect the
execution flow to a valid action or decision node**.

Important Note on Auxiliary Nodes:
- *#*DataObject** and **TextAnnotation** are auxiliary nodes used for annotation or
reference. They are **not part of the executable process flow** and are **ignored in

execution traces™*.

- Edges **pointing to** these nodes (e.g., ‘Action -> TextAnnotation®) are allowed and
useful for documentation. However, they **do not count as valid execution paths**.

- If a node only connects to auxiliary nodes, it is still considered a **dead end**. In
such cases:

- **Add a new edge to the next action or decision**, **but keep the original auxiliary
edge**.

- Do **not** delete the auxiliary node or its connection unless it is incorrect or
redundant.

- **Do not** use ‘DataObject’ or ‘“TextAnnotation:

- As starting points in the graph (‘DataObject -> Action® is invalid)

- As intermediates in loops, branches, or decisions

- The process flow must go through **Action**, **Gateway**, or **Condition**
nodes only. Auxiliary nodes may appear in the graph, but only as **side annotations**,
not as flow controllers.

OUTPUT:
If no issues:
APPROVED

If issues are present, use the following format for each, **don’t** reply
other information:

Issue N

- Problem: <copy or summarize the issue>

- Status: Confirmed / Not a real issue

- Suggestion (if confirmed): <how to fix, ideally by reconnecting, adding or splitting
nodes>

- Explanation (if not a real issue): <short justification>

D.3 Logic Check Prompt

ic Check Prompt

I want you to check whether the gateway segment and its associated text are logically
consistent.

#i#H# Input:
1. text of gateway segment trace extracted from simulator: {gateway_trace_text}
2. original document segment: {original_document}

##H# Gateway Identification Guidelines

1. XOR Gateway (Exclusive Gateway)

- Use XOR when only **one** of the possible paths can be taken — the conditions are
mutually exclusive.

- Typical linguistic signals:

., elseif..."

., however, if..."

., on the other hand, if..."

- "either A or B"

- "choose one of the following options"

- "if A, skip B"

- "otherwise" / "else"

2. OR Gateway (Inclusive Gateway)

- Use OR when **one or more** of the paths may be taken independently or together.
- Typical linguistic signals: - "if..., if..., if..." (without “else” or “otherwise™)

- "also, if..."

- "similarly, if..."

- "you may also..."

- "choose one or more..."

- "any combination of the following"

3. AND Gateway

- Use AND when **all** following actions must happen, either simultaneously or
sequentially.

- Typical linguistic signals:

- "at the same time..."

- "meanwhile..."

- "in parallel..."

- "do both A and B"

- "must also do..."

- "simultaneously perform..."

Here are some examples:

Input:
ORI: If there is no information about the old supplier, then check the deadline of 4
business days. Otherwise, continue to do the check.

Output:

ORI: If there is no information about the old supplier, then check the deadline of 4
business days. Otherwise, continue to do the check.

- Status: wrong.

- Revision suggestion: Change ORI to XOR1.

- Explanation: The phrase uses a classic XOR pattern — “if..., otherwise...”. These are
mutually exclusive conditions: either there is no information about the old supplier,
or there is. Only one branch is taken at a time, so this logic requires an XOR, not an OR.

Now, I need you to check the following gateways and their corresponding
text segments in the Procedural Graph

##*Only** output the result block if the status is wrong, otherwise, respond with
"APPROVED".

Only output the result block for the current input using the following for-

mat:

<Gateway Name>: <text from the document that corresponds to the gateway>
- Status: <status of the gateway, correct or wrong>

- Revision Suggestion: <suggestion to fix the issue, if any>

- Explanation: <explanation of the status, why it is correct or wrong>

D.4 Graph Refine Prompt

Graph Refine Prompt

The Procedural Graph contains the following types of "Nodes" and "Flows":

"Nodes":

"Start": start node indicates the start of a procedure, represented as "Start".

"End": end node indicates the ending of a procedure, represented as "End".

"Action": action node indicates a specific step in a procedure, represented as the step
itself, such as "prepare the ingredients".

"XOR": exclusive gateway, indicates that only one of the following non-sequential
actions can be executed, distinguish by numbers, such as "XOR1".

"OR": inclusive gateway, indicates that one or more of the following non-sequential
actions can be executed, distinguish by numbers, such as "OR1".

"AND": parallel gateway, indicates that all of the following actions should be executed
in parallel, distinguish by numbers, such as "AND1".

"DataObject": DataObject indicates the constraints for the necessary data of the
actions, represented as "DataObject(data object)".

"TextAnnotation": TextAnnotation indicates essential notices need to be consid-
ered for the ion of the actions, rep d as "TextAnnotation(tial notices)".

"Flows":

"SequenceFlow": flow that represents the execution of sequential actions, such as
"Start -> prepare the ingredients".

"ConditionFlow": the condition flow is used to indicate that the following action is
performed under the condition on the Condition Flow, such as "XOR1 -> (condition1)
choose the first one”.

"ConstraintFlow": flow that is used to connect the constraints with corresponding
actions, such as "prepare the ingredients -> TextAnnotation(essential notices)".

In addition, the actor of corresponding actions is put in the front of corre-
sponding elements to indicate the actor of the following actions if needed, such as
"For <actor-name>:". If there is no specific actor mentioned, use "For the process" to
indicate the actor of the following actions.

You should generate the graph in the format of "Node -> Node" line by
line until generating the whole graph for the given Procedural Document, and keep the
text of the nodes and conditions consistent with the original Procedural Document.

Here are some examples: {few_shot_examples}

Previously, another model generated a Procedural Graph, and we have
identified several structure issues with it. Please use the list of detected issues and
solution suggestions as **references to avoid repeating the same mistakes**.

Don’t copy the previously generated Procedural Graph, but use it as a reference to
generate a new Procedural Graph that is more accurate and complete.

#it# "Previously Generated Procedural Graph": {generated_graph}

"Detected Issues and Solution Suggestions” (you may meet these
issues, just refer them as references if available): fissues_and_revisions}

Now you need to generate the corresponding Procedural Graph of the fol-
lowing Procedural Document, if there is no specific actor mentioned, use "For the

process" to indicate the actor of the following actions:

"Procedural Document": {procedural_document}

	Introduction
	Related Work
	Problem Formulation
	The text2flow Multi-agent Framework
	Overview
	Graph Builder Agent
	Evaluation Sandbox: Structural and Logical Feedback Collection
	Structural Feedback via Simulation Agent
	Logical Feedback via Semantic Agent
	Prioritizing High-Impact and Unresolved Feedback

	Multi-Round Prompting for Graph Refinement

	Experiments
	Experimental Setup
	Overall performance compared with different baselines and LLM models
	Ablation study
	Performance–Cost Across Iterations
	Fine-Grained Comparison with Zero- and Few-Shot Prompts
	Comparisons with SFT on Procedural Graph Extraction
	Token Cost Analysis

	Conclusion
	Limitations
	Acknowledgement
	Dataset Descriptions
	Model Details
	Implementation Details
	Prompts
	Few Shot Graph Generation
	Structure Check Prompt
	Logic Check Prompt
	Graph Refine Prompt

