
MARLIN: Multi-Agent Reinforcement Learning for Incremental DAG Discovery
Dong Li1, Zhengzhang Chen2*, Xujiang Zhao2, Linlin Yu3, Zhong Chen4,

Yi He5, Haifeng Chen2, Chen Zhao1*

1Department of Computer Science, Baylor University
2NEC Labs America

3School of Computer and Cyber Sciences, Augusta University
4School of Computing, Southern Illinois University

5Department of Data Science, The College of William and Mary
{dong li1, chen zhao}@baylor.edu, {zchen, haifeng}@nec-labs.com

Abstract

Uncovering causal structures from observational data is cru-
cial for understanding complex systems and making informed
decisions. While reinforcement learning (RL) has shown
promise in identifying these structures in the form of a di-
rected acyclic graph (DAG), existing methods often lack ef-
ficiency, making them unsuitable for online applications. In
this paper, we propose MARLIN, an efficient multi-agent
RL-based approach for incremental DAG learning. MAR-
LIN uses a DAG generation policy that maps a continu-
ous real-valued space to the DAG space as an intra-batch
strategy, then incorporates two RL agents—state-specific
and state-invariant—to uncover causal relationships and in-
tegrates these agents into an incremental learning framework.
Furthermore, the framework leverages a factored action space
to enhance parallelization efficiency. Extensive experiments
on synthetic and real datasets demonstrate that MARLIN out-
performs state-of-the-art methods in terms of both efficiency
and effectiveness.

Introduction
Discovering and understanding the causal mechanisms
behind natural phenomena is crucial in many scientific
fields (Zhu, Ng, and Chen 2019). Consequently, methods for
discovering causality from observational data have gained
significant attention. Understanding these causal relation-
ships helps predict the outcomes of interventions and hy-
pothetical scenarios, which is highly valuable in areas like
econometrics (Wold 1954). Due to the constantly changing
nature of these fields, there is an increasing need to develop
and use causal discovery methods in online settings to im-
prove real-time decision-making and adaptability.

Identifying causal structures involves finding a Directed
Acyclic Graph (DAG) Ĝ that minimizes a score function S
based on observed data X:

min
Ĝ

S(Ĝ,X), s.t. Ĝ ∈ DAGs. (1)

However, this process is NP-hard (Wang et al. 2021) due
to the super-exponential growth of the DAG space with the

*Corresponding authors
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Comparison of the learning processes of offline
(top) and online (bottom) RL-based DAG learning methods
in an online data stream. The gradient colors on the RL agent
represent its learning progress, with white indicating the ini-
tial state. When the color aligns with a data batch, it signifies
that the agent has learned the current causal mechanism. In-
stead of learning from scratch, online DAG learning needs
to incrementally and efficiently adapt to continuously arriv-
ing data batches and non-stationary data distributions.

number of nodes (Robinson 1977) and the acyclicity con-
straint. Numerous methods have been proposed (Zheng et al.
2018; Ng, Ghassami, and Zhang 2020; Zhu, Ng, and Chen
2019; Li et al. 2025; Wang et al. 2021) to tackle this prob-
lem, with continuous optimization methods recently receiv-
ing significant attention. Pioneered by NOTEARS (Zheng
et al. 2018), these methods transform the problem into a con-
tinuous optimization task by introducing a smooth feature to
ensure acyclicity. However, they still tend to get stuck in lo-
cal optima.

Reinforcement learning (RL) has become a promising ap-
proach for DAG learning due to its effective search strate-
gies and explainable rewards (Zhu, Ng, and Chen 2019;
Wang et al. 2021; Zhao et al. 2025; Yang et al. 2023).
RL-BIC (Zhu, Ng, and Chen 2019) explores the full graph
space and penalizes cycles via rewards but can’t fully en-
sure acyclicity and is resource-intensive (Wang et al. 2021).
Ordering-based methods (Yang et al. 2023) operate in the or-

dering space to bypass acyclicity issues but rely on sequen-
tial decisions, limiting parallelization. These limitations hin-
der RL-based methods from scaling to real-world problems.
Recent work ALIAS (Duong, Le, and Nguyen 2024) maps
a real-valued vector to the DAG space and performs causal
discovery without acyclicity constraints, enabling efficient
RL.

Moreover, most existing RL-based methods are designed
for offline settings, neglecting the more practical scenario
of incremental DAG learning in online environments. On-
line DAG learning is particularly valuable for handling con-
tinuous data streams generated by modern applications, as
it allows models to be updated incrementally with new
data. This not only optimizes resource utilization but also
enables real-time analysis and decision-making. When ap-
plied to online settings, RL-based methods encounter ad-
ditional challenges due to stringent real-time requirements,
as illustrated in Figure 1. First, online causal discovery de-
mands that RL algorithms process incoming data batches
efficiently, placing strict constraints on intra-batch perfor-
mance. Second, unlike offline approaches that can be re-
trained from scratch, online methods must incrementally re-
fine the model by integrating newly acquired information.
This allows them to rapidly adapt to evolving system states
and capture causal mechanisms under shifting data distribu-
tions, ensuring more effective and timely decision-making.

To address these challenges, in this paper, we propose
MARLIN, an efficient multi-agent reinforcement learning
framework for incremental DAG learning. We first develop
an efficient intra-batch DAG learning method that maps
from a continuous real-valued space to the DAG space with-
out enforcing an acyclicity constraint. Building on this, we
develop two RL agents to incrementally learn and disen-
tangle state-invariant and state-specific causation from non-
stationary online data across different batches, efficiently
discovering the DAG continuously. Furthermore, we factor
the action space to enable parallel DAG learning for effi-
ciency improvement. Extensive experiments on both syn-
thetic and real datasets validate the effectiveness and effi-
ciency of MARLIN in incremental DAG learning.

Related Work
Traditional DAG Learning Methods. Existing DAG learn-
ing methods fall into four categories: (i) Constraint-based
methods, like the PC algorithm (Spirtes, Glymour, and
Scheines 2001), use conditional independence (CI) tests to
recover DAG structures but depend heavily on CI test ac-
curacy, making them unreliable when conflicts arise. (ii)
Score-based methods evaluate DAGs using scoring func-
tions (e.g., BIC (Schwarz 1978)), but their combinatorial
search complexity limits scalability. (iii) Continuous opti-
mization methods reformulate DAG learning as a smooth
optimization problem, as in NOTEARS (Zheng et al. 2018),
but often struggle to escape local optima (Yu et al. 2019).
(iv) Sampling-based methods estimate DAG posteriors
but are computationally expensive, even with recent dif-
ferentiable sampling techniques (Charpentier, Kibler, and
Günnemann 2022). Traditional methods focus on offline
settings and face efficiency challenges. In contrast, our

approach, MARLIN, employs multi-agent reinforcement
learning to efficiently search for global optima and adapt to
online settings.
Reinforced DAG Learning. In recent years, RL has become
a promising approach for combinatorial optimization, of-
fering an intuitive search process and interpretable rewards
to overcome local heuristic limitations. RL-BIC (Zhu, Ng,
and Chen 2019) trains an RL agent to find high-reward
DAGs with implicit acyclicity penalties but searches the en-
tire directed graph space, making it inefficient and unable
to strictly guarantee acyclicity. Ordering-based methods like
CORL (Wang et al. 2021) and RCL-OG (Yang et al. 2023)
reduce the search space by framing variable ordering as an
MDP, mapping orderings to fully-connected DAGs (Teyssier
and Koller 2012), and estimating DAGs via variable se-
lection. While these methods avoid directly dealing with
acyclicity, their sequential nature makes them unsuitable for
parallelization and less efficient in online settings. Recent
work ALIAS (Duong, Le, and Nguyen 2024) projects a real-
valued vector into the DAG space, allowing causal discovery
without enforcing acyclicity constraints, which facilitates ef-
ficient RL, making continuous and efficient DAG discovery
possible. However, these methods focus solely on the of-
fline setting, limiting their real-world applications. In con-
trast, our approach enables efficient and continuous DAG
discovery through multi-agent RL.

Preliminaries
Structural Equation Model (SEM). Let G = {V, E} de-
note a DAG, where each node vi ∈ V = {v1, ..., vd} is asso-
ciated with a random variable Xi ∈ X = {X1, ..., Xd}.
Each directed edge (vi, vj) ∈ E = {(vi, vj)|i, j =
1, ..., d and i ̸= j} indicates that Xi is a direct cause of
Xj . The DAG G can be equally represented by a binary ad-
jacency matrix A ∈ {0, 1}d×d, where the (i, j)-th entry is
1 if (vi, vj) ∈ E and 0 otherwise. The joint distribution as-
sociated with G can be decomposed into P (X1, ..., Xd) =∏d

i=1 P (Xi|Pa(Xi)), where Pa(Xi) = {Xk | (vk, vi) ∈ E}
is the set of parents of Xi in G. We assume that the data
generation process conforms to a SEM with additive noise:

Xi = fi(Pa(Xi)) + ηi, i = 1, ..., d, (2)

where fi(·) represents the causal relationship between Xi

and its parents Pa(Xi), and the additive noise ηi is assumed
to be jointly independent. We also assume causal minimal-
ity, meaning that each fi(·) is not constant with respect to
any of its arguments (Peters et al. 2014).
Non-Stationarity of Online Data. Real-world online data
streams frequently exhibit non-stationarity (Shao et al.
2024), with the causal relationships among random variables
being dynamic and subject to change over time. We assume
that such changes are sufficient to induce partial changes in
the underlying causal structure, leading to transitions in sys-
tem state1. In this context, although the new system state

1We distinguish between “system state” and “state” as different
concepts. The former refers to the underlying causal mechanisms
of a system, while the latter is a concept used in RL.

Figure 2: (a) The pipeline of MARLIN across three consecutive system states. For each batch, MARLIN learns the DAG using
the intra-batch single-step RL algorithm, which includes state-specific and state-invariant RL agents optimizing their policies
through an actor-critic approach. Detailed network architecture and variables are explained in Section . MARLIN facilitates
efficient incremental DAG learning by disentangling state-specific and state-invariant causal relationships.

introduces causal relationships that are specifically depen-
dent on it (i.e., system state-specific causation), some in-
herent system causal relationships remain unchanged over
time, reflecting the state-invariant aspects of the system’s
dynamics.
Problem Statement. Given a dataset D = {Xt}mt=1 com-
prising m sequentially continuous sets of observations Xt ∈
Rnt×d. Each Xt corresponds to a system state pt, with nt

observations, and is associated with a DAG Gt. In an on-
line setting, data for each system state pt arrives in batches
of size b, denoted by Xt = [(X1

t)
⊤, ..., (XL

t)
⊤]⊤, where

Xl
t ∈ Rb×d, l = 1, ..., L, represents the l-th batch of Xt and

is associated with the DAG Gl
t, which captures the causal

mechanisms of the current batch data. Our goal is to effi-
ciently perform DAG learning on each batch and effectively
learn the estimated DAG Ĝt for each system state pt, aiming
to achieve the best average score across all system states:

min
Ĝ1,...,Ĝm

1

m

m∑
t=1

S(Ĝt,Xt), s.t. Ĝt ∈ DAGs, Ĝt ̸= Ĝt+1, ∀t.

(3)
System state transition detection is beyond the scope of

this work. Here, we use the Multivariate Singular Spectrum
Analysis model (Alanqary, Alomar, and Shah 2021), an ef-
fective method for online change point detection, to identify
state transition points in the online DAG learning process.

Methodology
We propose MARLIN, a multi-agent reinforcement learning
framework designed for incremental DAG learning. As illus-
trated in Figure 2, MARLIN involves two modules: (i) Intra-
batch Reinforced DAG Learning: We develop an intra-batch
DAG generation method using two matrices derived solely
from a real-valued vector, thereby mapping a continuous real
space to the DAG space; (ii) Incremental Multi-agent Re-
inforced DAG Learning: This module leverages multi-agent

reinforcement learning with state-specific and state-invariant
agents to learn and disentangle state-invariant and state-
specific causation across different batches. The approach is
integrated into an incremental learning framework to effi-
ciently uncover causal relationships. In addition, we explore
the potential for parallel computation within this framework.

Intra-batch Reinforced DAG Learning
In this subsection, inspired by (Massidda et al. 2023; Duong,
Le, and Nguyen 2024), we learn a DAG in a single batch
through the score-based causal discovery method based on
one-step reinforcement learning.

Sampling DAGs from a parameterized distribution is cru-
cial for exploring the DAG space effectively. To ensure
acyclicity, there is a well-established decomposition tech-
nique (Charpentier, Kibler, and Günnemann 2022) that de-
composes a DAG into two binary matrices:

A = P⊤UP, (4)

where A ∈ {0, 1}d×d is the adjacency matrix of a DAG G,
P ∈ {0, 1}d×d is a permutation matrix, and U ∈ {0, 1}d×d

is a strictly upper-triangular matrix. The matrix U represents
the adjacency matrix of a graph that ensures acyclicity, with
all directed edges (vi, vj) satisfying i < j. This captures all
subsets of a specific fully-connected (FC) DAG correspond-
ing to the “initial” ordering of nodes, where node vi ∈ V is
in the i-th position. The permutation matrix P changes the
order of nodes in this initial ordering, resulting in a graph
with the same topological structure. Consequently, P rep-
resents all subsets of the FC DAG corresponding to the al-
tered ordering, allowing Eq. 4 to cover the entire DAG space.
Based on this intuition, an arbitrary DAG A ∈ {0, 1}d×d can
be obtained from a FC DAG H and a binary mask matrix S,
as shown below:

A = H ⊙ S, (5)

where ⊙ is the Hadamard product operator. Instead of
time-consuming ordering-based methods to obtain a fully-
connected matrix, we derives H from a single real-valued
vector h:

Hij =

{
1, if hi > hj ,

0, otherwise.
(6)

Since S can be easily obtained by filtering a real-valued
matrix of the same shape with a simple threshold to pro-
duce a binary matrix, for any given real-valued vector a of
dimension d(d + 1), we can generate a matrix H from its
first d dimensions and a matrix S from the subsequent d2
dimensions, thereby obtaining an arbitrary A.

Based on the above idea, a single-step RL algorithm em-
ploys a stochastic policy π to learn an action a, which can
be directly used to search the DAG space. The policy π se-
lects a continuous action a from the real-valued space, which
in turn determines the DAG of d nodes. After that, the re-
ward R is calculated using a score function S: R(a,X) =
−S(g(a),X). Specifically, we use the Bayesian Information
Criterion (BIC) score (Schwarz 1978) to enable straightfor-
ward comparisons with other RL-based methods.

Incremental Multi-Agent Reinforced DAG
Learning
Incremental learning enables a model to update itself as new
data arrives (Masana et al. 2022), eliminating the need for
retraining from scratch. To tackle the problem outlined in
Eq. 3, we propose a novel incremental learning framework
based on multi-agent RL. Each agent builds upon the one-
step reinforced DAG learning module described in Section
and illustrated in Figure 2 (b). Specifically, we employ a
state-invariant RL agent to incrementally learn causal re-
lationships that remain consistent across different system
states, and a state-specific RL agent to swiftly identify causal
relationships unique to the current system state. This disen-
tanglement mechanism enables MARLIN to efficiently cap-
ture state-specific causal mechanisms by leveraging the in-
crementally updated state-invariant information as acquired
knowledge when encountering new data distributions, thus
facilitating effective inter-batch incremental DAG learning.
State-specific RL Agent. Suppose the incoming data rep-
resents the l-th batch for system state pt. The state-specific
RL agent’s objective is to learn the new causal relationships
introduced by the data batch Xl

t. To capture information
changes across different batches, the encoding component
utilizes both Xl

t and the previous hidden state as inputs to a
long short-term memory network (LSTM) (Hochreiter and
Schmidhuber 1997), producing the embedding z̃lt for cur-
rent batch. This embedding is then combined with the DAG
from the previous batch Gl−1

t , to create an attributed graph.
This graph, which incorporates prior structural knowledge,
is subsequently encoded using a graph convolutional net-
work (GCN) (Kipf and Welling 2016).

Then, a decoder is used to learn a state-specific policy
π̃l
t that samples an action ãlt to generate the state-specific

DAG G̃l
t. This action is then combined with the ālt, which

is sampled from the state-invariant policy π̄l
t, to produce the

fusion action âlt = βãl
t+(1−β)ālt, where β ∈ [0, 1] is used

to balance the importance of state-specific information and
state-invariant information. And then, the complete DAG Gl

t

for Xl
t is obtained based on Section 4.1 via âlt. By default,

we set the β to be 0.5.
To ensure accurate discovery of state-specific informa-

tion, we introduce a decoupling term in the reward func-
tion to encourage the estimated state-specific DAG G̃l

t to be
as distinct as possible from both the previous batch’s state-
invariant DAG Ḡl−1

t and the DAG from the previous state
Gt−1. This term is defined as follows:

LG̃l
t
=

(
∥Ã

l

t − ∁Āl−1
t ∥2 + ∥Ã

l

t − ∁At−1∥2
)
/d, (7)

where d is the number of nodes in A and ∁A denotes the
complement of the adjacency matrix A, which involves con-
verting 0s in A to 1s and 1s to 0s. The current reward is
defined as R̃l

t = −S(Al
t,Xl

t) + λ1LG̃l
t
, where λ1 represents

the weight balancing the decoupling term and the BIC score.
Since state-specific information is highly dependent on the
system state, the state-specific RL agent is reinitialized at the
beginning of each new system state.
State-Invariant RL Agent. The state-invariant RL agent
aims to learn the causal relationships that remain consis-
tent across multiple system states. The encoding process be-
gins by using a fully connected layer to transform the previ-
ous state data Xt−1 into embedding z̄t−1. Given that state-
invariant causal relationships are influenced by both Xt−1

and Xl
t, we concatenate z̄t−1 and z̃lt to form z̄lt. The sub-

sequent steps are similar to those in the state-specific RL
agent: after encoding the attributed graph formed by Gl−1

t
and z̄lt using a GCN, the state-invariant policy π̄l

t is learned
through a decoder to generate the state-invariant DAG Ḡl

t.
This DAG is then combined with G̃l

t to produce Gl
t. Addi-

tionally, a decoupling term is introduced to ensure that the
estimated state-invariant DAG Ḡl

t remains as dissimilar as
possible to the previous batch’s state-specific G̃l−1

t while
staying similar to Gt−1. This is defined as:

LḠl
t
=

(
∥Āl

t − ∁Ã
l−1

t ∥2 + ∥Āl
t − At−1∥2

)
/d. (8)

The reward is then defined as R̄l
t = −S(Al

t,Xl
t) + λ2LḠl

t
,

where λ2 is a weight coefficient. Since state-invariant infor-
mation remains constant over time, the state-invariant RL
agent is continuously updated throughout learning.
Optimization. Both agents are trained using the Adam opti-
mizer (Kinga, Adam et al. 2015). We introduce a baseline
for more stable training (Sutton and Barto 2018), so that
each agent’s objective is to minimize the temporal difference
(TD) error between the critic’s predicted rewards R̂ plus a
baseline B and its actual rewards R. The baseline B is up-
dated according to the formula: B = γ · B + (1 − γ) · R̄,
where γ is the discount factor and R̄ denotes the mean of
the rewards R. The policy gradient is given by ∇J(ψ) =

Eπ(ψ){∇ψ log π(ψ)[R− (b+ R̂)]}.
Model Convergence within State. The estimated DAG is
expected to gradually converge as successive data batches

are processed. To avoid wasting computational resources,
we define the similarity between the estimated DAGs of two
consecutive batches within the same system state pt using
the Jensen-Shannon (JS) divergence (Fuglede and Topsoe
2004):

ξ = 1− JS(PG(Gl−1
t)||P (Gl

t)), (9)

where PG(·) denotes the edge distribution of graph. A larger
ξ indicates a greater similarity between the two graphs.
When ξ exceeds a certain threshold, we consider the cur-
rent estimated DAG to have stabilized and will terminate the
learning process for the current system state early, until a
new system state arrives.

Factored Action Space for Parallelization
Our method operates in a single step, in contrast to the multi-
step decision processes of ordering-based methods. Each po-
sition in our action vector a has a specific role in forming
the final DAG (e.g., the first d elements of a are used as h
to obtain H). Thus, the action space can be decomposed into
multiple subspaces, transforming our problem into one in-
volving a factored action space (Tang et al. 2022), which
can then be parallelized across multiple processing units.
Each unit explores a subspace, and the combination of these
subspaces forms the complete action space, significantly en-
hancing efficiency when applied to online applications. We
refer to this variant of factored action space as MARLIN-M.

Experiments
Experimental Setup
Datasets We conduct extensive experiments with various
synthetic datasets of differing scales and generation methods
(see Section for details) to evaluate the algorithm’s capacity
for incremental learning of DAGs. Furthermore, to evalu-
ate MARLIN’s effectiveness in real-world scenarios, we ap-
ply it to causal discovery-based root cause analysis (RCA)
tasks (Zheng et al. 2024b; Wang et al. 2023c,a,b; Zheng et al.
2024a) using three time series datasets from real systems:
(i) OnlineBoutique (OB) (Yu et al. 2023) is a microser-
vice system for e-commerce composed of 10 microservices,
which experienced 18 system faults during the data collec-
tion period. (ii) Secure Water Treatment (SWaT) (Mathur
and Tippenhauer 2016; Zheng et al. 2024c) is a scaled-down
model of a real industrial water treatment plant, equipped
with 51 sensors and actuators. The dataset includes 3 hours
of SWaT operation under normal conditions and 1 hour dur-
ing which 6 attacks were executed. (iii) Water Distribution
(WADI) (Ahmed, Palleti, and Mathur 2017; Zheng et al.
2024c) consists of data collected from a water distribution
testbed with 123 sensors and actuators over 16 days of con-
tinuous operation, including 14 days under normal condi-
tions and 2 days with 15 fault cases.

Synthetic Data Generation We introduce a synthetic data
generation strategy tailored to our online setting. Starting
from a complete Erdős–Rényi (ER) DAG with d nodes, we
iteratively construct incomplete DAGs by randomly delet-
ing edges and injecting e% noisy edges while preserving

acyclicity. Observations are then generated following RL-
BIC (Zhu, Ng, and Chen 2019), ordered from the most in-
complete to the complete DAG, yielding datasets that cap-
ture system state transitions for validating incremental DAG
learning.

Here, we focus primarily on three factors: the scale of the
DAG (number of nodes d), the observations generation pro-
cedure (the type of regression methods for the causal mech-
anisms and noise), and the rate of noise added during the
system state transition process (referred to as the transition
noise rate e%). Based on variations in these factors, we gen-
erated multiple synthetic datasets.

Baselines We compare MARLIN with seven DAG learn-
ing algorithms: the classical constraint-based algorithm
PC (Spirtes, Glymour, and Scheines 2001), continuous
optimization algorithms NOTEARS (Zheng et al. 2018),
GOLEM (Ng, Ghassami, and Zhang 2020), and DAG-
GNN (Yu et al. 2019), as well as RL-based algorithms RL-
BIC (Zhu, Ng, and Chen 2019), CORL (Wang et al. 2021),
and RCL-OG (Yang et al. 2023). Since these algorithms are
designed to learn DAGs in offline settings, they lack in-
cremental learning mechanisms, which prevents them from
inheriting causations from previous data batches. Conse-
quently, each new data batch requires learning from scratch
to adapt to an online setting.

Evaluation Metrics We assess the performance using
six common metrics: True Positive Rate (TPR), F1-score,
Area Under the Receiver Operating Characteristic Curve
(AUROC), False Discovery Rate (FDR), Structural Ham-
ming Distance (SHD), and Structural Intervention Distance
(SID) (Peters and Bühlmann 2015). For the estimated graph,
higher values of TPR, F1-score, and AUROC are preferred,
whereas lower values of FDR, SHD, and SID are desirable.
We use the first state as historical offline data to train the
initial model and then comprehensively evaluated the es-
timated DAGs learned by the algorithm on all subsequent
states. We average the results across all states to evaluate the
algorithm’s performance over the entire dataset. Addition-
ally, the average running time per batch (ATB) is calculated
to measure the algorithm’s efficiency.

Performance Evaluation
Linear Model with Gaussian Noise We first evaluate the
effectiveness of MARLIN using Linear-Gaussian (LG) syn-
thetic datasets. These datasets are generated by applying a
linear model with Gaussian noise, varying both the DAG
scale (d = {20, 50, 100}) and the transition noise rate (e =
{0, 1, 5}). The PC algorithm’s results are excluded from the
main discussion due to its suboptimal performance on dense
graphs.

Figure 3 reports results on these datasets, yielding four in-
sights: (1) MARLIN consistently surpasses nearly all base-
lines across metrics, highlighting its strong DAG learn-
ing and robustness to state transitions. (2) CORL achieves
higher TPR than MARLIN at d = 100, but due to overly
dense graphs with spurious edges, reflected in poor FDR and
SHD—a pattern also seen in RCL-OG. Both methods de-
grade notably under increasing transition noise. (3) RL-BIC,

(a) DAG learning performance across different DAG scales (with d as x-axis).

(b) DAG learning performance across different transition noise rates (with e as x-axis).

Figure 3: Average performance of DAG learning across all states on synthetic Linear-Gaussian datasets, varying (a) DAG scale
(d = {20, 50, 100}) and (b) transition noise rate (e = {0, 1, 5}) for MARLIN and other baselines. The shaded area represents
the standard deviation; ↑ indicates that higher values are better, while ↓ indicates that lower values are better.

though RL-based, struggles with incremental DAG learning,
worsening as graph size grows and failing at d = 100. (4)
NOTEARS shows some promise in dynamic settings but
still trails MARLIN, while GOLEM and DAG-GNN per-
form poorly, with DAG-GNN especially unstable as scale
and complexity increase.

Non-Gaussian or Nonlinear Models To further assess
the robustness of the algorithms under non-Gaussian noise
and nonlinear models, we employ three distinct generation
procedures, maintaining d = 20 and e = 1 constant: (i) a
linear model with exponential noise (LE), (ii) a nonlinear
model with quadratic regression (QR), and (iii) a nonlin-
ear model utilizing Gaussian processes (GP). Performance
and runtime efficiency of MARLIN, MARLIN-M, and the
baseline methods on the remaining two synthetic datasets
are presented in Table 1.

We make four key observations: First, MARLIN sur-
passes all baselines in both efficiency and accuracy across
all datasets, showing strong effectiveness on nonlinear data.
Second, MARLIN-M learns DAGs close in quality to MAR-
LIN while offering greater stability and faster runtime, indi-
cating that parallel computation enables real-time use with
minimal performance loss. Its slight accuracy drop likely
arises from the decomposition and reconstruction of the ac-
tion space, which limits holistic causal modeling but remains
an acceptable efficiency trade-off. Third, non-RL methods
perform poorly because they struggle with nonlinear causal
structures. Finally, although other RL-based methods handle
nonlinear models well, their high computational cost makes
them unsuitable for real-time systems with strict efficiency
demands.

Application to Root Cause Analysis
To validate MARLIN’s effectiveness, we evaluate its perfor-
mance on real data. Due to the lack of ground-truth DAGs

in complex real-world data, we assess its incremental DAG
learning capability through root cause analysis (RCA), a key
task in causal discovery (Wang et al. 2023a,b,c; Zheng et al.
2024b). After learning the DAG, we perform random walk
with restarts (Tong, Faloutsos, and Pan 2006) to generate a
rank list and compute three widely-used metrics—PR@K,
AP@K, and MRR—where higher values indicate better. Ef-
ficiency is measured by the average running time per fault
case (ATC). All methods use the same configurations as in
the synthetic QR dataset experiment.

Microservice Data. Table 2 shows the RCA performance
on the OB dataset. MARLIN outperforms all baselines in
terms of runtime, coming second only to the PC algorithm,
demonstrating the success of its intra-batch learning ap-
proach and efficiency enhancements. MARLIN consistently
ranks the root cause among the top-3 in nearly all fault
cases, indicating its ability to adapt well and learn causal
mechanisms amid different system changes. The findings
for MARLIN-M are consistent with previous results, sig-
nificantly enhancing efficiency while learning high-quality
DAGs.

Secure Water Treatment System Data. SWaT and
WADI, being larger in scale, pose greater challenges than
OB. SWaT results are in Figure 4. Non-RL methods strug-
gle with noise and nonlinear causalities, while RL-based
methods, though performing better, are too time-consuming
for real-time systems. MARLIN and MARLIN-M surpass
all baselines in performance and efficiency, identifying root
causes faster with fewer rankings. Their balance between
performance and efficiency ensures adaptability. Overall,
our methods learn high-quality DAGs faster and with less
data, even in complex settings.

Figure 4: Overall performance on the SWaT dataset across (a) PR@K, (b) AP@K, and (c) MRR metrics.

TPR↑ FDR↓ SHD↓ AUROC↑ SID↓ ATB↓

QR

PC 0.30(0.01) 0.65(0.02) 83.2(1.3) 0.58(0.00) 330.0(6.8) −
NOTEARS 0.28(0.01) 0.15(0.03) 78.0(1.9) 0.63(0.00) 270.0(6.5) −
GOLEM 0.36(0.01) 0.35(0.02) 78.2(1.4) 0.65(0.01) 245.0(8.6) −
D-GNN 0.31(0.00) 0.38(0.05) 86.5(3.1) 0.63(0.01) 264.0(5.9) −
RL-BIC 0.84(0.02) 0.30(0.02) 26.3(2.1) 0.89(0.01) 102.0(6.1) 330(60)
CORL 0.88(0.01) 0.25(0.01) 21.1(0.7) 0.92(0.01) 78.1(11.1) 416(38)
RCL-OG 0.90(0.03) 0.18(0.07) 15.6(6.2) 0.94(0.02) 68.9(18.1) 266(42)

MARLIN 0.94(0.01) 0.08(0.01) 7.0(0.7) 0.96(0.00) 49.6(7.1) 81(9)
MARLIN-M 0.90(0.01) 0.15(0.01) 14.2(0.4) 0.92(0.00) 65.1(5.6) 32(3)

GP

PC 0.19(0.01) 0.71(0.00) 74.8(1.2) 0.55(0.01) 315.2(3.2) −
NOTEARS 0.29(0.00) 0.58(0.01) 63.4(1.7) 0.61(0.01) 265.0(4.2) −
GOLEM 0.36(0.01) 0.51(0.01) 43.4(0.9) 0.65(0.00) 241.8(4.8) −
D-GNN 0.25(0.01) 0.62(0.06) 70.0(2.8) 0.58(0.01) 295.4(6.4) −
RL-BIC 0.80(0.01) 0.35(0.04) 31.3(2.2) 0.86(0.02) 159.8(8.5) 415(88)
CORL 0.86(0.01) 0.27(0.01) 26.3(3.2) 0.88(0.01) 105.1(11.6) 455(34)
RCL-OG 0.87(0.01) 0.23(0.04) 20.4(2.2) 0.92(0.02) 98.9(15.4) 293(30)

MARLIN 0.92(0.01) 0.15(0.02) 13.2(1.6) 0.95(0.02) 78.9(10.3) 85(6)
MARLIN-M 0.87(0.01) 0.20(0.01) 18.8(0.9) 0.91(0.01) 102.8(9.3) 33(4)

Table 1: DAG learning performance on synthetic QR and GP
datasets with standard deviations reported in parentheses. A
dash (−) for ATB indicates methods with notably poor per-
formance. Bold indicates the best performance; ↑ indicates
higher is better, and ↓ indicates lower is better.

Ablation Study
To further explore the roles of state-specific and state-
invariant RL agents in the continuous updating of DAGs, we
have designed a single-agent variant, MARLIN-S, for an ab-
lation study. MARLIN-S utilizes only one RL agent, which
takes the current batch data as input and directly learns the
complete DAG using the intra-batch learning approach from
Section , bypassing the disentanglement process. Table 3
presents the empirical results of MARLIN and MARLIN-S
on synthetic LG datasets with varying DAG scales.

MARLIN outperforms MARLIN-S, indicating that incre-
mental disentangled DAG learning enhances causal struc-
ture learning. For small graphs with simple causal relations,
a single agent is more efficient, but as scale and complex-
ity grow, the advantages of a disentangled multi-agent de-
sign emerge. MARLIN rapidly captures state-specific infor-
mation from new data, whereas MARLIN-S adapts more
slowly. This underscores the need for both state-specific and

PR@1 PR@3 PR@5 AP@1 AP@3 AP@5 MRR ATC↓

PC 16.7% 33.3% 50.0% 16.7% 27.8% 36.7% 35.2% 51
NOTEARS 38.9% 55.6% 72.2% 38.9% 50.0% 57.8% 54.4% 88
GOLEM 11.1% 27.8% 61.1% 11.1% 18.5% 32.2% 30.1% 227
D-GNN 33.3% 50.0% 72.2% 33.3% 40.7% 51.1% 47.9% 315
RL-BIC 33.3% 44.4% 72.2% 33.3% 40.7% 52.2% 49.7% 171
CORL 27.8% 72.2% 88.9% 27.8% 51.9% 65.6% 52.8% 141
RCL-OG 22.2% 77.8% 100% 22.2% 51.9% 68.9% 51.3% 122

MARLIN 61.1% 94.4% 100% 61.1% 77.8% 86.7% 76.4% 63
MARLIN-M 44.4% 88.9% 100% 44.4% 70.4% 82.2% 67.6% 25

Table 2: RCA Performance on OB dataset. All metrics ex-
cept ATC are better when their values are higher.

TPR↑ SHD↓ AUROC↑ SID↓ ATB↓

d = 20
MARLIN 0.99(0.01) 5.24(0.8) 0.99(0.00) 9.6(2.4) 26(2)
MARLIN-S 0.96(0.01) 14.5(1.1) 0.97(0.00) 22.4(1.5) 16(2)

d = 50
MARLIN 0.92(0.02) 38.9(8.4) 0.95(0.01) 302(41.9) 182(23)
MARLIN-S 0.88(0.02) 82.1(11.8) 0.90(0.01) 401.6(46.1) 195(18)

d = 100
MARLIN 0.85(0.03) 105.5(10.1) 0.93(0.01) 1713.0(85.9) 1321(105)
MARLIN-S 0.82(0.02) 180.6(6.2) 0.86(0.01) 2240.3(67.7) 1687(111)

Table 3: Ablation study results on synthetic LG datasets with
varying DAG scales (d = 20, 50, 100).

state-invariant agents to improve performance and efficiency
in fast, incremental DAG learning.

Conclusion
In this paper, we investigate the challenging problem of
learning DAGs in an online setting. We propose MARLIN,
an efficient multi-agent reinforcement learning (RL) frame-
work designed for incremental DAG learning. MARLIN
leverages an efficient intra-batch DAG learning method to
learn a policy that maps from a continuous real-valued space
to the DAG space. Building on this, MARLIN incorporates
two RL agents—state-specific and state-invariant—to un-
cover causal relationships and integrates these agents into an
incremental learning framework. Additionally, we explore
the potential for parallel computation within this frame-
work. Extensive experiments on both synthetic and real-
world datasets demonstrate the effectiveness and efficiency
of MARLIN for incremental DAG learning.

Acknowledgments
This work done by Yi He has been supported in part by the
National Science Foundation (NSF) under Grant Nos. IIS-
2505719, IIS-2441449, IOS-2446522, and the Common-
wealth Cyber Initiative (CCI). The work done by Zhong
Chen has been supported in part by an Illinois Innovation
Network (IIN) sustaining Illinois seed funding grant. The
work done by Chen Zhao has been supported in part by the
National Science Foundation (NSF) under Grant No. CNS-
2515265.

References
Ahmed, C. M.; Palleti, V. R.; and Mathur, A. P. 2017. WADI:
a water distribution testbed for research in the design of se-
cure cyber physical systems. In Proceedings of the 3rd in-
ternational workshop on cyber-physical systems for smart
water networks, 25–28.
Alanqary, A.; Alomar, A.; and Shah, D. 2021. Change
point detection via multivariate singular spectrum analysis.
Advances in Neural Information Processing Systems, 34:
23218–23230.
Charpentier, B.; Kibler, S.; and Günnemann, S. 2022. Dif-
ferentiable dag sampling. arXiv preprint arXiv:2203.08509.
Duong, B.; Le, H.; and Nguyen, T. 2024. ALIAS: DAG
Learning with Efficient Unconstrained Policies. arXiv
preprint arXiv:2408.13448.
Fuglede, B.; and Topsoe, F. 2004. Jensen-Shannon diver-
gence and Hilbert space embedding. In International sympo-
sium onInformation theory, 2004. ISIT 2004. Proceedings.,
31. IEEE.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Kinga, D.; Adam, J. B.; et al. 2015. A method for stochastic
optimization. In International conference on learning rep-
resentations (ICLR), volume 5, 6. San Diego, California;.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Li, D.; Zhao, X.; Yu, L.; Liu, Y.; Cheng, W.; Chen, Z.; Chen,
Z.; Chen, F.; Zhao, C.; and Chen, H. 2025. SolverLLM:
Leveraging Test-Time Scaling for Optimization Problem via
LLM-Guided Search. arXiv preprint arXiv:2510.16916.
Masana, M.; Liu, X.; Twardowski, B.; Menta, M.; Bag-
danov, A. D.; and Van De Weijer, J. 2022. Class-incremental
learning: survey and performance evaluation on image clas-
sification. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 45(5): 5513–5533.
Massidda, R.; Landolfi, F.; Cinquini, M.; and Bacciu, D.
2023. Constraint-Free Structure Learning with Smooth
Acyclic Orientations. arXiv preprint arXiv:2309.08406.
Mathur, A. P.; and Tippenhauer, N. O. 2016. SWaT: A water
treatment testbed for research and training on ICS security.
In 2016 international workshop on cyber-physical systems
for smart water networks (CySWater), 31–36. IEEE.

Ng, I.; Ghassami, A.; and Zhang, K. 2020. On the role
of sparsity and dag constraints for learning linear dags.
Advances in Neural Information Processing Systems, 33:
17943–17954.
Peters, J.; and Bühlmann, P. 2015. Structural intervention
distance for evaluating causal graphs. Neural computation,
27(3): 771–799.
Peters, J.; Mooij, J. M.; Janzing, D.; and Schölkopf, B. 2014.
Causal discovery with continuous additive noise models.
Robinson, R. W. 1977. Counting unlabeled acyclic digraphs.
In Combinatorial Mathematics V: Proceedings of the Fifth
Australian Conference, Held at the Royal Melbourne Insti-
tute of Technology, August 24–26, 1976, 28–43. Springer.
Schwarz, G. 1978. Estimating the dimension of a model.
The annals of statistics, 461–464.
Shao, M.; Li, D.; Zhao, C.; Wu, X.; Lin, Y.; and Tian, Q.
2024. Supervised algorithmic fairness in distribution shifts:
A survey. arXiv preprint arXiv:2402.01327.
Spirtes, P.; Glymour, C.; and Scheines, R. 2001. Causation,
prediction, and search. MIT press.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tang, S.; Makar, M.; Sjoding, M.; Doshi-Velez, F.; and
Wiens, J. 2022. Leveraging factored action spaces for effi-
cient offline reinforcement learning in healthcare. Advances
in Neural Information Processing Systems, 35: 34272–
34286.
Teyssier, M.; and Koller, D. 2012. Ordering-based search:
A simple and effective algorithm for learning Bayesian net-
works. arXiv preprint arXiv:1207.1429.
Tong, H.; Faloutsos, C.; and Pan, J.-Y. 2006. Fast random
walk with restart and its applications. In Sixth international
conference on data mining (ICDM’06), 613–622. IEEE.
Wang, D.; Chen, Z.; Fu, Y.; Liu, Y.; and Chen, H. 2023a. In-
cremental causal graph learning for online root cause anal-
ysis. In Proceedings of the 29th ACM SIGKDD conference
on knowledge discovery and data mining, 2269–2278.
Wang, D.; Chen, Z.; Ni, J.; Tong, L.; Wang, Z.; Fu, Y.; and
Chen, H. 2023b. Hierarchical graph neural networks for
causal discovery and root cause localization. arXiv preprint
arXiv:2302.01987.
Wang, D.; Chen, Z.; Ni, J.; Tong, L.; Wang, Z.; Fu, Y.;
and Chen, H. 2023c. Interdependent causal networks for
root cause localization. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, 5051–5060.
Wang, X.; Du, Y.; Zhu, S.; Ke, L.; Chen, Z.; Hao, J.; and
Wang, J. 2021. Ordering-based causal discovery with rein-
forcement learning. arXiv preprint arXiv:2105.06631.
Wold, H. 1954. Causality and econometrics. Econometrica:
Journal of the Econometric Society, 162–177.
Yang, D.; Yu, G.; Wang, J.; Wu, Z.; and Guo, M. 2023. Rein-
forcement causal structure learning on order graph. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 37, 10737–10744.

Yu, G.; Chen, P.; Li, Y.; Chen, H.; Li, X.; and Zheng, Z.
2023. Nezha: Interpretable fine-grained root causes analy-
sis for microservices on multi-modal observability data. In
Proceedings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of
Software Engineering, 553–565.
Yu, Y.; Chen, J.; Gao, T.; and Yu, M. 2019. DAG-GNN:
DAG structure learning with graph neural networks. In
International conference on machine learning, 7154–7163.
PMLR.
Zhao, Q.; Li, D.; Liu, Y.; Cheng, W.; Sun, Y.; Oishi, M.;
Osaki, T.; Matsuda, K.; Yao, H.; Zhao, C.; et al. 2025. Un-
certainty propagation on llm agent. In Proceedings of the
63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 6064–6073.
Zheng, L.; Chen, Z.; Chen, H.; and He, J. 2024a. On-
line multi-modal root cause analysis. arXiv preprint
arXiv:2410.10021.
Zheng, L.; Chen, Z.; He, J.; and Chen, H. 2024b. MULAN:
multi-modal causal structure learning and root cause anal-
ysis for microservice systems. In Proceedings of the ACM
Web Conference 2024, 4107–4116.
Zheng, L.; Chen, Z.; Wang, D.; Deng, C.; Matsuoka, R.;
and Chen, H. 2024c. Lemma-rca: A large multi-modal
multi-domain dataset for root cause analysis. arXiv preprint
arXiv:2406.05375.
Zheng, X.; Aragam, B.; Ravikumar, P. K.; and Xing, E. P.
2018. Dags with no tears: Continuous optimization for struc-
ture learning. Advances in neural information processing
systems, 31.
Zhu, S.; Ng, I.; and Chen, Z. 2019. Causal discovery with
reinforcement learning. arXiv preprint arXiv:1906.04477.

