
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022 2365

Automated Anomaly Detection via
Curiosity-Guided Search and

Self-Imitation Learning
Yuening Li , Zhengzhang Chen , Member, IEEE, Daochen Zha, Kaixiong Zhou, Haifeng Jin,

Haifeng Chen , Member, IEEE, and Xia Hu

Abstract— Anomaly detection is an important data mining task
with numerous applications, such as intrusion detection, credit
card fraud detection, and video surveillance. However, given a
specific complicated task with complicated data, the process of
building an effective deep learning-based system for anomaly
detection still highly relies on human expertise and laboring
trials. Also, while neural architecture search (NAS) has shown
its promise in discovering effective deep architectures in various
domains, such as image classification, object detection, and
semantic segmentation, contemporary NAS methods are not
suitable for anomaly detection due to the lack of intrinsic
search space, unstable search process, and low sample efficiency.
To bridge the gap, in this article, we propose AutoAD, an auto-
mated anomaly detection framework, which aims to search for
an optimal neural network model within a predefined search
space. Specifically, we first design a curiosity-guided search
strategy to overcome the curse of local optimality. A controller,
which acts as a search agent, is encouraged to take actions to
maximize the information gain about the controller’s internal
belief. We further introduce an experience replay mechanism
based on self-imitation learning to improve the sample efficiency.
Experimental results on various real-world benchmark datasets
demonstrate that the deep model identified by AutoAD achieves
the best performance, comparing with existing handcrafted
models and traditional search methods.

Index Terms— Anomaly detection, curiosity-guided search,
experience replay, neural architecture search (NAS), self-
imitation learning.

I. INTRODUCTION

W ITH the increasing amount of surveillance data col-
lected from large-scale information systems such as the

Web, social networks, and cyber-physical systems, it becomes

Manuscript received September 30, 2020; revised March 5, 2021 and June 2,
2021; accepted August 11, 2021. Date of publication September 1, 2021; date
of current version June 2, 2022. (Corresponding author: Yuening Li.)

Yuening Li, Daochen Zha, Kaixiong Zhou, and Haifeng Jin are with
the Department of Computer Science and Engineering, Texas A&M Uni-
versity, College Station, TX 77843 USA (e-mail: yueningl@tamu.edu;
daochen.zha@tamu.edu; zkxiong@tamu.edu; jin@tamu.edu).

Zhengzhang Chen and Haifeng Chen are with NEC Laboratories
America, Princeton, NJ 08540 USA (e-mail: zchen@nec-labs.com; haifeng@
nec-labs.com).

Xia Hu is with the Department of Computer Science, Rice University,
Houston, TX 77005 USA (e-mail: xia.hu@rice.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3105636.

Digital Object Identifier 10.1109/TNNLS.2021.3105636

more and more important for people to understand the under-
lying regularity of the vast amount of data and to identify the
unusual or abnormal instances [1]–[3]. Centered around this
goal, anomaly detection plays a very important role in vari-
ous real-world applications, such as fraud detection [4], [5],
cybersecurity [6], medical diagnosis [7], and social network
analysis [8]–[10].

Driven by the success of deep learning, there has been a
surge of interests [11]–[14] in adopting deep neural networks
for anomaly detection. Deep neural networks can learn to
represent the data as a nested hierarchy of concepts to cap-
ture the complex structure in the data and thus significantly
surpass traditional anomaly detection methods as the scale
of data increases [15]. However, building a powerful deep
neural network system for a real-world complex application
usually still heavily relies on human expertise to fine-tune
the hyperparameters and design the neural architectures. These
efforts are usually time-consuming and the resulting solutions
may still have suboptimal performance.

Neural architecture search (NAS) [16]–[18] is one promis-
ing means for automating the design of neural networks,
where reinforcement learning (RL) and evolution have been
used to discover optimal model architectures from data [19],
[20]. Designing an effective NAS algorithm requires two key
components: the search space and the search strategy, which
define what architectures can be represented in principles and
how to explore the search space, respectively. The discovered
neural architectures by NAS have been demonstrated to be on
par or outperform handcrafted neural architectures.

Although the recent years have witnessed significant
progress of NAS techniques in some supervised learning tasks
such as image classification and text classification [16], [20],
the unsupervised setting and the naturally imbalanced data
have introduced new challenges in designing an automated
anomaly detection framework.

1) Lack of Search Space: It is nontrivial to determine the
search space for an anomaly detection task. In partic-
ular, since there is no class label information in the
training data of an anomaly detection task, objective
functions play an important role to differentiate between
normal and anomalous behaviors. Thus, in contrast to

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3849-5523
https://orcid.org/0000-0002-6803-0535
https://orcid.org/0000-0002-1318-6583

2366 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

the supervised learning tasks, we often need to find a
suitable definition of the anomaly and its corresponding
objective function for a given real-world data. One typi-
cal way to define the anomalies is to estimate the relative
density of each sample and declare instances that lie
in a neighborhood with low density as anomalies [13].
Yet, these density-based techniques perform poorly if
the data have regions of varying densities. Another way
to define anomalies is through clustering. An instance
will be classified as normal data if it is close to the
existing clusters, while the anomalies are assumed to
be far away from any existing clusters [11]. However,
these clustering-based techniques will be less effec-
tive if the anomalies form significant clusters among
themselves [4]. The proper definition of anomalies not
only requires domain knowledge from researchers and
experience from data scientists but also needs thorough
and detailed raw data analysis efforts. Thus, different
from the search spaces defined by the existing NAS,
the search space of automated anomaly detection needs
to cover not only the architecture configurations but also
the anomaly definitions with the corresponding objective
functions.

2) Unstable Search Process: The search process may easily
become unstable and fragile when anomaly detection
compounds with architecture search. On one hand,
the imbalanced data distributions make the search
process easily fall into the local optima [21]. On the
other hand, the internal mechanisms of the traditional
NAS may introduce bias in the search process. For
instance, the weight sharing mechanism makes the archi-
tectures that have better initial performance with similar
structures more likely to be sampled [22], [23], which
leads to misjudgments of the child model’s performance.

3) Low Sample Efficiency: Existing NAS algorithms usu-
ally require training a large number of child models
to achieve good performance, which is computationally
expensive, while in real-world anomaly detection tasks,
anomalies or abnormal samples are very rare. Thus,
it requires the search strategy to exploit samples and
historical search experiences more effectively.

To tackle the aforementioned challenges, in this article,
we propose AutoAD, an automated anomaly detection algo-
rithm to find an optimal deep neural network model for a given
dataset. In particular, we first design a comprehensive search
space specifically tailored for anomaly detection. It covers
architecture settings, anomaly definitions, and corresponding
loss functions. Given the predefined search space, we further
propose a curiosity-guided search strategy to overcome the
curse of local optimality. The search agent is encouraged to
seek out regions in the search space that are relatively unex-
plored. The uncertainty about the dynamics of the search agent
is interpreted as the information gain between the agent’s new
belief and the old one. Moreover, we introduce an experience
replay mechanism based on self-imitation learning to enhance
sample efficiency. It can benefit the search process by exploit-
ing good experience in the historical episodes. To evaluate the

performance of AutoAD, we perform an extensive set of exper-
iments on eight benchmark datasets. When tested on the two
important anomaly detection tasks—instance-level abnormal
sample detection and pixel-level defect region segmentation—
our algorithm demonstrated the superior performance, com-
paring with existing handcrafted models and traditional search
methods. The experimental results also show that AutoAD has
the potential to be applied in more complicated real-world
applications.

The contributions of this article are summarized as follows.

1) We identify a novel and challenging problem (i.e., auto-
mated anomaly detection) and propose a generic frame-
work AutoAD. To the best of our knowledge, AutoAD
describes the first attempt to incorporate AutoML with
an anomaly detection task, and one of the first to extend
AutoML concepts into applications from data mining
fields.

2) We carefully design a search space specifically tailored
to the automated anomaly detection problem, covering
architecture settings, anomaly definitions, and the corre-
sponding objective functions.

3) We propose a curiosity-guided search strategy to over-
come the curse of local optimality and stabilize the
search process.

4) We introduce an experience replay mechanism based
on the self-imitation learning to improve the sample
efficiency.

5) We conduct extensive experiments on eight benchmark
datasets to demonstrate the effectiveness of AutoAD and
provide insights on how to incorporate AutoAD to the
real-world scenarios.

II. RELATED WORK

In this section, we review the related work on NAS.
Recently, NAS has attracted increasing research interests. Its
goal is to find the optimal neural architecture in a predefined
search space to maximize the model performance on a given
task. Designing an NAS algorithm requires two key compo-
nents: the search space and the search strategy (optimization
algorithm) [17].

The search space defines which architectures can be rep-
resented in principles. The existing work of search space
follows two trends: the macro and micro search [18], [20].
The macro search provides an exhaustive-architecture search
space to encourage the controller to explore the space and
discover novel architectures, whereas the micro search induc-
tively limits the search space to accelerate the search process.
The choice and the size of the search space determine the
difficulty of the optimization problem. Yet, even for the case
of the search space based on a single cell, it is still a
challenging problem due to the discrete search space and the
curse of high dimensionality (since more complex models
tend to perform better, resulting in more design choices) [17].
Thereby, incorporating prior knowledge about the typical prop-
erties of architectures well-suited for a task can significantly
reduce the size of the search space and simplify the search
process. Recent research [24] has validated the importance

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATED ANOMALY DETECTION VIA CURIOSITY-GUIDED SEARCH AND SELF-IMITATION LEARNING 2367

Fig. 1. Overview of AutoAD. With the predefined search space and the given dataset, we use an LSTM-based controller to generate actions a. Child
models are sampled from actions a and evaluated with the reward r . Once the search process of one iteration is done, the controller samples M child models
as candidate architectures and then picks the top K from them. The top K architectures’ controller outputs will be fed as the input of the next iteration’s
controller. Parameters θ of the controller are updated with the reward r . r is also shaped by information maximization about the controller’s internal belief
of the model, which is designed to guide the search process (shown as the green line). Good past experiences evaluated by the reward function are stored in
replay buffers for future self-imitations (shown as the blue line).

of the search space in the search process. With extensive
experimental reproducibility studies, a task-tailored, carefully
designed search space plays a more important role than the
other search strategies. Recent works have proposed tailored
search spaces with their applications, including image seg-
mentation [25], adversarial training [26], and augmentation
strategies [19]. To the best of our knowledge, our proposed
AutoAD describes the first attempt to design the search space
specifically customized to the anomaly detection task. AutoAD
uses the micro search space to keep consistent with previous
works. Yet, the contribution of AutoAD in search space is to
design a hierarchical, general-purpose search space, including
global settings for the whole model and local settings in each
layer independently. Moreover, our proposed search space not
only covers the hyperparameters as architecture configurations,
such as the size of convolutional kernels and filters in each
layer, but also incorporates the definition hypothesis and its
corresponding objective function.

The search strategy focuses on how to explore the search
space. Recent approaches include RL [16], [27], Bayesian
optimization [28], and gradient-based methods [29]–[31].
Although these methods have improved upon human-designed
architectures, directly borrowing existing NAS ideas from
image classification to anomaly detection will not work.
Due to the imbalanced data, the search process becomes
more unstable in anomaly detection tasks [21]. As an inter-
nal mechanism in the traditional NAS, weight sharing also
introduces the inductive bias in the search process, which
intensifies the tendency [22]. Weight sharing [20] is pro-
posed to transfer the well-trained weight before to a sam-
pled architecture, to avoid training the offspring architecture
from scratch. Recent research has validated that the weight
sharing mechanism makes the architectures that have bet-
ter initial performance with similar structures more likely
to be sampled [22], which leads to misjudgments of the
child model’s performance. Our work builds upon RL-based
method, which uses a recurrent neural network controller to
choose blocks from its search space. Beyond that, we pro-
pose a curiosity-guided search strategy to stabilize the search

process via encouraging the controller to seek out unexplored
regions in the search space. Our search strategy formulates the
search process as a classical exploration–exploitation tradeoff.
On one hand, it is encouraged to find the optimal child model
more efficiently; on the other hand, it avoids the premature
convergence to a suboptimal region due to the inductive bias
or insufficient search.

Previous work has explored RL in the context of anomaly
detection. Oh and Iyengar [32] formulated sequential anomaly
detection as an inverse RL problem, where the reward function
is inferred from the behavior data. Pang et al. [33] proposed
a deep RL approach to actively explore novel anomaly classes
in semisupervised settings. Lai et al. [34] used deep RL to
meta-learn an active learning strategy. However, these studies
mainly focus on identifying anomalies with RL but do not
consider neural architectures. In this work, we use RL to
search the optimal neural architectures, which complements
previous studies.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we present the preliminaries and problem
definition of our work.

A. Deep AutoEncoder-Based Anomaly Detection

Classical anomaly detection methods, such as local out-
lier factor [35] and one-class SVMs [36], suffer from bad
computational scalability and the curse of dimensionality in
high-dimensional and data-rich scenarios [14]. To tackle these
problems, deep structured models have been proposed to
process the features in a more efficient way. Among recent
deep structured studies, Deep AutoEncoder is one of the most
promising approaches for anomaly detection. The AutoEn-
coder learns a representation by minimizing the reconstruction
error from normal samples [37]. Therefore, it can be used
to extract the common factors of variation from normal
samples and reconstruct them easily and vice versa. Besides
directly employing the reconstruction error as the denoter,
recent studies [11], [13], [14] demonstrate the effectiveness

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

2368 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

of collaborating Deep AutoEncoders with classical anomaly
detection techniques, by introducing regularizers through plug-
ging learned representations into classical anomaly defini-
tion hypotheses. Specifically, there are three typical anomaly
assumptions: density, cluster, and centroid. The density-based
approaches [13] estimate the relative density of each sample
and declare instances that lie in a neighborhood with low
density as anomalies. Under the clustering-based assumption,
normal instances belong to an existing cluster in the dataset,
while anomalies are not contained in any existing cluster [11].
The centroid-based approaches [14] rely on the assumption
that normal data instances lie close to their closest cluster
centroid, while anomalies are far away from them. In this
work, we illustrate the proposed AutoAD by utilizing Deep
AutoEncoder with a variety of regularizers as the basic anom-
aly detection algorithm. The framework of AutoAD could be
easily extended to other deep-structured anomaly detection
approaches.

B. Problem Statement

Different from the traditional NAS, which focuses on opti-
mizing neural network architectures for supervised learning
tasks, automated anomaly detection has the following two
unique characteristics. First, the neural architecture in the
autoencoder needs to be adaptive in the given dataset to
achieve competitive performance. The hyperparameter con-
figurations of neural architecture include the number of
layers, the size of convolutional kernels and filters, and
so on. Second, anomaly detection requires the designs of
definition-hypothesis and corresponding objective function.
Formally, we define the anomaly detection model and the
unified optimization problem of automated anomaly detection
as follows.

1) Anomaly Detection Model: The model of anomaly detec-
tion consists of three key components: the neural network
architecture A of AutoEncoder, the definition-hypothesis H
of anomaly assumption, and the loss function L. We represent
the model as a triple (A, H, L).

2) Automated Anomaly Detection: Let the triple (A,H,L)
denote the search space of anomaly detection models, where
A denotes the architecture subspace, H denotes the definition-
hypothesis subspace, and L denotes the loss functions sub-
space. Given training set Dtrain and validation set Dvalid,
we aim to find the optimal model (A�, H �, L�) to minimize
the objective function J as follows:

(A�, H �, L�)= arg min
A∈A,H∈H,L∈L

J (A(ω), H, L,Dtrain,Dvalid) (1)

where ω denotes the weights well trained on architecture A
and J denotes the loss on Dvalid using the model trained on
the Dtrain with definition hypothesis H , and loss function L.

IV. PROPOSED METHOD

In this section, we propose an automated anomaly detection
framework to find the optimal neural network model for a
given dataset. A general search space is designed to include the
neural architecture hyperparameters, definition hypothesis, and

TABLE I

SET OF FOUR REPRESENTATIVE ANOMALY DETECTION HYPOTHESES
(DENSITY, CLUSTER, CENTRAL, AND RECONSTRUCTION), WHERE f (·)

AND g(·) DENOTE ENCODER AND DECODER FUNCTIONS,
RESPECTIVELY

objective functions. To overcome the curse of local optimality
under certain unstable search circumstances, we propose a
curiosity-guided search strategy to improve search effective-
ness. Moreover, we introduce an experience replay mechanism
based on self-imitation learning to better exploit the past good
experience and enhance the sample efficiency. An overview of
AutoAD is given in Fig. 1.

A. Search Space Design

Because there is a lack of intrinsic search space for anomaly
detection tasks, here, we design the search space for the Deep
AutoEncoder-based algorithms, which is composed of global
settings for the whole model and local settings in each layer
independently. Formally, we have

A = {
f 1(·), . . . , f N (·), g1(·), . . . , gN (·)}

f i(x;ωi) = ACT(NORMA(POOL(CONV(x)))

gi(x;ωi) = ACT(NORMA(UPPOOL(DECONV(f (x))))

score = DIST(g(f (x;ω)), x)+ DEFINEREG(f (x;ω)

(2)

where x denotes the set of instances as input data and ω
denotes the trainable weight matrix. The architecture space
A contains N encoder–decoder layers. f (·) and g(·) denote
encoder and decoder functions, respectively. ACT(·) is the
activation function set. NORMA denotes the normalization
functions. POOL(·) and UPPOOL(·) are pooling methods.
CONV(·) and DECONV(·) are convolution functions. As we
discussed in Section II-A, the encoder–decoder-based anomaly
score score contains two terms: a reconstruction distance and
an anomaly regularizer. DIST(·) is the metric to measure the
distance between the original inputs and the reconstruction
results. DEFINEREG(·) acts as an regularizer to introduce the
definition hypothesis from H . We revisit and extract the anom-
aly detection hypotheses and their mathematical formulas from
state-of-the-art approaches, as shown in Table I. We decom-
pose the search space defined in (2) into the following eight
classes of actions.

Global Settings:
1) Definition-hypothesis determines the way to

define the “anomalies,” which acts as a regularization
term in the objective functions. We consider density-,

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATED ANOMALY DETECTION VIA CURIOSITY-GUIDED SEARCH AND SELF-IMITATION LEARNING 2369

Fig. 2. Example of the search space in AutoAD with two layers, which
is composed of global settings for the whole model (blue and purple parts)
and local settings in each layer (red and green parts). All building blocks are
wired together to form a direct acyclic graph.

cluster-, centroid-, and reconstruction-based assump-
tions, as shown in Table I.

2) Distance measurement stands for the matrix mea-
suring the distance for the reconstruction purpose,
including l1, l2, l2,1 norms, and the structural similarity
(SSIM).
Local Settings in Each Layer:

3) Output channel is the number of channels pro-
duced by the convolution operations in each layer, i.e.,
3, 8, 16, 32, 64, 128, and 256.

4) Convolution kernel denotes the size of the kernel
produced by the convolution operations in each layer,
i.e., 1 × 1, 3 × 3, 5× 5, and 7 × 7.

5) Pooling type denotes the type of pooling in each
layer, including the max pooling and the average pool-
ing.

6) Pooling kernel denotes the kernel size of pooling
operations in each layer, i.e., 1 × 1, 3 × 3, 5 × 5, and
7 × 7.

7) Normalization type denotes the normalization
type in each layer, including three options: batch normal-
ization, instance normalization, and no normalization.

8) Activation function is a set of activation func-
tions in each layer, including Sigmoid, Tanh, ReLU,
Linear, Softplus, LeakyReLU, ReLU6, and ELU.

Thus, we use a (6N + 2) element tuple to represent the
model, where N is the number of layers in the encoder–
decoder-wise structure. Our search space includes an exponen-
tial number of settings. Specifically, if the encoder–decoder
cell has N layers and we allow action classes as above,
it provides 4 × 4 × (7 × 4 × 2 × 4 × 3 × 8)N possible
settings. Suppose that we have N = 6, the number of points
in our search space is 3.9e + 23, which requires an efficient
search strategy to find an optimal model out of the large search
space. Fig. 2 shows an example of the proposed search space
in AutoAD.

B. Curiosity-Guided Search

We now describe how to search the optimal model within
the given search space. Inspired by the recent NAS work,
the search strategy is considered as a meta-learning process.
A controller is introduced to explore a given search space
by training a child model to get an evaluation for guiding

exploration [20]. The controller is implemented as a recurrent
neural network. We use the controller to generate a sequence of
actions for the child model. The whole process can be treated
as an RL problem with an action a1:T and a reward function r .
To find the optimal model, we ask the controller to maximize
its expected reward r , which is the expected performance in
the validation set of the child models.

There are two sets of learnable parameters: one set is the
shared parameters of the child models, denoted by ω, and the
other one is from the LSTM controller, denoted by θ . ω is
optimized using stochastic gradient descent (SGD) with the
gradient ∇ω as

∇ωEm∼π(m;θ)[L(m;ω)] ≈ ∇ωL(m, ω) (3)

where child model m is sampled from the controller’s actions
π(m; θ) and L(m, ω) is the loss function composed from the
search space above, computed on a minibatch of training data.
The gradient is estimated using the Monte Carlo method.

Since the reward signal r is nondifferentiable, to maximize
the expected reward r , we fix ω and apply the REINFORCE
rule [38] to update the controller’s parameters θ as

∇θEP(a1:t ;θ)[r∇θ log P(at |a1:t−1; θ)] (4)

where r is computed as the performance on the validation
set, rather than on the label-free training set. We define the
reward r as the detection accuracy of the sampled child model.
We also adopt different evaluation metrics, including AUROC,
AUPR, and RPRO in Section V. An empirical approximation
of (4) is

L = 1

n

n∑
k=1

T∑
t=1

(rk − b)∇θ log P(at |a1:t−1; θ) (5)

where n is the number of different child models that the
controller samples in one batch and T is the number of tokens.
b acts as a baseline function to reduce the estimate variance.

1) Curiosity-Driven Exploration: Despite being widely uti-
lized due to search efficiency, weight sharing approaches are
roughly built on empirical experiments instead of solid theo-
retical ground [22]. The unfair bias will make the controller
misjudge the child-model performance: those who have better
initial performance with similar child models are more likely
to be sampled. In the meanwhile, due to the imbalanced label
distribution in anomaly detection tasks, it is easy to make the
controller fall into local optima.

To address these problems, AutoAD builds on the the-
ory of curiosity-driven exploration [39], aiming to encour-
age the controller to seek out regions in the searching
spaces that are relatively unexplored. It brings us a typical
exploration–exploitation dilemma to guide the controller.

Bayesian RL [40], [41] offers us a formal guarantee as
coherent probabilistic model for RL. It provides a princi-
pled framework to express the classic exploration–exploitation
dilemma, by keeping an explicit representation of uncertainty
and selecting actions that are optimal with respect to a version
of the problem that incorporates this uncertainty [41]. Here,
instead of a vanilla RNN, we use a Bayesian LSTM as the
structure of the controller to guide the search. The controller’s

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

2370 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

understanding of the search space is represented dynamically
over the uncertainty of the parameters of the controller.
Assuming a prior p(θ), it maintains a distribution prior over
the controller’s parameters through a distribution over θ . The
controller models the actions via p(at |a1:t; θ), parameterized
by θ . According to curiosity-driven exploration [39], the uncer-
tainty about the controller’s dynamics can be formalized as
maximizing the information

I (at; θ |a1:t−1) = Eat∼P(·|a1:t−1)

[
DKL[p(θ |a1:t−1) || p(θ)]] (6)

where the Kullback–Leibler (KL) divergence can be inter-
preted as information gain, which denotes the mutual infor-
mation between the controller’s new belief over the model to
the old one.

Thus, the information gain of the posterior dynamics dis-
tribution of the controller can be approximated as an intrinsic
reward, which captures the controller’s surprise in the form
of a reward function. We can also use the REINFORCE rule
to approximate planning for maximal mutual information by
adding the intrinsic reward along with the external reward
(accuracy on the validation set) as a new reward function.
It can also be interpreted as a tradeoff between exploitation
and exploration as

rnew(at) = r(at)+ ηDKL[p(θ |a1:t−1) || p(θ)] (7)

where η ∈ R+ is a hyperparameter controlling the urge to
explore. However, it is generally intractable to calculate the
posterior p(θ |a1:t−1) in (7).

2) Variational Bayes-by-Backprop: In this section, we pro-
pose a tractable solution to maximize the information gain
objective presented in the previous subsection. To learn a
probability distribution over network parameters θ , we propose
a practical solution through a backpropagation compatible
algorithm, bayes-by-backprop [40], [42].

In Bayesian models, latent variables are drawn from a prior
density p(θ). During inference, the posterior distribution
p(θ |x) is computed given a new action through Bayes’ rule

p(at |a1:t−1) = p(θ)p(at |a1:t−1; θ)

p(at |a1:t−1)
. (8)

The denominator can be computed through the integral

p(at |a1:t−1) =
∫

�

p(at |a1:t−1; θ)p(θ)dθ. (9)

As controllers are highly expressive parametrized LSTM
networks, which are usually intractable as high dimensionality.
Instead of calculating the posterior p(θ |Dtrain) for a training
dataset Dtrain, we approximate the posterior through an alter-
native probability densities over the latent variables θ as q(θ),
by minimizing the KL divergence DKL[q(θ) || p(θ)]. We use
D instead of Dtrain in the following for brevity:

q(θ) =
|�|∏
i=1

N (θi |μi ; σ 2
i). (10)

q(θ) is given by a Gaussian distribution, with μ Gaussian’s
mean vector and σ the covariance matrix.

Once minimized the KL divergence, q(·) would be the
closest approximation to the true posterior. Let log p(D|θ)

be the log likelihood of the model. Then, the network can
be trained by minimizing the variational free energy as the
expected lower bound

L[q(θ),D] = −Eθ∼q(·)
[

log p(D|θ)
]+ DKL

[
q(θ) || p(θ)

]
(11)

which can be approximated using N Monte Carlo samples
from the variational posterior with N samples drawn according
to θ ∼ q(·)

L[q(θ),D]≈
N∑

i=1

−log p(D|θ(i))+ log q(θ (i))− log p(θ (i)).

(12)

3) Posterior Sharpening: We discuss how to derive a dis-
tribution q(θ |D) to improve the gradient estimates of the
intractable likelihood function p(D), which is related to
variational autoencoders (VAEs) [43]. Inspired from strong
empirical evidence and extensive work on VAEs, the “sharp-
ened” posterior yields more stable optimization. We now use
posterior sharpening strategy to benefit our search process.

The challenging part of modeling the variational posterior
q(θ |D) is the high dimensional θ ∈ R

d , which makes the mod-
eling unfeasible. Given the first term of the loss − log p(D|θ)
is differentiable with respect to θ , we propose to parameterize
q as a linear combination of θ and − log p(D|θ). Thus, we can
define the hierarchical posterior of the form in (10)

q(θ |D) =
∫

q(θ |φ,D)q(φ)dφ (13)

q(θ |φ,D) = N (
θ |φ − η ∗ −∇φ log p(D|φ)σ 2 I

)
(14)

with μ, σ ∈ R
d , and q(φ) = N (φ|μ, σ) as the same setting

in the standard variational inference method. η ∈ R
d can be

treated as a per-parameter learning rate.
In the training phrase, we have θ ∼ q(θ |D) via ancestral

sampling to optimize the loss as

Lexplore = L(μ, σ, η)

= ED[Eq(φ)q(θ |φ,D)[L(D, θ, φ|μ, σ, η)]] (15)

with L(D, θ, φ|μ, σ, η) given by

L(D, θ, φ|μ, σ, η)=− log p(D|θ)+KL[q(θ |φ,D) || p(θ |φ)]
+ 1

C
KL[q(φ) || p(φ)] (16)

where the constant C is the number of truncated sequences.
Thus, we turn to deriving the training loss function for

posterior sharpening. With the discussion above, we assume
a hierarchical prior for the parameters such that p(D) =∫

p(D|θ)p(θ |φ)p(φ)dθdφ. Then, the expected lower bound

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATED ANOMALY DETECTION VIA CURIOSITY-GUIDED SEARCH AND SELF-IMITATION LEARNING 2371

Algorithm 1 Automated Anomaly Detection
1: Input: Input datasets Dtrain,Dvalid, and search space S.
2: Output: Optimal model with the best performance.
3: Initialize parameter θ, ω;
4: Initialize replay buffer B← ∅;
5: for each iteration do
6: Perform curiosity-guided search via a LSTM controller
7: for each step t do
8: Sample an action at ∼ π(a1:t−1; θ);
9: ω← ω − η∇ωEat∼π(a1:t−1;θ)[L(a1:t−1;ω)]; {Eq. 3}

10: θ ← θ − ηLexplore(Dtrain, θ); {Eq. 15}
11: rnew(at)← r(at)+ ηDKL[p(θ |a1:t−1) || p(θ)]; {Eq. 7}
12: Update controller via the new reward rnew(at); {Eq. 4}
13: if the performance of at on Dval outperforms the

actions stored in B then
14: B← {a, r} ∪ B; Update replay buffer;
15: end if
16: end for
17: Perform self-imitation learning
18: for each step t do
19: Sample a mini-batch {a, r} from B;
20: ω← ω − η∇ωEat∼π(a1:t−1;θ)[L(a1:t−1;ω)]; {Eq. 3}
21: θ ← θ − ηL replay(Dvalid, θ); {Eq. 19}
22: end for
23: end for

on p(D) is defined as follows:
log p(D)

= log

(∫
p(D|θ)p(θ |φ)p(φ)dθdφ

)

� Eq(φ,θ |D)

[
log

p(D|θ)p(θ |φ)p(φ)

q(φ, θ |D)

]

= Eq(θ |φ,D)q(φ)

[
log

p(D|θ)p(θ |φ)p(φ)

q(θ |φ,D)q(φ)

]

= Eq(φ)

[
Eq(θ |φ,D)

[
log p(D|θ)+ log

p(θ |φ)

q(θ |φ,D)

]

+ log
p(φ)

q(φ)

]

= Eq(φ)

[
Eq(θ |φ,D)

[
log p(D|θ)

−KL[q(θ |φ,D) || p(θ |φ)]]
×KL[q(φ) || p(φ)]

]
. (17)

C. Experience Replay Via Self-Imitation Learning

The goal of this section is to exploit the past good expe-
riences for the controller to benefit the search process by
enhancing the sample efficiency, especially considering there
are only a limited number of negative samples in anomaly
detection tasks. In this article, we propose to store rewards
from historical episodes into experience replay buffers [44]:
B = (a1:t , ra), where (a1:t and ra) are the actions and
the corresponding reward, respectively. To exploit good past
experiences, we update the experience replay buffer for child

models with better rewards and amplify the contribution from
them to the gradient of θ . More specifically, we sample child
models from the replay buffer using the clipped advantage
(r − b)+, where the rewards r in the past experiences outper-
form the current baseline b. Comparing with (5), the objective
to update the controller’s parameter θ through the replay buffer
is

∇θEa1:t∼πθ ,b∼B[− log πθ(at |a1:t−1)(ra − b)+]. (18)

Then, an empirical approximation of (18) is

L replay = 1

n

n∑
k=1

T∑
t=1

∇θ − log πθ(at |a1:t−1)(ra − b)+ (19)

where n is the number of different child models that the
controller samples in one batch and T is the number of tokens.

Overall, the joint optimization process is specified in Algo-
rithm 1, which consists of two phrases: the curiosity-guided
search process and the self-imitation learning process. The
optimal model with the best performance on the validation
set is utilized for the anomaly detection tasks.

V. EXPERIMENTS

In this section, we conduct extensive experiments to answer
the following four research questions.

1) Q1: How effective is AutoAD compared with state-of-
the-art handcrafted algorithms?

2) Q2: Whether or not the two key components of AutoAD,
i.e., curiosity-guided search and experience replay, are
effective in the search process?

3) Q3: Compared with random search, how effective is the
proposed search strategy?

4) Q4: Does AutoAD have the potential to be applied in
more complicated real-world applications?

A. Datasets and Tasks

We evaluate AutoAD on seven benchmark datasets for
instance-level abnormal sample detection and pixel-level
defect region segmentation tasks. We also conduct a case study
on the CAT [45] dataset.

1) MNIST [46]: An image dataset consists of handwritten
digits. It has a training set of 60 000 examples and a test
set of 10 000 examples.

2) Fashion-MNIST [47]: A MNIST-like dataset contains
fashion product with a training set of 60 000 examples
and a test set of 10 000 examples. Each example is a
28 × 28 grayscale image associated with a label from
ten classes.

3) CIFAR-10 [48]: A image dataset consists of 50 000
training images and 10 000 test images in ten different
classes. Each example is a 32 × 32 three-channel image.

4) Tiny-ImageNet [49]: An image dataset consists of a
subset of ImageNet images. It contains 10 000 test
images from 200 different classes. We downsample each
image to the size of 64 × 64.

5) MVTec-AD [50]: A benchmark dataset relates to indus-
trial inspection in the application of anomaly detection.

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

2372 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

TABLE II

PERFORMANCE COMPARISON ON INSTANCE-LEVEL ABNORMAL SAMPLE DETECTION. THE RESULTS FROM AUTOAD AND THE TWO BASELINES
MSP [51] AND ODIN [52] ARE LISTED AS AUTOAD/MSP/ODIN. OOD: OUT-OF-DISTRIBUTION

It contains over 5000 high-resolution images divided
into 15 categories in terms of different objects and
textures. Each category comprises two parts: a training
set of defect-free images, as well as a test set composed
of defect-free images and the ones with various defects.
We downsample each image to size 224 × 224.

6) CAT [45]: A cat dataset includes 10 000 cat images.
We downsample each image to size 224 × 224.

7) Gaussian Noise: A synthetic Gaussian noise dataset
consists of 1000 random 2-D images, where the value
of each pixel is sampled from an independent and
identically distributed (i.i.d) Gaussian distribution with
mean 0.5 and unit variance. We further clip each pixel
into the range [0, 1].

8) Uniform Noise: A synthetic uniform noise dataset
consists of 1000 images, at which the value of each
pixel is sampled from an i.i.d uniform distribution on
[0, 1].

For the instance-level abnormal sample detection task,
we use four benchmark datasets (i.e., MNIST [46], Fashion-
MNIST [47], CIFAR-10 [48], and Tiny-ImageNet [49]) and
two synthetic noise datasets (i.e., Gaussian and Uniform).
Synthetic noise datasets consist of 1000 random 2-D images,
where the value of each pixel is sampled from an i.i.d Gaussian
distribution with mean 0.5 and unit variance. We further clip
each pixel into the range [0, 1] or an i.i.d uniform distribution
on [0, 1]. Different datasets contain different classes of images.
We manually injected abnormal samples (also known as out-
of-distribution samples), which consists of images randomly
sampled from other datasets. For all the six datasets, we train
an anomaly detection model on the training set, which only
contains in-distribution samples, and use a validation set with
out-of-distribution samples to guide the search, and another
test set with out-of-distribution samples to evaluate the per-
formance. The contamination ratio in the validation set and
the test set is both 0.05. The train/validation/test split ratio is
6:2:2. Two state-of-the-art methods, including MSP [51] and
ODIN [52] are used as baselines.

For the pixel-level defect region segmentation task, we use
a real-world dataset MVTec-AD [50]. MVTec-AD contains
high-resolution images with different objects and texture cat-
egories. Each category comprises a set of defect-free train-
ing images and a test set of images with various kinds of
defects and images without defects. We train the model on
the defect-free training set and split the whole test set into
two halves for validation and testing. Three state-of-the-art
methods, including AutoEncoder [53], AnoGAN [54], and
feature dictionary [55], are used as baselines.

B. Baselines

We compare AutoAD with five state-of-the-art handcrafted
algorithms and the random search strategy.

1) MSP [51]: The softmax probability distribution is used
to detect the anomalies in tasks of computer vision,
natural language processing, and automatic speech. The
anomaly detection is performed based on the follow-
ing assumption: the correctly classified examples have
greater maximum softmax probabilities than those of
erroneously classified and out-of-distribution examples.

2) ODIN [52]: The pretrained neural network is reused to
detect the out-of-distribution images. ODIN separates
the softmax probability distributions between in- and
out-of-distribution instance, by using temperature scal-
ing and adding small perturbations on the image data.

3) AutoEncoder [53]: The structure of convolutional
AutoEncoders is applied for unsupervised defect seg-
mentation on image data. More specifically, it utilizes
the loss function based on SSIM and successfully exam-
ines interdependencies between local image regions to
reveal the defective regions.

4) AnoGAN [54]: It is a deep convolutional generative
adversarial network used to identify the anomalous
image data. It learns a manifold of normal anatomical
variability and maps images to a latent space to estimate
the anomaly scores.

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATED ANOMALY DETECTION VIA CURIOSITY-GUIDED SEARCH AND SELF-IMITATION LEARNING 2373

TABLE III

PERFORMANCE COMPARISON ON PIXEL-LEVEL DEFECT REGION SEG-
MENTATION. THE RESULTS OF RPRO AND AUROC ARE LISTED AS

RPRO/AUROC. BASELINE RESULTS ARE DIRECTLY COLLECTED

FROM THE ORIGINAL PAPER [50]

5) Feature Dictionary [55]: It applies the convolutional
neural networks and self-similarity to detect and localize
anomalies in image data. More specifically, the abnor-
mality degree of each image region is obtained by
estimating its similarity to a dictionary of anomaly-free
subregions in a training set.

6) Random Search [24], [56]: Instead of learning a policy
to optimize the search progress, random search generates
a neural architecture randomly at each step. It has been
widely demonstrated that random search is a strong
baseline hard to be surpassed in NAS.

C. Experimental Setup

We train the child models on the training set under the
anomaly-free settings and update the controller on the val-
idation set via the reward signal. The controller RNN is
a two-layer LSTM with 50 hidden units on each layer.
It is trained with the ADAM optimizer with a learning rate
of 3.5e−4. Weights are initialized uniformly in [−0.1, 0.1].
The search process is conducted for a total of 500 epochs.
The size of the self-imitation buffer is 10. We use a Tanh
constant of 2.5 and a sample temperature of 5 to the hidden
output of the RNN controller. We train the child models by
utilizing a batch size of 64 and a momentum of 0.9 with the
ADAM optimizer. The learning rate starts at 0.1 and is dropped
by a factor of 10 at 50% and 75% of the training progress,
respectively.

D. Evaluation Metrics

We adopt the following metrics to measure the effectiveness.

1) AUROC [57] is the area under the receiver operating
characteristic curve, which is a threshold-independent
metric [57]. The receiver operating characteristic (ROC)
curve depicts the relationship between TPR and FPR.
The AUROC can be interpreted as the probability that

a positive example is assigned a higher detection score
than a negative example [58].

2) AUPR [59] is the area under the precision–recall (PR)
curve, which is another threshold-independent met-
ric [59], [60]. The PR curve is a graph showing the
precision = TP/(TP +FP) and recall = TP/(TP + FN)
against each other. The metrics AUPR-In and AUPR-
Out denote the area under the PR curve, where positive
samples and negative samples are specified as positives,
respectively.

3) RPRO [50] stands for the relative per-region overlap.
It denotes the pixel-wise overlap rate of the segmenta-
tions with the ground truth.

E. Results

1) Performance on Out-of-Distribution Sample Detection:
To answer the research question Q1, we compare AutoAD
with the state-of-the-art handcrafted algorithms for the
instance-level abnomral sample detection task using metrics
AUROC, AUPR-In, and AUPR-Out. Considering the auto-
mated search framework of AutoAD, we represent its per-
formance by the best model found during the search process.
In these experiments, we follow the setting in [52] and [62].
Each model is trained on individual dataset Din, which is
taken from MNIST, Fashion-MNIST, CIFAR-10, and Tiny-
ImageNet. At test time, the test images from Din dataset can
be viewed as the in-distribution (positive) samples. We sample
out-of-distribution (negative) images from another real-world
or synthetic noise dataset, after downsampling/upsampling and
reshaping their sizes as the same as Din.

As can be seen from Table II, in most of the test cases,
the models discovered by AutoAD consistently outperform
the handcrafted out-of-distribution detection methods with
pretrained models (ODIN) [52] and without pretrained models
(MSP) [51]. It indicates that AutoAD could achieve higher
performance in accuracy, precision, and recall simultaneously,
with a more precise detection rate and fewer nuisance alarms.

2) Performance on Defect Sample Detection: To further
answer question Q1, we test AutoAD on the pixel-level defect
region segmentation task. The results from Table III show
that AutoAD consistently outperforms the baseline methods
by a large margin in terms of AUROC and RPRO. The
higher AUROC demonstrates that the model found by AutoAD
precisely detects images with defect sections out of the positive
samples. The results also show that AutoAD has a better
performance in RPRO. This indicates that the search process of
AutoAD helps the model to locate and represent the anomaly
regions in negative images.

As a step-by-step concrete example, given input datasets
from different benchmarks, we first define the global search
space, including definition hypothesis and distance measure-
ment, and then define a three-layer encoder–decoder in the
local space, and each layer contains output channel, convolu-
tion kernel, pooling type, pooling kernel, normalization type,
and activation function. Table IV shows the best architectures
discovered by AutoAD on both instance-level abnormal sam-
ple detection and pixel-level defect region segmentation tasks.

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

2374 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

TABLE IV

ARCHITECTURES DISCOVERED BY AUTOAD FOR MNIST, FASHION-
MNIST, CIFAR-10, TINY-IMAGENET, AND MVTEC-AD

3) Effectiveness of Curiosity-Guided Search: To qualita-
tively evaluate the effectiveness of the curiosity-guided search
for research question Q2, we perform ablation and hyperpa-
rameter analysis on the Fashion-MNIST dataset with sam-
ples from CIFAR-10 as anomalies. Specifically, we control
the hyperparameter η in (7) for illustration. Note that the
mathematical expression of η = 0 represents that there is no
exploration. From Table V(a), we can observe that the follow-
ing conditions hold. First, the absence of exploration would
negatively impact the final performance and the AUROC after
200 epochs could drop 1.9%. Second, the curiosity-guided
explorations help the controller find the optimal model faster.
The better performance could be achieved in the 20th, 100th
epochs when the controller has a larger weight η on explo-
rations. This indicates that curiosity-guided search is a promis-
ing way for exploring more unseen spaces. Third, comparing
AUROC between η = 0.01 and η = 0.1, we observe that
there is no significant increase in the final performance after
200 epochs. This indicates that a higher rate of explorations
cannot always guarantee a higher performance. Finally, if we
treat the performance of the searched result as Gaussian distri-
butions, the standard deviations of the AutoAD’s performance
keep increasing when η increases. This validates that the
curiosity-guided search strategy increases the opportunity for
the controller to generate child models in a more diverse way.

4) Effectiveness of Experience Replay: To further answer
the question Q2, we evaluate the effectiveness of the experi-
ence replay buffers, by altering the size of the replay buffers B
in (19). The corresponding results are reported in Table V(b).
The results indicate that the increase of the buffer size could
enhance model performance after 200 epochs. We also observe
that the size of the buffer is sensitive to the final performance,
as better performance would be achieved in the 20th, 100th
epoch with a larger buffer size. This indicates that self-
imitation learning-based experience replay is useful in the
search process. A larger buffer size brings benefits to exploit
past good experiences.

5) Comparison Against Traditional NAS: Instead of apply-
ing the policy gradient-based search strategy, one can use

TABLE V

ABLATIONS AND PARAMETER ANALYSIS ON FASHION-MNIST
(IN-DISTRIBUTION: NORMAL DATA) AND CIFAR-10 (OUT-OF-

DISTRIBUTION: ANOMALIES). WE REPORT THE PERFORMANCE

OF AUTOAD UNDER DIFFERENT SEARCH STRATEGIES AND

HYPERPARAMETER SETTINGS, WITH 20TH , 100TH , AND
200TH ITERATIONS

random search to find the best model. Although this baseline
seems simple, it is often hard to surpass [24], [56]. We com-
pare AutoAD with random search to answer the research ques-
tion Q3. The quality of the search strategy can be quantified
by the following three metrics: 1) the average performance of
the top-5 models found so far; 2) the mean performance of
the searched models in every 20 epochs; and 3) the standard
deviation of the model performance in every 20 epochs. From
Fig. 3, we can observe that the following conditions hold.
First, our proposed search strategy is more efficient to find the
well-performed models during the search process. As shown
in the first row of Fig. 3, the performance of the top-5 mod-
els found by AutoAD consistently outperforms the random
search. The results also show that not only the best model
of our search strategy is better than that of random search,
but also the improvement of average top models is much
more significant. This indicates that AutoAD explores better
models faster than the random search. Second, there is a clear
increasing tendency in the mean performance of AutoAD,
which cannot be observed in random search. It indicates that
our search controller can gradually find better strategies from
the past search experiences along the learning process, while
the random search’s controller has a relatively low chance to
find a good child model. Third, compared with the random
search, there is a clear dropping of standard deviation along
the search process. It verifies that our search strategy provides
a more stable search process.

F. Case Study

To answer the research question Q4, we provide further
analysis for the pixel-level defect region segmentation task,
to get some insights about how to further improve the detection
performance in more complicated real-world settings. To make
the anomaly sections and the rest sections more distinguish-
able in the latent space, we use the reconstruction error to
learn intrinsic representation for positive samples to extract
common patterns. Yet, it is hard to directly apply AutoAD
into more complicated, real-world settings. Due to the pure
data-driven strategy, the reconstruction-based denoters might
be misled by background noises, other objects, or irrelevance

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATED ANOMALY DETECTION VIA CURIOSITY-GUIDED SEARCH AND SELF-IMITATION LEARNING 2375

Fig. 3. Performance comparison with random search. Top row: progression of average performance in top-5 models for different search methods, i.e.,
AutoAD (red lines with circles) and random search (blue lines with asterisks). Middle and bottom rows: mean and standard deviation of model performances
in every 20 epochs along the search progress.

Fig. 4. Case study of anomaly segmentation. The pixel-level reconstruction is regularized by conducting pixel-level collaboratively with the results of feature
localization and saliency recognition. AutoAD accurately identifies the anomaly regions (cola bin and collar) of the target object (cat) in the first two images
and treats the third target object (cat) as abnormal-region-free.

features. We hereby introduce two strategies into AutoAD for
regularization without increasing the model complexity.

1) Saliency Refinement Via Target Object Recognition:
We introduce a mask map s into the reconstruction-based
denoters from pretrained models. It is used for localizing
and identifying target salient object, in order to eliminate
the negative effect caused by background noises and other
objects in the same image. To concisely localize and identify
the salient object, the key idea is to extract dense features
for semantic segmentation. In our experiment, we introduce s
from DeepLabV3 [62], which is pretrained on PASCAL VOC
2012 [63].

2) Feature Augmentation via Gradient-Based Localization:
In order to amplify the contribution of the irrelevance features
from the salient object, we introduce the feature augmentation
map to re-weight the reconstruction result. We also introduce a
coarse localization map to highlight the irrelevance regions in
the image from an interpretability perspective. Feature impor-

tance is reflected as gradients signal via backpropagation. The
key idea is to use the gradient information flowing into the last
convolutional layer of the CNN to assign importance values
to each neuron for a particular decision of interest. Here,
we follow the interpretation method from Grad-CAM [64]–
[67], which is designed to highlight important features and
pretrained on VGG-16 [68]. The feature augmentation map is
defined as opposite to the Grad-CAM: (1/mn)

∑
m

∑
n(1 −

(∂yi/∂ Amn)).
After the two steps above, we reweight the reconstructions

αi = ‖g(f (xi;W))− xi‖2
2 �

1

mn

∑
m

∑
n

(
1− ∂yi

∂ Amn

)
� si

(20)

where xi ∈ Rm×n is a training sample, yi is its target object
class, f (·), g(·) denotes encoder–decoder structures produced
by AutoAD, and A denotes the feature map activation of
a latent layer. We use a real-world dataset CAT [45] for

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

2376 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

illustration. We find the optimal model via AutoAD and get
the pixel-level reconstruction map. Then, we further refine
the map via saliency recognition and feature localization
strategies. As can be seen from Fig. 4, AutoAD achieves better
visualization results after applying the reweighting tricks dis-
cussed above. We also observe that the model can successfully
identify the anomaly regions (cola bins and collars) within the
salient objects (kitties). Meanwhile, it reduces the effect caused
by the background noises and irrelevant objects.

VI. CONCLUSION

In this article, we investigated a novel and challenging
problem of automated deep model search for anomaly detec-
tion. Different from the existing NAS methods that focus on
discovering effective deep architectures for supervised learn-
ing tasks, we proposed AutoAD, an automated unsupervised
anomaly detection framework, which aims to find an optimal
neural network model within a predefined search space for a
given dataset. AutoAD builds on the theory of curiosity-driven
exploration and self-imitation learning. It overcomes the curse
of local optimality, the unfair bias, and inefficient sam-
ple exploitation problems in the traditional search methods.
We evaluated the proposed framework using extensive experi-
ments on eight benchmark datasets for instance-level abnormal
sample detection and pixel-level defect region segmentation.
The experimental results demonstrated the effectiveness of our
approach.

REFERENCES

[1] K. Padmanabhan, Z. Chen, S. Lakshminarasimhan, S. S. Ramaswamy,
and B. T. Richardson, “Graph-based anomaly detection,” in Practical
Graph Mining With R. 2013.

[2] Y. Lin et al., “Collaborative alert ranking for anomaly detection,”
in Proc. 27th ACM Int. Conf. Inf. Knowl. Manage., Oct. 2018,
pp. 1987–1995.

[3] Y. Li, N. Liu, J. Li, M. Du, and X. Hu, “Deep structured cross-modal
anomaly detection,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2019, pp. 1–8.

[4] V. Chandola et al., “Anomaly detection: A survey,” ACM Comput. Surv.,
vol. 41, no. 3, pp. 1–58, 2009.

[5] W. Cheng, K. Zhang, H. Chen, G. Jiang, Z. Chen, and W. Wang,
“Ranking causal anomalies via temporal and dynamical analysis on
vanishing correlations,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2016, pp. 805–814.

[6] S. Wang et al., “Attentional heterogeneous graph neural network: Appli-
cation to program reidentification,” in Proc. SDM, 2019, pp. 693–701.

[7] J. Lin, E. Keogh, A. Fu, and H. Van Herle, “Approximations to
magic: Finding unusual medical time series,” in Proc. 18th IEEE Symp.
Comput.-Based Med. Syst. (CBMS), Jun. 2005, pp. 329–334.

[8] Y. Li, X. Huang, J. Li, M. Du, and N. Zou, “SpecAE: Spectral
autoencoder for anomaly detection in attributed networks,” in Proc. 28th
ACM Int. Conf. Inf. Knowl. Manage., 2019, pp. 2233–2236.

[9] X. Huang, Q. Song, Y. Li, and X. Hu, “Graph recurrent networks with
attributed random walks,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2019, pp. 732–740.

[10] N. Liu, Q. Tan, Y. Li, H. Yang, J. Zhou, and X. Hu, “Is a single vector
enough? Exploring node polysemy for network embedding,” in Proc.
25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2019,
pp. 932–940.

[11] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolutional
autoencoders,” in Proc. NIPS, 2017, pp. 373–382.

[12] S. Wang et al., “Heterogeneous graph matching networks for unknown
malware detection,” in Proc. 28th Int. Joint Conf. Artif. Intell.,
Aug. 2019.

[13] B. Zong et al., “Deep autoencoding Gaussian mixture model for unsu-
pervised anomaly detection,” in Proc. ICLR, 2018.

[14] L. Ruff et al., “Deep one-class classification,” in Proc. ICML, 2018,
pp. 4393–4402.

[15] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection
with outlier exposure,” 2018, arXiv:1812.04606. [Online]. Available:
http://arxiv.org/abs/1812.04606

[16] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in Proc. ICLR, 2016.

[17] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search:
A survey,” J. Mach. Learn. Res., vol. 21, no. 1, pp. 1997–2017,
2019.

[18] Y. Li, D. Zha, P. Venugopal, N. Zou, and X. Hu, “PyODDS: An end-to-
end outlier detection system with automated machine learning,” in Proc.
Companion Proc. Web Conf., Apr. 2020, pp. 153–157.

[19] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,
“AutoAugment: Learning augmentation strategies from data,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 113–123.

[20] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in Proc. ICML, 2018,
pp. 4095–4104.

[21] G. Swirszcz, W. Marian Czarnecki, and R. Pascanu, “Local minima
in training of neural networks,” 2016, arXiv:1611.06310. [Online].
Available: http://arxiv.org/abs/1611.06310

[22] X. Chu, B. Zhang, and R. Xu, “FairNAS: Rethinking evaluation fairness
of weight sharing neural architecture search,” 2019, arXiv:1907.01845.
[Online]. Available: http://arxiv.org/abs/1907.01845

[23] G. Bender et al., “Can weight sharing outperform random architecture
search? An investigation with TuNAS,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 14323–14332.

[24] L. Li and A. Talwalkar, “Random search and reproducibility for
neural architecture search,” 2019, arXiv:1902.07638. [Online]. Avail-
able: http://arxiv.org/abs/1902.07638

[25] C. Liu et al., “Auto-DeepLab: Hierarchical neural architecture search
for semantic image segmentation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 82–92.

[26] X. Gong, S. Chang, Y. Jiang, and Z. Wang, “AutoGAN: Neural archi-
tecture search for generative adversarial networks,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 3224–3234.

[27] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture
search on target task and hardware,” in Proc. ICLR, 2018.

[28] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture
search system,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Jul. 2019, pp. 1946–1956.

[29] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in Proc. ICLR, 2019.

[30] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “SMASH: One-shot
model architecture search through hypernetworks,” in Proc. ICLR, 2018.

[31] C. Liu et al., “Progressive neural architecture search,” in Proc. ECCV,
2018, pp. 19–34.

[32] M.-H. Oh and G. Iyengar, “Sequential anomaly detection using inverse
reinforcement learning,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2019, pp. 1480–1490.

[33] G. Pang, A. van den Hengel, C. Shen, and L. Cao, “Toward deep
supervised anomaly detection: Reinforcement learning from partially
labeled anomaly data,” 2020, arXiv:2009.06847. [Online]. Available:
http://arxiv.org/abs/2009.06847

[34] K.-H. Lai, D. Zha, Y. Li, and X. Hu, “Dual policy distillation,” 2020,
arXiv:2006.04061. [Online]. Available: http://arxiv.org/abs/2006.04061

[35] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” ACM SIGMOD Rec., vol. 29, no. 2,
pp. 93–104, 2000.

[36] Y. Chen, X. Sean Zhou, and T. S. Huang, “One-class SVM for learning
in image retrieval,” in Proc. Int. Conf. Image Process., 2001, pp. 34–37.

[37] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2017, pp. 665–674.

[38] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[39] Y. Sun, F. Gomez, and J. Schmidhuber, “Planning to be surprised:
Optimal Bayesian exploration in dynamic environments,” in Proc. AGI,
2011, pp. 41–51.

[40] M. Fortunato, C. Blundell, and O. Vinyals, “Bayesian recurrent neural
networks,” in Proc. ICLR, 2017.

[41] M. Ghavamzadeh et al., “Bayesian reinforcement learning: A survey,”
Found. Trends Mach. Learn., to be published.

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: AUTOMATED ANOMALY DETECTION VIA CURIOSITY-GUIDED SEARCH AND SELF-IMITATION LEARNING 2377

[42] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in Proc. ICML, 2015, pp. 1613–1622.

[43] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114. [Online]. Available: http://arxiv.org/abs/1312.6114

[44] J. Oh et al., “Self-imitation learning,” in Proc. ICML, 2018,
pp. 3878–3887.

[45] W. Zhang, J. Sun, and X. Tang. (2009). Cat Dataset. [Online]. Available:
https://archive.org/details/CAT_DATASET

[46] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[47] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747. [Online]. Available: http://arxiv.org/abs/1708.07747

[48] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Citeseer, Tech. Rep., 2009.

[49] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[50] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “MVTec AD–A
comprehensive real-world dataset for unsupervised anomaly detection,”
in Proc. CVPR, Jun. 2019, pp. 9592–9600.

[51] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” in Proc. ICLR,
2017.

[52] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-
distribution image detection in neural networks,” in Proc. ICLR, 2017.

[53] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger,
“Improving unsupervised defect segmentation by applying structural
similarity to autoencoders,” 2018, arXiv:1807.02011. [Online]. Avail-
able: http://arxiv.org/abs/1807.02011

[54] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and
G. Langs, “Unsupervised anomaly detection with generative adver-
sarial networks to guide marker discovery,” in Proc. IPMI, 2017,
pp. 146–157.

[55] P. Napoletano, F. Piccoli, and R. Schettini, “Anomaly detection in
nanofibrous materials by CNN-based self-similarity,” Sensors, vol. 18,
no. 2, p. 209, Jan. 2018.

[56] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, no. 2, pp. 281–305, 2012.

[57] J. Davis and M. Goadrich, “The relationship between Precision-Recall
and ROC curves,” in Proc. 23rd Int. Conf. Mach. Learn. (ICML), 2006,
pp. 233–240.

[58] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, Jun. 2006.

[59] C. D. Manning, C. D. Manning, and H. Schütze, Foundations of
Statistical Natural Language Processing. 1999.

[60] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the ROC plot when evaluating binary classifiers on imbalanced
datasets,” PLoS ONE, vol. 10, no. 3, Mar. 2015, Art. no. e0118432.

[61] T. DeVries and G. W. Taylor, “Learning confidence for out-of-
distribution detection in neural networks,” in Proc. ICLR, 2018.

[62] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.
[Online]. Available: http://arxiv.org/abs/1706.05587

[63] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The PASCAL visual object classes challenge 2012 (VOC2012)
results,” Tech. Rep., 2012.

[64] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626.

[65] M. Du, S. Pentyala, Y. Li, and X. Hu, “Towards generalizable deepfake
detection with locality-aware autoencoder,” in Proc. 29th ACM Int. Conf.
Inf. Knowl. Manage., Oct. 2020, pp. 325–334.

[66] Y. Li et al., “Learning disentangled representations for
time series,” 2021, arXiv:2105.08179. [Online]. Available:
http://arxiv.org/abs/2105.08179

[67] F. Yang, Z. Zhang, H. Wang, Y. Li, and X. Hu, “XDeep: An interpreta-
tion tool for deep neural networks,” 2019, arXiv:1911.01005. [Online].
Available: http://arxiv.org/abs/1911.01005

[68] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015.

[69] D. Zha, K.-H. Lai, M. Wan, and X. Hu, “Meta-AAD: Active anomaly
detection with deep reinforcement learning,” 2020, arXiv:2009.07415.
[Online]. Available: http://arxiv.org/abs/2009.07415

[70] L. Li and A. Talwalkar, What is Neural Architecture Search?. Sebastopol,
CA, USA: O’Reilly Media, 2018.

[71] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” in Proc. UAI, 2020.

Authorized licensed use limited to: NEC Labs. Downloaded on September 15,2024 at 21:34:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

