
APTrace: A Responsive System for Agile Enterprise
Level Causality Analysis

Jiaping Gui∗‖, Ding Li∗‖, Zhengzhang Chen∗, Junghwan Rhee∗, Xusheng Xiao†, Mu Zhang‡,
Kangkook Jee§, Zhichun Li¶ and Haifeng Chen∗

∗NEC Labs America Inc.
‖Corresponding authors

†Case Western Reserve University
‡University of Utah

§Unversity of Texas at Dallas
¶Stellar Cyber

Abstract—While backtracking analysis has been successful in
assisting the investigation of complex security attacks, it faces a
critical dependency explosion problem. To address this problem,
security analysts currently need to tune backtracking analysis
manually with different case-specific heuristics. However, existing
systems fail to fulfill two important system requirements to
achieve effective backtracking analysis. First, there need flexible
abstractions to express various types of heuristics. Second, the
system needs to be responsive in providing updates so that the
progress of backtracking analysis can be frequently inspected,
which typically involves multiple rounds of manual tuning. In
this paper, we propose a novel system, APTrace, to meet both
of the above requirements. As we demonstrate in the evaluation,
security analysts can effectively express heuristics to reduce more
than 99.5% of irrelevant events in the backtracking analysis
of real-world attack cases. To improve the responsiveness of
backtracking analysis, we present a novel execution-window
partitioning algorithm that significantly reduces the waiting time
between two consecutive updates (especially, 57 times reduction
for the top 1% waiting time).

Index Terms—Backtracking analysis, domain language, expres-
siveness, responsiveness

I. INTRODUCTION

Modern enterprises are facing complex Advanced Persistent

Threat (APT) attacks. It has been widely reported that APT

attacks cause severe financial loss to today’s enterprises [1],

[2], [3], [4], [5]. Once attackers have successfully penetrated

the network of an enterprise, they may first perform a series of

complex but normal behaviors, and then hide for a long period

of time before launching the actual attack. Traditional security

solutions, such as firewall or anti-virus software, that only

detect malicious behaviors are insufficient to defend against

these APT attacks. The reason is that these solutions fail to

locate the starting point (root cause) of attacks in the enterprise

network.

To counter these attacks, backtracking analysis [6] is in-

troduced to recover their attack scenarios. Specifically, back-

tracking analysis searches the system activity log, which is

generated by security auditing frameworks such as ETW [7]

or Linux Audit Framework [8], and produces a dependency

graph that connects system events. This has been proven to

be successful in helping security analysts to analyze complex

security attacks that involve multiple software vulnerabilities

in enterprise environments [6], [9], [10], [11], [12], [13], [14],

[15].

Despite the effectiveness of backtracking analysis, it suffers

from a critical problem that limits its usability and applica-

tion, the dependency explosion problem [11]. A backtracking

analysis may explore many irrelevant events, which can cause

backtracking analysis to take hours to generate a dependency

graph that is too large to interpret effectively. To apply

backtracking analysis, security analysts still need to manually

tune or “debug” the analysis with case-specific heuristics.

However, existing systems fail to meet two important system

requirements that facilitate the tuning process.

The first system requirement is to have flexible and uni-

fied abstractions for different types of heuristics. In existing

systems, all the heuristics are tightly coupled with the im-

plementation [6], [9], [12], [16]. As a result, security analysts

cannot easily apply heuristics that do not belong to the specific

system implementation to the tuning of backtracking analysis.

In the literature, there has been no treatment on exposing such

a common interface that enables security analysts to leverage

various heuristics. The second system requirement is to enable

backtracking analysis to provide updates responsively so that

the frequent inspection of progress is feasible. This require-

ment is critical to the application of backtracking analysis

since certain heuristics such as excluding searching for specific

processes or files must be applied in time to prevent waste

of resources in searching irrelevant events. In this paper, we

define responsive backtracking analysis as displaying the al-

ready explored part of the dependency graph, while the system

is still searching for more system logs to update the graph.

Unfortunately, existing backtracking analysis systems do not

meet this responsive requirement, as the backtracking analysis

results are not returned until the execution is completed. If

there is a massive amount of log data, the security analysts

could wait for a very long time before he gets the results of

backtracking analysis.

Fulfilling two requirements above involves several signif-

icant scientific challenges. First, we need to find out the

appropriate abstractions to express different heuristics. To

1701

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00151

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The example attack

do it, the abstractions need to be flexible to support all

common heuristics, yet they still need to be concise and have

a reasonable learning curve. Second, we need to ensure the re-

sponsiveness of backtracking analysis. Since the dependencies

are not evenly distributed, responsive backtracking analysis

can be blocked for a long time without any updates or returned

very quickly. The security analysts expect a steady update

interval so that they may better plan their tasks and provide

heuristics in time. But how to guide backtracking analysis to

maintain a steady update interval is an open problem.

In this paper, we propose Attack Provenance Tracer

(APTrace), a backtracking analysis system that meets the

above two requirements. APTrace first provides Backtracking

Descriptive Language (BDL), a domain specific language to

express the common heuristics that appear in the literature. To

meet the second requirement, APTrace uses a novel execution-

window partitioning algorithm, which takes advantage of the

temporal locality of system events, to reduce the waiting time

between two consecutive updates, i.e., maintaining a steady

update interval. To our knowledge, we are the first to provide

the system with flexible abstractions for common heuristics

and responsive execution of backtracking analysis.

The contributions of this paper can be summarized as

follows:

• We propose a domain specific language that enables the

incorporation of various heuristics and domain knowledge

to backtracking analysis.

• We design a new execution-window partitioning algo-

rithm to accelerate backtracking analysis.

• We have implemented APTrace and deployed it into a

real-world enterprise computer environment. We perform

extensive evaluation using a real-world security dataset

that is orders of magnitude larger than the ones used in

previous work [11], [16]. Our experimental results are

promising, demonstrating that APTrace can significantly

improve the responsiveness of backtracking analysis.

The remainder of this paper is organized as follows. In

Section II, we discuss a real-world APT attack scenario and

the challenges when we apply backtracking analysis to get its

root cause. In Section III, we introduce the system, APTrace.

In Section IV, we present the evaluation results. Finally, we

discuss related work in Section V, and conclude this paper in

Section VI.

II. MOTIVATION

In this section, we use a real-world APT attack scenario to

discuss the usage of backtracking analysis and the problems it

faces in practice. Before delving into the attack example, we

first formulate the terminologies below to be used in the rest

of this paper.

Fig. 2: Dependency graph of the motivating attack

• System object: a file, process instance, and network

socket in operating systems.

• System event: an interaction between two system objects,

such as a process forking another process, a process

reading or writing a file, and a process talking to a

network channel. A system event contains four attributes:

the subject, which is the process instance that initiates the

interaction; the object, which is the system object that the

subject interacts with; the direction of the data flow (from

the subject to the object or vice versa); and the timestamp

of interaction.

• Backward event dependency: an event, B, backward

depends on another event, A, if they meet two conditions.

First, A happens before B. Second, the destination of A’s

data flow is the source of B’s data flow.

• Tracking graph: a directed graph that connects all system

events with backward dependencies among them. The

nodes are system objects, the edges system events, and

the directions of edges the directions of data flow.

• Backtracking analysis: the analysis that tracks the back-

ward dependencies among system events. It takes an

event as the starting point and generates a tracking graph.

Our example is a phishing email attack that uses the

Windows Privilege Escalation vulnerability [17]. The attack

process is shown in Figure 1. It has several steps. First, the at-

tacker sends an email with a malicious Excel file to the victim.

When the victim receives and opens the Excel file, a malware

named java.exe is created and executed. java.exe first

uses cmd.exe to run findstr.exe in the home directory

to search important credentials on the victim’s machine. In

this process, java.exe may hibernate itself multiple times

to avoid scanning too many files in a short period of time,

which otherwise may trigger the alert from system anomaly

detectors. Such a scanning can take days or even months.

Once java.exe gets the credential, it injects the malicious

code to the memory of notepad.exe [18], [19], takes the

advantage of Windows Privilege Escalation vulnerability to get

the administrator privilege through notepad.exe. Lastly,

java.exe leverages notepad.exe to connect the internal

database and dumps the sensitive data.

Traditional defence methods, such as virus scanners or

system anomaly detectors, are insufficient to detect this type of

attack, since these methods only detect the malicious behavior,

such as dumping the sensitive data or executing a malware, but

fail to uncover its root cause. Hence as long as the security

1702

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

loophole exists, which is the phishing email, future attacks

will keep coming in.

Backtracking analysis is thus proposed to address above

APT attacks. The input of backtracking analysis is a system

anomaly alert, the output is a dependency graph. By viewing

the dependency graph, security analysts can discover the

penetration point that leads to the anomaly alert. For instance,

the dependency graph corresponding to the example attack in

Figure 1 is shown in Figure 2. The part of Figure 2 that is not

covered by the grey areas shows the critical steps of the attack.

Each node represents a system object, such as a process, a file,

or a network connection. An edge is the causality relationship,

or dependency, between two system objects. The red bold

arrow in the graph is the edge that represents the anomaly

alert. By viewing this dependency graph, security analysts can

discover that the anomaly comes from a phishing email.

The process of building the dependency graph (Figure 2) is

as follows: when backtracking analysis receives the anomaly

alert as input (red bold arrow), it searches the system log

history and finds the event that notepad.exe is executed

by java.exe. Then, backtracking analysis adds java.exe
to the dependency graph and continues searching for the

causalities of java.exe. This process repeats until security

analysts find the penetration point, which may expose the

exploited security loopholes, or there is no new nodes that

could be explored and added.
a) The Dependency Explosion Problem: The key chal-

lenge for backtracking analysis is the dependency explosion

problem [11]. That is, backtracking analysis can explore a lot

of relevant yet benign system events and add these events to

the dependency graph. Analyzing these events does not expose

the penetration point but only consumes a lot of time and

generates a dependency graph that is too big to view and

investigate. For example, in Figure 2, the nodes in grey areas,

although relevant, do not lead to the penetration point. Having

these benign nodes are problematic. In our case, it takes more

than four hours to generate the dependency graph that contains

about 30.75K nodes! It is very difficult for people to effectively

recover the security loopholes with such a big graph.

b) Current Approach In Practice: There are a few auto-

mated techniques to reduce the benign events [11], [13], [15].

However, they cannot fully address the dependency explosion

problem. In practice, heuristic based techniques are often

applied [16], [6], [9], [14]. In these approaches, people apply

different heuristics based on their domain knowledge to prune

the benign events. For example, security analysts may exclude

from backtracking analysis *.dll files and the Windows File

Explorer (explorer.exe) since they often introduce a lot

of benign events. The problem of above techniques is that

the heuristics are case specific and cannot be automatically

applied. Otherwise, attackers can craft sophisticated attacks

to bypass backtracking analysis. For example, the attack can

inject into the memory of explorer.exe to execute mali-

cious code. Simply pruning explorer.exe in backtracking

analysis regardless of the specific cases can lead to severe

security issues.

Fig. 3: Overview of APTrace

c) Realistic Workflow of backtracking analysis: In prac-

tice, it is a repeated process of trying and confirming different

heuristics when security analysts use backtracking analysis.

That is, they may first analyze a small dependency graph

(e.g. limit the execution time of backtracking analysis for a

short time), then interpret the small dependency graph and

estimate the heuristics that may be effective based on their

expertise, and lastly apply the heuristics to start a new iteration

of backtracking analysis. For example, in our attack case

above, when security analysts terminate backtracking analysis

in a few minutes, they can get a small dependency graph

that contains a few *.dll files. By investigating this graph,

security analysts realize that these *.dll files are library

related and may be benign. In this case, they first confirm

there is no suspicious modifications to the *.dll files, then

they apply the heuristics to exclude the *.dll files. Such a

process may involve several iterations until security analysts

find the penetration point.

d) Problems of Current Workflow: Backtracking analysis

in current systems has to finish the execution before being

completed (so-called execute-to-complete). To try and verify

different heuristics, security analysts have to terminate the

execution early or set a time limit. However, setting an

appropriate time limit is non-empirical, since the distribution

of system dependencies is imbalanced. For a certain node in

the dependency graph, its dependents are often concentrated

in certain ranges of time in the history. While backtracking

analysis is searching for the dependents of the node among

the whole history log, it cannot query the dependents and

return them with a constant and predictable speed. Due to this

reason, when security analysts stop running backtracking anal-

ysis, they often get either a too-small dependency graph that

contains very little information to discover effective heuristics,

or a too-large dependency graph that already contains many

benign events.

A more appropriate way is to make the execution respon-

sive. That is, when there is an update to the dependency

graph, the system immediately reports it to security analysts.

In this process, security analysts keep monitoring the progress

of backtracking analysis. When there is enough information

to estimate an effective heuristic, they can stop the execution

immediately. By doing so, security analysts can avoid having

a too-small or too-large dependency graph.

III. DESIGN

To achieve agile causality analysis of attacks on enterpise

security big data, APTrace leverages an interactive process

that incorporates the heuristics from security analysts in an

1703

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

efficient and effective manner. In particular, APTrace meets

two requirements: (1) it allows security analysts to express

different heuristics in a unified framework through backtrack-

ing descriptive language. (2) it provides responsive back-

tracking analysis through the execution-window partitioning

techniques.

The workflow of APTrace is shown in Figure 3. It has

three inputs. The first input is the security anomaly alert that

security analysts want to explore. The second input is the

system log history that records system activities, each of which

is represented by a dependency relationship. The third one

is the Backtracking Descriptive Language (BDL) script that

describes the heuristics from security analysts.

In the first step, the Refiner accepts the BDL and the system

anomaly. It processes the BDL and generates the metadata,

which is the executable instructions and parameters to run

backtracking analysis. This metadata is then sent to Executor.

When the Executor gets the metadata from the Refiner, it

executes the backtracking analysis progressively. It searches

the system logs with the execution-window partitioning algo-

rithm and progressively updates the dependency graph. During

this time, it relies on the Dependency Graph Maintainer to

realize the certain types of heuristics. We will discuss the

usage of Dependency Graph Maintainer in more detail in

Section III-B2.

Finally, during the execution, security analysts can monitor

the dependency graph incrementally. When they come up with

a new heuristic based on the current dependency graph, they

can pause the execution of APTrace, modify the BDL script,

and then resume the execution. Once APTrace gets the new

BDL script, the Refiner will check if the new version of BDL

script is compatible to the old version and try to reuse the

result of the previous execution. Lastly, the Executor will run

backtracking analysis with the new heuristics included in the

BDL script.

A. Backtracking Descriptive Language

BDL is a domain specific language that allows users to

specify conditions in the backtracking analysis. We design

BDL to allow users to specify the constraints of backtracking

analysis in a concise way. BDL supports users to specify the

time range, host range, the starting point of backtracking,

the termination conditions of backtracking, and the path to

explore. These are the major heuristics that are frequently used

by security analysts. During the execution of a BDL script,

users will get a progressively updated backtracking graph as

the output. An example of BDL script is shown in Program 1.

This example tracks the path of two malicious applications

that steal a sensitive file and send it to the network.

A BDL script contains three main parts. The first part, the

general constraint (Lines 1-2 in Program 1). In Program 1,

Lines 1-2 indicate that the tracking analysis only tracks the

system events in the “desktop1” and “desktop2” between the

dates “04/02/2019” and “05/01/2019”. In BDL, the general

constraints are optional. If they are not specified, BDL will

search all the hosts in the default time range.

1 from "04/02/2019" to "05/01/2019"
2 in "desktop1", "destop2"
3 backward file f[path = "C://Sensitive/important.doc"

and event_time = "04/16/2019:06:15:14" and
type = "write"]

4 -> proc p[exename = "malware1" or exename = "
malware2" and event_id = 12] // added in v2

5 -> ip i[dstip = "168.120.11.118"]
6 where time < 10mins and hop < 25
7 and proc.exename != "explorer" // added in v3
8 output = "./result.dot"

Program 1: Example of TDL script

We have the time range and host range as the general con-

straints because, in practice, the system logs have properties

with temporal and spatial locality. When the security team

receive an alert, in many cases, they will first study the related

hosts in a recent time range. To do it, we provide the general

constraints that support a concise representation of the time

and host range.

The second part, tracking declaration (Lines 3-7 in Pro-

gram 1), specifies what events should be analyzed and when

the tracking analysis should be terminated. The tracking dec-

laration has two parts. The tracking statement, which starts

with “backward”, specifies the critical points, such as the

starting point, the end point, and some critical intermediate

points. The tracking statement supports the intermediate points

since, in many cases, the security team need to specify the

backtracking to focus on the paths that meet certain patterns.

During the execution, APTrace will automatically explore the

paths that go through the intermediate points before other

paths. Once the backtracking is done, APTrace removes the

paths that do not meet the constraints of the intermediate points

from the final result. The where statement, which starts with

“where”, specifies the more general constraints on events, such

as excluding the events that meet certain conditions or limit the

time of backtracking. This statement allows users to specify

the general constraints in a more concise way.

Lines 3 of Program 1 indicates that the backtracking analy-

sis starts at the event that writes to the file C://Sensitive-
/important.doc at “04/16/2019:06:15:14”. This event is

defined as the starting point. Line 5 means the backtracking

analysis ends at the networking communication with the IP

address “168.120.11.118”, which is defined as the end point.

The user can also use “*” as the end point if he has no

constraints for it. Line 4 means that paths from the starting

point to the end point should go through the process with the

name as “malware1” or “malware2” and have the ID as 12.

Lines 6-7 of Program 1 indicate that both of the tracking

analyses should exclude the processes with the executable

name as “explorer”. It also indicates that the whole process

should not be terminated until the execution exceeds 10

minutes or the diameter of tracking graph is greater than or

equal to 25.

The third part of BDL is output specification, which is

shown in Line 8 of Program 1. It specifies that the generated

tracking graph should be stored to the path ./result.dot.

Program 1 also reflects the interactive process in Figure 3.

It contains three versions. The first version, v1, does not have

1704

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

Line 4 or Line 7 in Program 1. This version cannot find any

interesting result within the time limit. Through the interaction

with APTrace, users are able to learn more information. As

such, they create the second version, v2, which has Line 4 to

accelerate the tracking analysis. Similarly, in the third version,

v3, users add Line 7 to remove the Windows File Explorer

from the tracking analysis. With the third version, users can

find the suspicious IP within the time limit.

1) Tracking Declaration: The tracking statement can be

declared as follows:

1 backward (type var[condition_list]) (-> type var[
condition_list])+

In the tracking statement, the keyword “backward” indicates

the start of the tracking statement. It is followed by a list

of nodes. A node is a filter of events, and can be declared

as “type var[condition list]”. “type” declares the type of

a system object. It has three values: “proc” for processes

events, “file” for file events, and “ip” for network connection

events. “var” is a user-defined variable name. “condition list”

is a list of constraints that filter the system events. The

constraints are connected by logical operations. A constraint

in the “condition list” is a binary operation statement in

the form of “field op value”, where “field” is an attribute

name of the variable. There are two types of options for the

“field”. The first one is the shared options. These options are

“subject name”, “subject pid”, “action type”, “event id”,

“event time”. They can be used in all “file” , “proc” and

“ip”. The second type is the object specific options. For

“file”, the possible options for “field” are “filename”, “host”,

“path”, “last modification time”, “last access time”, and

“creation time”. For “proc”, the possible options are “host”,

“exename”, “pid”, and “starttime”. For “ip”, the possible

options are “src ip”, “dst ip”, and “start time”. “op” is a

binary operation whose possible choices are “<”, “<=”, “>”,

“>=” “=”, and “! =”. “value” after “op” could be a string,

a numeric value, or a time string. If “value” is a string, then

“=” and “!=” will be interpreted as a regular-expression match

and not match, respectively.

Assume that there are k nodes, the list of which has the

format as n1 → n2... → nk. In this list, n1 is the starting

point that is required, while nk is the end point. The user

can use a “*” as the end point to specify that there is no

specific constraints about the end point. n2 to nk−1 are the

intermediate points. They are optional. The list means that the

backtracking should find the paths from the starting point to

the end point, which go through n2, n3... nk−1 sequentially.

The where statement, which is optional, defines the con-

straints that are not associated with any specific system objects.

These constraints will be used to filter system objects during

the tracking analysis. For any system object that does not meet

the constraints in the where statement, it will be deleted from

the tracking analysis without further exploration. A where
statement can be declared as follows:

1 where (type.field | hop | time) op value

In the where statement, users can specify a list of con-

straints in the form of “type.field op value”. The constraints

are also connected by logic operations. “type”, “field”, and

“op” have the same value set as in the tracking statement.

Besides “type.field”, the where statement also accepts two

special fields: “time” and “hop”. They are used to terminate

the tracking analysis and can only be used with the “<=”

operation. “time” is used to limit the time of the tracking

analysis. “hop” is used to limit the maximum length of paths

in the tracking analysis. When the tracking analysis finds a

path that has the length longer than the threshold specified by

“hop”, it stops exploring the path and switches to other shorter

paths if any.

B. APTrace Component Design

In this section, we describe our design for various compo-

nents of APTrace and how they collectively fulfill the system

requirements and necessary functionalities of BDL.

Algorithm 1: Responsive Tracking
Input: e0: starting point event
Output: G: dependency graph

1 Initialize priQueue← genExeWindow(e0) and G← e0;
2 while priQueue is not empty do
3 curr ← priQueue.poll();
4 G← addInComingEdges(curr);
5 for Event e in curr.getEdges() do
6 priQueue← genExeWindow(e);
7 end
8 end
9 return G;

1) Executor: The Executor is the core component of AP-
Trace. It accepts the metadata from the Refiner and performs

responsive backtracking analysis. The key challenge for Ex-
ecutor is to ensure the responsiveness. Dependencies of a

system event are not evenly distributed in the log history. The

naı̈ve approach that directly searches the whole log history

can cause the backtracking analysis to be blocked for a long

time (hours or even days) without any updates. To address this

challenge, the Executor uses an execution-window partitioning

algorithm for responsive backtracking analysis.

Execution-Window Partitioning: There are two insights

that motivate the execution-window partitioning algorithm.

First, a system event may depend on many other events

(dependents). Retrieving all the dependents together in one

update can take a long time. Instead, retrieving the dependents

in many smaller batches can reduce the waiting time between

two updates. Second, the system events have temporal locality.

A system event tends to depend on another event that is

temporally close. This means that the Executor is more likely

to find the direct and indirect dependents of an event in the

time period that is temporally close to the current event.

Based on the above observation, we design the execution-

window partitioning Algorithm as shown in Algorithm 1. This

is a prioritized graph searching process on system events. In

this process, instead of pushing all the dependents of current

event to the queue, our approach adds the execution windows

that contain the dependents of the current event (Line 1 and

1705

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

Line 6). Formally, an execution window is defined as a 3-tuple

〈begin, finish, e〉, where begin is the starting time point,

finish the end time point, and e the event that needs to be

explored. The events will be retrieved from the database in the

unit of an execution window.

In the “while” loop of graph searching (Lines 2-6), our

approach first pulls an execution window from the queue,

find all the events in the current execution window that have

dependencies to the generated part of the dependency graph,

and add these events to the final dependency graph. The events

are used as edges in the dependency graph (Line 4). Then,

in the “for” loop between line 5 and line 7, our approach

enumerates all the events that occur in the current execution

window from the database (Line 5), obtains their execution

windows (Line 6), and adds these execution windows to the

queue for future exploration (Line 6).

In our approach, the function genExeWindow is used

to get the execution windows of an event. It accepts an

event, e, as input and returns all the execution windows of

the event. The procedure of genExeWindow is as follows:

first, genExeWindow gets the timestamp te of the input

event. Then, genExeWindow generates a monolithic execu-

tion window as 〈ts, te, e〉, where ts is a pre-defined global

starting time. Third, genExeWindow cuts the monolithic

execution window into k pieces, where k is a user configurable

parameter. The cutting starts from te to ts. The length of

each execution window is a geometric sequence with common

ratio 2. Assume the length of the first execution window is

σ = te−ts
2k−1

. The length of the second execution window is

2σ, the length of the third window is 4σ, and so on. We

have a different length for each execution window because

the windows in the front are temporally closer to the current

events. So, the density of events in these windows are poten-

tially higher. Having a smaller size can reduce the total number

of dependencies and reduce the waiting time between updates.

In Algorithm 1, the generated execution windows are added

to a priority queue, priQueue, at Line 1 and Line 6. This

priority queue prioritizes the execution windows based on their

end time. In particular, the execution window that is temporally

closer to the time of the starting point will be prioritized in

the queue and placed before the ones with a farther end time.

We do this for the reason as we described in the beginning.

This could improve the responsiveness of backtracking.

2) The Dependency Graph Maintainer: The main purpose

of having the Dependency Graph Maintainer is to realize

the prioritization on search directions. Ideally, we would

like backtracking analysis to first generate the part of the

dependency graph that meets the given patterns in the tracking

statement. However, it is impossible for APTrace to know

which part meets the given patterns until it has fully explored

the whole dependency graph.

To achieve the prioritization, APTrace uses a state propa-

gation algorithm. Assume that the list of nodes declared in

the tracking statement is n1 → n2... → nk. The Dependency
Graph Maintainer assigns the node ni a state si. The starting

point has the state s1. During backtracking analysis, if the

Dependency Graph Maintainer finds a node, curr, with the

state si, has a successor, succ, that meets the constraints

of ni → ni+1 (where i + 1 < k), the Dependency Graph
Maintainer assigns succ the state si+1.

These states will be used by the Executor during backtrack-

ing analysis. For two nodes ni and nj , assume their states are

si and sj , j < i respectively. The Executor always explores

ni before nj .

3) Refiner: The purpose of having the Refiner is to avoid

rerunning the whole backtracking analysis when users have

changed the search conditions during the responsive execution.

To do this, the Refiner leverages the following solution.

Assume that, at a certain time, the users pause the execution

of APTrace, update the current BDL, C, to a newer version,

C ′, and then resume the execution. When the Refiner gets

the updated script of C ′, it first checks if the starting point

specified by C ′ is the same as the starting point of C. If not,

it means that the user wants to conduct a new backtracking

analysis from a different starting point. To that end, the Refiner
abandons the current analysis, clears the dependency graph in

the Dependency Graph Maintainer, and triggers the Executor
to start a new backtracking analysis. If the starting point

is not changed, the Refiner first checks if the intermediate

points are changed. If so, the Refiner triggers the Dependency
Graph Maintainer to recalculate the states for each node.

To do this, the Dependency Graph Maintainer traverses the

current explored dependency graph from the starting point and

performs the state propagation in Section III-B2. Note that, at

this time, the tracking graph is already cached in the memory,

it is much faster to do the state propagation than the first time,

which retrieves the data from database. After all states are

calculated, the Refiner triggers the Executor to update nodes

in the searching queue and resume backtracking analysis.

IV. EVALUATION

The primary research question with APTrace is its use-

fulness in helping security analysts to perform responsive

backtracking analysis efficiently and effectively. This high-

level research question is evaluated by four different metrics:

the necessity of having responsive backtracking analysis, the

expressivity of BDL, the responsiveness of APTrace, and the

efficiency of APTrace.

A. Experiment Setup

We implemented APTrace in 20K lines of Java code, and

deployed it as part of the security solution at NEC Labs

America. We collected system events with Windows ETW [20]

and Linux Audit messages [21]. The collected system events

were stored in a PostgreSQL database.

We monitored and recorded the system activities for 256

hosts in the company. Each day, the security system collects

over 538 million system events, which represents 145GB data

in the database. In total, we monitored the enterprise system

for a three-month period of time and collected over 13 TB

data. We deployed APTrace on a server with 16 cores (Intel

Xeon CPU E52640 v3 @ 2.60GHz) and 64 GB memory.

1706

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

B. Necessity of Responsive Backtracking Analysis
In this section, we evaluate if it is necessary to have respon-

sive backtracking analysis. We answer this research question

from two aspects. The first aspect is to answer: how often does
the dependency explosion problem exist in realistic scenarios
of backtracking analysis? If the dependency explosion problem

does not happen frequently, people do not need to try different

heuristics and thus there is no need to have a responsive

backtracking analysis. The second aspect is: how difficult is
it for people to set an appropriate time limit in the execute-
to-complete (all results returned after execution) system? If

people can have a good estimation about when they should

stop the execution of backtracking analysis, they may not need

to run it responsively. To evaluate this research question, we

implemented the baseline backtracking analysis [6] and used

it for the evaluation of APTrace’s performance. Note that this

baseline technique was also adopted and evaluated for different

purposes in related work, such as [9], [10], [11], [12].
1) Severity of Dependency Explosion: To answer this re-

search question, we measured how often the baseline back-

tracking analysis can take a long time and generate a huge

dependency graph due to the dependency explosion problem.

To do it, we randomly selected 200 events from the database,

assumed they were system anomalies that served as the starting

point, and performed backtracking analysis on them. For each

execution, we limited the running time for two hours to avoid

overly long executions.
In our experiment, about 50% of executions lasted for more

than 20 minutes. 36% of executions had reached the two-

hour time limit. Note that these executions should have taken

longer to finish the running. In terms of the size of dependency

graphs, more than 36% of executions generated over 1,000

events in their dependency graphs, 26% more than 2,500

events, and 17% even more than 5,000 events. The largest

dependency graph had as many as 35,288 events!
Above experimental results show that the dependency ex-

plosion problem is not rare in real world. In fact, there is a

very high chance that security analysts need to use heuristics to

optimize backtracking analysis. If security analysts are using

the traditional execute-to-complete engine, they may set a time

limit to have a quick response. However, setting an appropriate

time limit is very challenging and infeasible, which we explain

below.
2) Difficulty of Setting Right Time Limit: The second aspect

questioning the necessity of responsive backtracking analysis

is whether people can set an appropriate time limit for the

current execute-to-complete system. To answer this research

question, we evaluated if we could summarize a general

piece of knowledge about the appropriate time duration when

executing a backtracking analysis so that it did not generate a

too-small or too-large dependency graph.
To do the evaluation, we ran the backtracking analysis for

all 200 events randomly selected previously with 30 different

configurations of execution time. In each configuration the

time limit was set to be k minutes, where k was an incremental

number from 1 to 30. Then we checked if there was a k to

1 3 5 7 9 12 15 18 21 24 27 30

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

minutes

G
ra

ph
 S

iz
e

Fig. 4: The size of dependency graph under different thresh-

olds during backtracking analysis

ensure that the generated dependency graph was neither too

small nor too large.

The result is shown in the box plot of Figure 4. In this graph,

the y-axis is the size of dependency graph, and the x-axis is

the threshold k that represents the number of minutes before

backtracking analysis was terminated. Each box denotes the

size distribution of dependency graph among all 200 events

whose backtracking analysis had the time limit given by the

x-axis. From Figure 4, we can see that there are many outliers

in each box. The values of points in one box also suffers a

dramatic variance. In particular, on average the largest point

is 15,079 times larger than the smallest point for each box.

The top ten percent of points are 2,857 times larger than the

bottom ten percent of points.

Hence, our experiment shows that there is no general knowl-

edge about what the appropriate time limit is for backtracking

analysis. Given a certain time limit, it has a substantial chance

that security analysts will either get a dependency graph with

less than ten nodes or a graph with thousands of nodes.

In either way, security analysts are not able to verify their

heuristics effectively.

C. Expressivity of BDL

To evaluate the expressivity of BDL, we first express the

common heuristics used in related work [6], [9], [12], [16].

Then, we evaluate how people can use BDL to investigate

realistic APT attacks through APTrace.

1) Expressing Heuristics: In the literature, there are two

main types of heuristics: excluding system events, and pri-

oritizing a part of dependency graph. Most of the heuristics

in the literature fall into these two categories. The main

differences between heuristics in different systems are what

type of events should be excluded or prioritized. The basic

heuristics for excluding or prioritizing events have been shown

1707

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

in Section III-A. In this section, we mainly focus on the

complex and advanced heuristics.

Quantity Based Heuristics: In these heuristics, people

want to exclude or prioritize the events by comparing quan-

titative features with their neighbors. One typical example is

prioritizing data uploads [12]. In this case, security analysts

want to prioritize during backtracking analysis the processes

that upload sensitive files to the network. The simple approach

is to check if a process reads a sensitive file and then writes

to the network. However, such a simple approach may include

a lot of false positives. For example, the Adobe Reader may

also open a sensitive file and then send some log information

to the server. The simple approach cannot distinguish such log

collection from data uploading. A more sophisticated approach

is to check if the amount of data sent to the network is at least

as big as the amount of data read from the sensitive file. To

achieve such an advanced event pattern, the security analysts

can use the code in Program 2, where the last condition

checks the amount. Note that we introduce the keyword

“prioritize” in the program for the purpose of explanation.

In practice, the new heuristic is added directly to the BDL

script during responsive backtracking analysis, as described in

Section III-A.

1 prioritize [type = file and src.path = "
sensitivefile"] <- [type = network and dst.ip =
"unkownIP" and amount >= size]

Program 2: BDL to connect multiple anomalies

Excluding Read-Only Files and Write-Through Pro-
cesses In some cases, people may also want to exclude “read-

only” files and “write-through” processes [6]. A “read-only”

file is the file that is not written during the period of time

being analyzed. A process is called a “write-through” process

if it is only connected to another process. In many cases, a

“write-through” process is a helper process. In particular, it

takes the input from its parent process, does the processing,

and returns the result to the parent. These two special types

of heuristics correspond to two attributes “isReadOnly” and

“isWriteThrough” of the destination node of a process. They

can be used as part of the condition in BDL, as shown in

Program 3, for each event.

1 where proc.dst.isReadonly = true or proc.dst.
isWriteThrough = true

Program 3: Read-only files and write-through processes

D. Usefulness of BDL In Real Attack Cases

To evaluate the usefulness of BDL, we recruited two teams

in the company, a red team and a blue team. The red team

consisted of six experienced security experts who prepared

the environment, set up the monitoring system, and created

attacks from an adversarial point of view. The blue team

consisted of two newly recruited employees who performed

backtracking analysis to identify the root cause of these attacks

using APTrace. Before the analysis, the blue team were not

aware of the attack information, such as how or when the

attack was conducted except the general security knowledge.

In the end, the red team created five attack cases. These cases

were motivated by the real-world attacks in the literature. For

each of the attacks, the blue team used BDL to express the

heuristics independently and then applied these heuristics to

APTrace. During this process, they also recorded the analysis

information such as the heuristics applied and the time spent.

For the user configurable parameter k in the execution-window

partitioning algorithm, they used the empirical value eight. The

evaluation results are reported in Table I, where we measured

the size of dependency graph without heuristics (No Opt), the

size of dependency graph with heuristics (Opt), the number of

heuristics applied (# Heuristics), and the total execution time

(in average) of APTrace to generate the dependency graph with

heuristics (Time). Note that we did not report the execution

time that it took for APTrace to generate the full dependency

graph without heuristics because, for every case, it took more

than four hours to generate the dependency graph without

any heuristics and the execution was terminated before it was

completed.

From Table I, we can see that BDL is effective to express

the heuristics of real-world attack cases. With BDL, security

analysts in the blue team are able to express the heuristics that

reduce the size of dependency graph and the execution time of

analysis by more than 99.5% and 96.5%, respectively. Below

we present the details of the first two attack cases and discuss

how the blue team achieved responsive backtracking analysis

using APTrace in the experiments.

A1: Phishing Email This is the motivating example men-

tioned in Section II. The alert raised in an anomaly detector

was the communication between java.exe and an external

IP address.

The attack scenario reconstruction proceeded as follows.

In the beginning, the security team only received an alert

regarding the communication between java.exe and the

external IP address. At this time, they had no knowledge of

the root cause of the alert. In fact, the security team could only

run a basic backtracking analysis from the given alert without

any guidance. To do so, they ran the sample BDL script as

shown in Program 4. The tracking process searched the data

dependencies of the starting point within one month, which

was given by the “from to” statement at line 1. It also directed

APTrace to store the dependency graph in the result.dot
file.

1 from "03/26/2019" to "04/26/2019"
2 backward ip alert[dst_ip= "an external IP",

subject_name = "java.exe" and event_time = "
04/26/2019:16:31:16" and action_type = "write"]
-> *

3 output = "./result.dot"

Program 4: BDL for the basic backtracking of A1

Once the code of Program 4 was provided as input, APTrace
started to update the dependency graph progressively. After

viewing two events in less than three minutes, the security

team noticed that the tracking graph involved excel.exe,

1708

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

Attack Description No Opt Opt # Heuristics Total analysis time
Phishing Email [17] The motivating example 30.75K 140 2 10m

Malicious Excel Macro [22]
A malicious Excel makes Sqlserver run

the command line abnormally
5.34K 45 3 10m

Shell Shock [23]
Use the Shell Shock vulnerability of Apache
to execute a bash, then steal sensitive data,

upload the data through Apache
32.25K 154 2 5m

Cheating Student [11]
The student steals the credential of the admin laptop,

then uploads a backdoor program to the server,
and then changes his score

43.64K 152 3 9m

wget-unzip-gcc [24]
A ZIP file containing malicious source code

is downloaded, unzipped, compiled and executed.
The malware then steals the sensitive data

121.26K 75 2 10m

TABLE I: The summary of five attack cases

which might load a lot of dll files. At this time, the security

team paused backtracking analysis, quickly searched for other

alerts from the backend anomaly detector in the recent three

months, and found that there were no suspicious modifications

to the dll files or new malicious dll files dropped by the

attacker. Hence, the security analysts concluded that the attack

was not from the injected code in the dll files and they

should focus on other data dependencies. Thus, the security

team updated the BDL script from Program 4 to Program 5

by adding a new heuristic, which excluded all dll files.

1 from "03/26/2019" to "04/26/2019"
2 backward ip alert[dst_ip= "an external IP",

subject_name = "java.exe" and event_time = "
04/26/2019:16:31:16" and action_type = "write"]
-> *

3 where file.path != "*.dll"
4 output = "./result.dot"

Program 5: BDL for A1 with *.dll excluded

After the modification, the security team resumed the ex-

ecution of APTrace and continued monitoring the output.

After viewing eight more events in two minutes, the security

team noticed that the dependency graph had reached the

findstr.exe through findstr.out. After looking at

the first 100 events following findstr.exe, the security

team realized that findstr.exe might scan a lot of files.

Thus, it might take a very long time to fully explore the

dependency graph after findstr.exe. The security team

also realized that findstr.exe was more likely to be used

by java.exe rather than the root cause of it. So, the security

team paused the analysis again and updated the script from

Program 5 to Program 6 to exclude findstr.exe from the

dependency graph.

1 from "03/26/2019" to "04/26/2019"
2 backward ip alert[dst_ip= "an external IP",

subject_name = "java.exe" and event_time = "
04/26/2019:16:31:16" and action_type = "write"]
-> *

3 where file.path != "*.dll" and proc.exename != "
findstr.exe"

4 output = "./result.dot"

Program 6: BDL for A1 with findstr.exe excluded

Finally, after resuming the execution again for about four

minutes, the security analysts found the outlook.exe
and the sockets connected to it by checking about 30

more events. At this moment, the security team found that

java.exe was created by excel.exe, which was spawned

by outlook.exe. Thus, they confirmed that the root cause

of java.exe was a phishing email. Until this point, the

security team had spent about ten minutes in backtracking

analysis and checked about 140 events in total.

A2: Malicious Excel Macro In this attack scenario, the

attacker took advantage of the Excel macro validation vul-

nerability [22]. The main dependency graph of this attack

is shown in Figure 5. The attacker would like to dump a

backdoor to an internal host (Host 2). However, Host 2 could

not be accessed from the external network. Thus, the attacker

hacked another host (Host 1) in the same company as Host

2 by leading the user of Host 1 to download an Excel file

(data.xls) with a malicious macro through the browser.

When the user of Host 1 opened the Excel file, the macro was

executed and another malware named java.exe was created

and executed. Since the anomaly detector lacked the capability

to verify signatures and the malware java.exe had a normal

name, it bypassed the anomaly detector in the company. Then

the java.exe connected to the SQL server of Host 2 and

executed a batch script through the shell interface of SQL

server. Finally the batch script dropped to Host 2 the back

door named qfvkl.exe and executed it.

In this attack, the anomaly detector raised an alert when the

SQL server started the cmd.exe since it was an abnormal

activity for SQL server. To reconstruct this attack scenario,

the security team started backtracking analysis from the alert

raised by the anomaly detector. In the beginning, the security

team used the sample BDL script in Program 7 for backtrack-

ing analysis. After viewing five events in two minutes, the

security team saw the dll files and decided to exclude the

dll files. Thus, the security team paused the analysis and

updated the BDL script from Program 7 to Program 8 by

adding a new heuristic.

1 from "03/03/2019" to "04/03/2019"
2 backward proc p[exename = "cmd" and event_time = "

04/03/2019:11:34:45" and action_type = "start"
and subject_name = "sqlserver.exe"] -> *

3 output = "./result.dot"

Program 7: BDL for A2 starting from the alert

1709

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

java.exe *.dll,

cmd.exe

iexplorer.exe

cscript.exe

qfvkl.exe

dll

sockets

sqlservr.exe

excel.exe

HTTPS0_172.16.15
7.129.XLS

userinit.exe

notepad.exe

explorer.exe

vkl.exe

ipt.exe

cmd

ii t

d.exed.exd

s

d

a.exe

el.exeel.ex

0_172.
29 XLS

QFTHV.VBS

llorer.e INDEX.DAT IN

ockets

servr.eservr.e

*.dll,

jav

exxe xcc

s

cc

c

Host 1

Host 2

Fig. 5: Dependency graph of case 2 - Malicious Excel Macro

1 from "03/03/2019" to "04/03/2019"
2 backward proc p[exename = "cmd" and event_time = "

04/03/2019:11:34:45" and action_type = "start"
and subject_name = "sqlserver.exe"] -> *

3 where file.path != "*.dll"
4 output = "./result.dot"

Program 8: BDL for A2 with *.dll excluded

The security team resumed backtracking analysis, and af-

ter viewing one more event in less than one minute, they

found that the java.exe on Host 1 was connected to the

sqlservr.exe through the network. However, by looking

at the parent folder of java.exe, which was the Document

folder, the security team suspected that such a java.exe was

malware. Then the security team updated the BDL script to

make backtracking analysis focus on the socket connection to

the java.exe first and deprioritized other connections. The

code is shown in Program 9.

1 from "03/03/2019" to "04/03/2019"
2 backward proc p[exename = "cmd" and event_time = "

04/03/2019:11:34:45" and action_type = "start"
and subject_name = "sqlserver.exe"] -> ip i[
dst_ip = "host2" and src_ip = "host1" and
subject_name = "java.exe"] -> *

3 where file.path != "*.dll"
4 output = "./result.dot"

Program 9: BDL for A2 with socket connections included

After running Program 9 for four minutes, backtracking

analysis finished the exploration of ten events. Then it reached

the node explorer.exe, which is the Windows File Ex-

plorer. In Windows, when people open a file, the File Explorer

will not only open the target file but also open other files in the

same folder to retrieve their meta information. Thus, in many

cases, the Windows File Explorer may introduce millions

of unrelated data dependencies. At this time, the security

team checked the first 20 successors of explorer.exe

Average STD 90% 95% 99%
Baseline 7 210 58 613 1,149
APTrace 2 20 4 9 19

TABLE II: Waiting time between updates (unit: second)

and estimated that there were no suspicious events related to

explorer.exe. Thus, the security team decided to remove

explorer.exe from backtracking analysis and updated

the script to Program 10. At this moment, this change was

temporary. If the security team failed to identify the root

cause of the alert after removing explorer.exe, they could

redo the analysis quickly and explore the dependencies of

explorer.exe again.

1 from "03/03/2019" to "04/03/2019"
2 backward file p[exename = "cmd" and event_time = "

04/03/2019:11:34:45" and type = "start" and
subject_name = "sqlserver.exe"] -> *

3 where file.path != "*.dll" and file.path != "
explorer.exe"

4 output = "./result.dot"

Program 10: BDL for A2 with explorer.exe excluded

Finally, after Program 10 had explored ten more events

in three minutes, backtracking analysis reached the browser,

iexplorer.exe, which confirmed that the attack was orig-

inated from downloading an Excel file from the Internet. In the

reconstruction process of this attack, the security team checked

in total 45 events in less than ten minutes. Since the security

team had successfully found the root cause, they did not search

the dependencies of explorer.exe again.

E. Responsiveness of APTrace

The third research question is how responsive is APTrace.

In other words, how long do people need to wait between

two updates? This is important because it is annoying and

inefficient for people to wait for a long time to see nothing. To

answer this question, we measured the waiting time between

updates for the same 200 backtracking analysis cases as

randomly selected in Section IV-B1. For each update to the

dependency graph, we recorded its time stamp. Then, we

calculated the delta, which is named as the “update time” of

time stamps between any two consecutive updates.

The result is shown in the row “APTrace” in Table II, where

we report the average, the standard deviation, the 90 percentile,

the 95 percentile, and the 99 percentile. The unit is in seconds.

Our experiment shows that APTrace can update the depen-

dency graph in a fast speed. On average, it only takes two

seconds for APTrace to generate a new update to security

analysts. In 99% of cases, the update time is only 19 seconds.

This means that only in very rare cases, security analysts need

to wait for more than 20 seconds to get a new update. In this

case, we conclude that APTrace has enough responsiveness to

support effective tunings to backtracking analyses.

Effectiveness of Execution-Window Partitioning Algo-
rithm One aspect of the research question regarding the

responsiveness of APTrace is how effective is the execution-

window partitioning algorithm. To answer this question, we

1710

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: The CPU and memory usage of APTrace

measured the update time of the baseline method, which ran

without applying the execution-window partitioning algorithm,

and compared it with APTrace.

As shown in the row “Baseline” in Table II, the baseline

method without the execution-window partitioning algorithm

has the average update time as seven seconds. This is a

moderate value. However, the baseline method has a consid-

erably higher chance to block the execution of backtracking

analysis. This is reflected on the 90, 95, and 99 percentiles.

In particular, for the baseline method, in 10% of times, an

update can take about one minute. In 5% of times, it can

take more than 10 minutes to update the dependency graph.

For some extreme cases, this can be as long as near 20

minutes. Although this chance looks low, in practice, one

backtracking analysis may need to update the dependency

graph for hundreds or even thousands of times. 1% of chance

means that nearly in every backtracking analysis, there will be

at least one update being blocked for more than 20 minutes. In

comparison, APTrace with the execution-window partitioning

algorithm rarely takes more than 20 seconds to generate an

update. Particularly, APTrace reduces the 90 percentiles by 15

times, the 95 percentiles 68 times, and the 99 percentiles 57

times.

F. Efficiency of APTrace

The fourth aspect of the usefulness of APTrace is its effi-

ciency. To answer this research question, we quantify its run-

time overhead when performing the responsive backtracking

analysis. We measured the average CPU and memory usage

of the 200 backtracking analysis cases randomly selected in

Section IV-B1. In our experiment, we measured the CPU usage

in Solaris mode.

The result is shown in Figure 6, where the y-axis is the

average CPU and memory usage in percentage, and the x-axis

is the execution time in minutes. In our experiment, APTrace
has the highest memory usage (i.e., 15%) in the early stage

of backtracking analysis. This is because it needs to initialize

the database, compile the BDL, and load the heuristics. After

the beginning stage, the memory usage drops to about 3%.

The CPU usage of APTrace raises from 3% to 11% during

the execution.

This runtime overhead is moderate for an enterprise-level

server. Thus, we conclude that APTrace can be deployed as

part of security solutions in a real-world enterprise.

V. RELATED WORK

Backtracking analysis is proposed by King and col-

leagues [6]. It is then improved and applied in many other

studies [9], [10], [11], [12], [14], [16]. For example, Pri-

oTracker [25] and NoDoze [26] try to use anomaly based

techniques to prune common behaviors. SLEUTH [16] and

HOLMES[27] use rule based systems to solve the dependency

explosion problem. Our approach addresses a very different

problem and is complementary to these techniques. In many

cases, people may still need to manually “debug” backtracking

analysis to discover very stealthy attacks or verify the result

of aforementioned techniques. Under such a situation, our

approach provides a unified framework to express different

heuristics and enable the responsive backtracking analysis.

There are a few techniques that focus on addressing the

dependency explosion problem automatically. ProTracer [11],

Beep [13], and LogGC [28] instrument the executables to

obtain finer grained system logs to reduce benign events. Ma

and colleagues propose a static binary analysis technique to

achieve the same goal [15]. In a commercial enterprise, it

may not be realistic to assume that people can instrument

or have an extensive capability to apply static analysis to

all executables. In practice, security analysts still need to try

different heuristics manually.

Traditional prevention based security solutions, such as mal-

ware detectors [29], [30] and system anomaly detectors [31],

[32], have been studied for a long time. These techniques have

two limitations. First they can be bypassed by sophisticated

obfuscation techniques [33] or have a high false positive

rate [32]. Second, these techniques can only detect the ma-

licious behaviors in a system. And they do not detect the

intrusion point. As discussed in Section II, only detecting

the malicious behaviors is insufficient to defend against APT

attacks.

Human knowledge is also introduced to correlate system

anomalies from different detectors [34] and guide system

anomaly searching [35]. These approaches provide models

to allow security analysts to describe high-level information

about anomalies. Similar ideas are introduced [36], [37],

[38], [39] to facilitate the investigation of software bugs.

However, all of them do not focus on backtracking analysis

and their frameworks do not support expressing the heuristics

for analysis.

The basic idea of our responsive backtracking analysis

is motivated by the approximate query processing (AQP)

systems [40], [41], [42]. These systems may potentially be

used as the underlying infrastructure of APTrace to provide

responsive backtracking analysis, but they do not directly

solve the problem of imbalanced data distribution. As a result,

they fail to achieve the responsiveness without leveraging the

execution-window partitioning algorithm or similar mecha-

nisms. Gui and colleagues [43] proposed ProbeQ, a system

to progressively process system-behavioral queries. ProbeQ is

focused on the progressive processing of a single query instead

of backtracking analysis that involves multiple queries.

1711

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSIONS

In this paper, we propose a novel system, APTrace, to help

security analysts to tune backtracking analysis. This work is

motivated by the fact that existing systems fail to fulfill two

important system requirements: having a unified framework

to express heuristics and supporting responsive backtracking

analysis. Our system meets these two requirements in that it

provides a domain specific language, BDL, to express different

common heuristics and uses an execution-window partitioning

algorithm to support the responsive backtracking analysis. Our

evaluation results demonstrate APTrace can be used to help

security analysts to tune backtracking analysis efficiently and

effectively in real-world attack cases. In particular, APTrace
reduces the top 1% longest waiting time between two consec-

utive updates by 57 times compared to the baseline solution.

REFERENCES

[1] “Anthem Cyber attack.” http://abcnews.go.com/Business/anthem-cyber-
attack-things-happen-personal-information/story?id=28747729.

[2] “Case study: The Home Depot data breach.”
https://www.sans.org/reading-room/whitepapers/casestudies/case-
study-home-depot-data-breach-36367.

[3] “Sony Reports 24.5 Million More Accounts Hacked.”
https://www.darkreading.com/attacks-and-breaches/sony-reports-245-
million-more-accounts-hacked/d/d-id/1097499.

[4] “Ebay inc. to ask Ebay users to change passwords.”
https://www.ebayinc.com/stories/news/ebay-inc-ask-ebay-users-change-
passwords/.

[5] “OPM government data breach impacted 21.5 million.”
http://www.cnn.com/2015/07/09/politics/office-of-personnel-
management-data-breach-20-million/.

[6] S. T. King and P. M. Chen, “Backtracking intrusions,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 223–236, 2003.

[7] Microsoft, “ETW events in the common language runtime,” 2017,
https://msdn.microsoft.com/en-us/library/ff357719(v=vs.110).aspx.

[8] Redhat, “The Linux audit framework,” 2017, https://github.com/linux-
audit/.

[9] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, “The Taser Intrusion
Recovery System,” in SOSP. New York, NY, USA: ACM, 2005, pp.
163–176.

[10] S. Krishnan, K. Z. Snow, and F. Monrose, “Trail of Bytes: Efficient
Support for Forensic Analysis,” in CCS. New York, NY, USA: ACM,
2010, pp. 50–60.

[11] S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards Practical Provenance
Tracing by Alternating Between Logging and Tainting,” in NDSS, 2015.

[12] T. Wuchner, M. Ochoa, and A. Pretschner, “Malware Detection with
Quantitative Data Flow Graphs,” in ASIA CCS. New York, NY, USA:
ACM, 2014, pp. 271–282.

[13] K. H. Lee, X. Zhang, and D. Xu, “High Accuracy Attack Provenance
via Binary-based Execution Partition.” in NDSS, 2013.

[14] S. King, Z. M. Mao, D. C. Lucchetti, and P. M. Chen, “Enriching
Intrusion Alerts Through Multi-Host Causality,” in NDSS, 2005.

[15] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu,
“Accurate, Low Cost and Instrumentation-Free Security Audit Logging
for Windows,” in ACSAC. New York, NY, USA: ACM, 2015, pp.
401–410.

[16] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. Stoller, and V. Venkatakrishnan, “SLEUTH: Real-time
Attack Scenario Reconstruction from COTS Audit Data,” in USENIX
Security. Vancouver, BC: USENIX Association, 2017, pp. 487–504.

[17] CVE, “Win32k Elevation of Privilege Vulnerability, CVE-2015-1701,”
2015, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1701.

[18] N. Ruff, “Windows memory forensics,” Journal in Computer Virology,
vol. 4, no. 2, pp. 83–100, May 2008.

[19] S. C. LLC, “Why is notepad.exe connecting to the inter-
net?” 2013, https://blog.cobaltstrike.com/2013/08/08/why-is-notepad-
exe-connecting-to-the-internet/.

[20] I. Park and R. Buch, “Event Tracing for Windows: Best Practices.” in
CMG, 2004, pp. 565–574.

[21] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O
ports to process management. O’Reilly Media, Inc., 2005.

[22] CVE, “CVE-2008-0081,” 2008, http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=cve-2008-0081.

[23] ——, “ShellShock, CVE-2014-6271,” 2014, https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-6271.

[24] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang,
and G. Jiang, “High Fidelity Data Reduction for Big Data Security
Dependency Analyses,” in CCS. New York, NY, USA: ACM, 2016,
pp. 504–516.

[25] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security.” in NDSS,
2018.

[26] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage.” in NDSS, 2019.

[27] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” arXiv preprint arXiv:1810.01594, 2018.

[28] K. H. Lee, X. Zhang, and D. Xu, “LogGC: garbage collecting audit
log,” in CCS. New York, NY, USA: ACM, 2013, pp. 1005–1016.

[29] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-Aware Android
Malware Classification Using Weighted Contextual API Dependency
Graphs,” in CCS. New York, NY, USA: ACM, 2014, pp. 1105–1116.

[30] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing System-wide Information Flow for Malware Detection and
Analysis,” in CCS. New York, NY, USA: ACM, 2007, pp. 116–127.

[31] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: alternative data models,” in S&P, 1999, pp. 133–145.

[32] A. Patcha and J.-M. Park, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” Computer
Networks, vol. 51, no. 12, pp. 3448 – 3470, 2007.

[33] I. You and K. Yim, “Malware Obfuscation Techniques: A Brief Survey,”
in BWCCA, Nov 2010, pp. 297–300.

[34] K. Tabia, S. Benferhat, P. Leray, and L. Mé, “Alert correlation in intru-
sion detection: Combining AI-based approaches for exploiting security
operators knowledge and preferences,” SecArt, 2011.

[35] C. Zhong, D. S. Kirubakaran, J. Yen, P. Liu, S. Hutchinson, and H. Cam,
“How to use experience in cyber analysis: An analytical reasoning
support system,” in ISI, June 2013, pp. 263–265.

[36] S. Hangal and M. S. Lam, “Tracking down software bugs using
automatic anomaly detection,” in ICSE. ACM, 2002, pp. 291–301.

[37] J. P. Near and D. Jackson, “Derailer: interactive security analysis for
web applications,” in ASE. ACM, 2014, pp. 587–598.

[38] A. Beaugnon, P. Chifflier, and F. Bach, “ILAB: An Interactive Labelling
Strategy for Intrusion Detection,” in RAID. Springer, 2017, pp. 120–
140.

[39] C. Muelder, K.-L. Ma, and T. Bartoletti, “Interactive visualization for
network and port scan detection,” in RAID. Springer, 2005, pp. 265–
283.

[40] B. Chandramouli, J. Goldstein, and A. Quamar, “Scalable Progressive
Analytics on Big Data in the Cloud,” VLDB, vol. 6, no. 14, pp. 1726–
1737, Sep. 2013.

[41] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online Aggregation,” in
SIGMOD. New York, NY, USA: ACM, 1997, pp. 171–182.

[42] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy, “A Platform for
Scalable One-pass Analytics Using MapReduce,” in SIGMOD. New
York, NY, USA: ACM, 2011, pp. 985–996.

[43] J. Gui, X. Xiao, D. Li, C. H. Kim, and H. Chen, “Progressive pro-
cessing of system-behavioral query,” in Proceedings of the 35th Annual
Computer Security Applications Conference, 2019, pp. 378–389.

1712

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 23:13:16 UTC from IEEE Xplore. Restrictions apply.

