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ABSTRACT
Community detection in complex networks is a fundamental prob-
lem that attracts much attention across various disciplines. Pre-
vious studies have been mostly focusing on external connections
between nodes (i.e., topology structure) in the network whereas
largely ignoring internal intricacies (i.e., local behavior) of each
node. A pair of nodes without any interaction can still share simi-
lar internal behaviors. For example, in an enterprise information
network, compromised computers controlled by the same intruder
often demonstrate similar abnormal behaviors even if they do not
connect with each other. In this paper, we study the problem of
community detection in enterprise information networks, where
large-scale internal events and external events coexist on each host.
The discovered host communities, capturing behavioral affinity,
can benefit many comparative analysis tasks such as host anomaly
assessment. In particular, we propose a novel community detec-
tion framework to identify behavior-based host communities in
enterprise information networks, purely based on large-scale het-
erogeneous event data. We continue proposing an efficient method
for assessing host’s anomaly level by leveraging the detected host
communities. Experimental results on enterprise networks demon-
strate the effectiveness of our model.

CCS CONCEPTS
• Information systems → Enterprise information systems;
Data mining; • Security and privacy → Intrusion detection
systems; •Theory of computation→Graph algorithms anal-
ysis; • Computing methodologies→ Anomaly detection; Di-
mensionality reduction and manifold learning;
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1 INTRODUCTION
Discovering community structures in complex networks has re-
ceived wide attention in the past few years. The task of community
detection is to find clusters of nodes that have tight affinities (ei-
ther physical or virtual) within the same cluster and loose affinities
between different clusters. Identifying communities in a complex
system can shed light on the organization of the system and the
functions of its individual members, which has become a funda-
mental problem in network science [10] with great impacts on the
Web, recommendation systems, physical system, and online social
media systems [1, 3, 4, 11, 28, 35, 36].

Naturally, the topology information of a network has inspired
many community detection approaches that were derived from
graph theory [3, 4, 8, 26]. These approaches, however, typically
only consider the tightness of external links between nodes while
ignoring the closeness between nodes in terms of their internal
characteristics and properties. Network topology alone may fail to
account for insightful partitions of a network. A modern example
is the online social network, on which a common scenario is the
family members from the real world “follow” each other, virtually
forming a social community. In spite of their social connections,
they can have very distinct profiles, interests, and daily activities,
which hardly conclude they belong to the same community from
their behavioral perspective.

Recently, several efforts began to combine network topology
and node attribute for community detection [28, 33, 34, 37]. These
approaches, however, require well-curated categorical attributes
of each node as the input, which may not be available in many
enterprise information networks.

Enterprise information networks are ubiquitous. A typical enter-
prise information network consists of a collection of hosts [9, 19].
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Figure 1: An example of enterprise information network.
Nodes of enterprise system denote machines (hosts) and
lines denote their communications via network-level events.
Arrows inside the host denote the process-level events.

Hosts in the same community should share certain properties —
some common cases include connectivity, shared roles, and IPs. The
definition of community always depends on the problem domain,
but those defined by traditional properties become less meaningful
in an enterprise information network. For example, in most corpora-
tions, the network connectivity among all hosts is unimpeded. Also,
the roles of hosts usually have already been known by the company.
Thus, when it comes to host community in enterprise information
network, we should take into account the unique characteristics of
its data.

In a typical enterprise information network as shown in Fig. 1,
hundreds of hosts incessantly generate operational data — usually
called events. Such massive event data can be generally catego-
rized into two types: process-level events and network-level events.
Process-level events are locally generated on each host and reflect
the internal behaviors of individual hosts (e.g., a process opens a file
or forks another process). Network-level events represent the exter-
nal behaviors of interactions between different hosts, which can be
viewed as globally connected pairs of hosts (e.g., a process reaches
out some other host). Together, these two types of events provide
the opportunity for identifying communities in enterprise informa-
tion networks, in the context of host behaviors. A key question is
how to exploit both these types of host behaviors for community
detection.

Unfortunately, we can not adopt those aforementioned approaches
that combine network structure and node attributes for four key
reasons. First, a host in an enterprise information network does
not have well-curated attributes for our community detection task.
Those basic attributes of a host (e.g., hardware specs, host name,
domain name, etc.) are often irrelevant to host behaviors. Also, a
host is unnecessarily “bound” to certain persons. The owners of a
host can dynamically change in an enterprise information network,
e.g., in a company usually there is a specific group of administrators
who can access to all hosts. Second, the events can reflect a host’s
behavioral patterns, and yet we have meager prior knowledge of
how to translate the “event space” to a “feature space” that can
reflect a host’s behavioral patterns. Third, even if we treat each
unique event as an attribute for a host, the huge scale of events
will make both the augmented graph and the generative model
too complex. Finally, the statistical assumptions of distribution and

dependency in those probabilistic models unnecessarily hold for
hosts and events in a large-scale enterprise information network.

Therefore, given the massive host-level events in an enterprise
information network, our first goal is to find the community mem-
bership for each host, in the context of host behavior. We propose
to leverage both network-level events and process-level events at
the same time and in the same space. In particular, we consider a
network-level event as an interaction between two hosts and a
process-level event as a connection between a host and an event.
Given these observed pairwise interplays, we map hosts and events
into the same latent space. The idea is to allow both types of events
to seamlessly bridge among hosts so that we can better investigate
the intricate behavioral patterns of each host, which leads to an
accurate community detection model.

The discovered host community structure, which offers insights
of behavioral affinity, ultimately can benefit many studies of com-
parative analysis in enterprise information networks. One impor-
tant task is to assess the anomaly status of all hosts and identify
those with suspicious behaviors. The key idea is that host’s commu-
nity membership, based on their massive behavioral histories, can
reflect their behavioral normalcy. Now if we review the status of
host behavior after a time period (e.g., one week), we are supposed
to see a host behaves similarly to its peers/community members.
If not, it has a status of “suspicious behavior”. On the other hand,
if a host behaves distantly with its “non-community peers”, it is
unnecessarily abnormal, which can also mitigate the false positive
issues in many circumstances of anomaly detection.

Hence, our second goal in this paper is to extend the identified
host communities for the task of host anomaly assessment, in the
context of host behavior. However, we are facing several challenges.
For example, how to seamlessly exploit host’s community member-
ship information for host anomaly assessment? How to quantify the
severity level of a host’s status? And how to evaluate our approach?
With all these questions in mind, we propose an efficient method
that intelligently extends the community detection results, in both
perspectives of host and event.

In summary, this paper makes the following contributions:
• We look into the problem of community detection in enter-

prise information networks, where the large-scale heterogeneous
event data calls for a new angle on the traditional task.
• We propose an embedding framework to capture the host behav-
iors based on network-level events and process-level events.
• We further propose an efficient method to measure the suspi-
ciousness of a host, based on the identified host communities
through our embedding framework.
• Our empirical studies on a real enterprise network demonstrate
the effectiveness of our method.

2 PRELIMINARIES

Network-level event. A network-level event can be defined as
a multiple-tuple. More specifically, in our data, a network-level
event is a seven-tuple ⟨src-ip, src-port, dst-ip, dst-port, connecting-
process, protocol-num, timestamp⟩, where src-ip and src-port are
the IP address and port of source host, and dst-ip and dst-port
are the IP and port of destination host. Connecting-process is the

Industry and Case Study Paper CIKM’18, October 22-26, 2018, Torino, Italy

1978



process that initializes the connection, protocol-num indicates the
protocol of connection, and timestamp records the connection time.

Process-level Event. A process-level event can also be defined
as a multiple-tuple. More specifically, in our data, a process-level
event is a five-tuple ⟨host-id, user-id, process, object, timestamp⟩,
where host-id indicates the host where the agent is installed, user-id
identifies the user who runs the process, timestamp records the
event time, process is the subject of the event, and object is the
object of the event. The object can be a file, another process, or a
socket that contains the connection information. According to the
object type, the process-level events can be further classified into
three categories: the process-file events, the process-socket events,
and the process-process events.

Problem 1: Host Community Detection. Given a set ofm hosts
H = {h0,h1, ...,hm−1}, a time window T , and a set of n events E =
{e0, e1, ..., en−1} collected from all hosts in H within T . The goal is
to automatically identify non-overlapped community membership
L for all hosts in H .

Problem 2: Host Anomaly Assessment. Besides the inputs of
Problem 1, given the identified community membership L for all
them hosts in H , the goal is to find a function f : H → R such that
∀hi ∈ H , f returns an anomaly score f (hi ) ∈ R that assesses the
behavioral status of host hi .

3 HOST COMMUNITY DETECTION
In this section, we propose an embedding based approach to model
the host community detection problem into a unified optimization
framework.

Finding communities is essential to gain insights of pairwise
affinities. Hence, for our problem, the first task naturally is to model
every host’s behavioral patterns. However, the input data are only
those historical events collected from individual hosts. It is chal-
lenging to accurately capture the host behavior purely based on
its historical events. So, we first propose to model the host-level
behavior inside each host based on the corresponding historical
events. Then, given the host-level behavioral modeling, we identify
groups of hosts that share similar behaviors by modeling the host
structures. Finally, we propose a unified optimization model that
takes consideration of both models.

3.1 Modeling Host-level Behavior
We first model the host-level behavior. Given a host h ∈ H , we
get a set of n events Eh = {e0, e1, ..., en−1} monitored from h, in-
cluding both process-level events and network-level events. For
the set of process-level events {e0, e1, ..., ei−1}, it can be seen as
a collection of i pairs {(h, e0), (h, e1), ..., (h, ei−1)}. And for the set
of network-level events {ei , ei+1, ..., en−1}, it can be rewritten as a
collection of n − i triples {(h, ei , ĥ0), (h, ei+1, ĥ1), ..., (h, en−1, ĥj )},
where {ĥ0, ĥ1, ..., ĥj } is the set of hosts that are reached by h’s
network-level events. As aforementioned in Section 2 that an event
always contains the timestamp attribute. In order to capture a host’s
long-term behavioral patterns, however, we need to exclude the
timestamp attribute, otherwise, every event is unique and we lose
the opportunity of studying any repeating behavioral pattern based
on events. Next, a key task is to find a way of leveraging these two

different types of events to model the host behavior, at the same
time and in the same space.

Recent advances in distributed text representation learning have
offered effective text embeddingmethods [21] that capture syntactic
and semantic word relationships. Inspired by their breakthrough,
our idea is to model a host as the context of all its process-level
events and as the context of all hosts reached by its network-level
events. By doing so, we integrate both types of events into one
model at the same time. Next, we embed all pairs of hosts and
events into a common latent space, where their interplays are all
preserved in the same space.

Concretely, we design a neural probabilistic model that is trained
using the maximum likelihood principle. A process-level event e
on the host h can be modeled as the conditional probability of host
h given event e , i.e., the probability that e is observed from h, via
the following Softmax function:

P(h |e) = exp(vh · ve )∑
ĥ∈H

exp(vĥ · ve )
, (1)

where vh and ve are the embedding vectors for the host h and the
event e , respectively. H is the set of hosts.

Similarly, a network-level event can be modeled as P(ĥ |h, e) —
the conditional probability of a host ĥ given a host h and a network
event e , i.e., the probability that host h issues a network-level event
e that connects to host ĥ. We can compute this probability as:

P(ĥ |h, e) = P(ĥ |h) =
exp(vĥ · vh )∑

hi ∈H exp(vhi · vh )
, (2)

where vh and vĥ are the embedding vectors for the hosts h and ĥ,
respectively. H is the set of hosts.

Given the whole set of n events E = {e0, e1, ..., en−1} collected
from all hosts in H , we would like to learn the embedding vectors
for every host h ∈ H and the events Eh ⊆ E generated on it, so that
we maximize: ∑

h∈H,e ∈Eh
P(h |e) + P(ĥ |h, e).

This optimization model has been known to be very expensive to
solve, due to the denominators of both equations summing over all
hosts of H — we have to compute and normalize each probability
for each host at every training step.

Therefore, we follow the idea of negative sampling [21] to address
this challenge. Negative sampling follows a very similar idea of
noise-contrastive estimation (NCE) [12]. In general, to avoid dealing
with too many hosts to be iterated over, we only update for a sample
of them. Of course, we should consider all those co-occurring host-
event pairs observed from our input data, and we need to artificially
sample a few “noisy pairs” — they are not supposed to co-occur
so the conditional probabilities among them should be low. Hence,
negative sampling offers an approximate update for the Softmax
function, but it is computationally appealing, since the calculation
now scales with the size of noise only.

In the end, after taking the logarithm and employing negative
sampling, we aim tominimize the following two objective functions:

O1 = −
1
|DP |

[ ∑
(h,e)∈DP

logσ (vh · ve ) +
∑

(h′,e ′)∈D′P

logσ (−vh′ · ve ′)
]

(3)
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O2 = −
1
|DN |

[ ∑
(h, ê,ĥ)∈DN

logσ (vh · vĥ ) +
∑

( Ûh, Üe, Üh)∈D′N

logσ (−v Ûh · v Üh )
]
.

(4)

In the above equations, σ is the logistic function, DP is the col-
lection of pairs of process-level events, and DN is the set of triples
of network-level events. D ′P and D ′N are the two sets of negative
samples constructed by certain sampling scheme for process-level
events and network-level events, respectively.

3.2 Modeling Host Community Structure
To solve the problem of host community detection, our goal is to
find behavior-based communities for all hosts. A good community
detection result is determined by several factors: First, since the
learned embedding vectors of hosts by modeling host-level behav-
iors are their latent behavioral representations in the same space,
the community detection result should be consistent with the simi-
larities computed between the learned embedding vectors; Second,
the communities that are discovered should be a set of hosts that
have more connections (more similar) inside than outside. To meet
these requirements, we propose an expectation-maximization (EM)
based model as follows:

Oc =

K−1∑
j=0

∑
h∈H

vh − c j2 , (5)

where c j is the community centroid for community j , vh is the em-
bedding vector for the host h, and K is the number of communities.

3.3 The Unified Model and Learning Algorithm
By putting all the above models (Eq. 3, Eq. 4, and Eq. 5) together,
we get the final objective function as follows:

Ou = Oc + O1 + O2

=

K−1∑
j=0

∑
h∈H

vh − c j2
− 1
|DP |

[ ∑
(h,e)∈DP

logσ (vh · ve ) +
∑

(h′,e ′)∈D′P

logσ (−vh′ · ve ′)
]

− 1
|DN |

[ ∑
(h, ê,ĥ)∈DN

logσ (vh · vĥ ) +
∑

( Ûh, Üe, Üh)∈D′N

logσ (−v Ûh · v Üh )
]
.

(6)

By minimizing this equation, we can get the community centroids
C = {c1, c2, ..., cK }.

There are two sets of parameters in Eq. 6: (1) the embedding
vectors of hosts and events Vh , VE , and (2) community centroids
C = {c1, c2, ..., cK }. Thus, we design a two-step iterative learning
method, where the embedded vectors VH , VE and the community
centroids C mutually enhance each other. In the first step, we fix
the community centroidsC , and community assignment l(VH ), and
learn the best embedded vectors VH , VE . In the second step, we fix
the predicted embedded vectors VH , VE and learn the best C and
l(VH ). The overall steps of the proposed host community detection

algorithm are shown in Algorithm 1. Notice that, in the algorithm,
we have two updating processes.

Algorithm 1: Host Community Detection
Input: Process-level events DP , Network events DN .

Parameters kP and kN . Step size η. Mini-batch sizes bP
and bN .

Output: Learned embedding vectors VH and VE. Community
membership l(Vh ) and community centroids C .

1 Initialize VH, VE, l(Vh ), C randomly;
2 while not converged do
3 while not reaching the inner l(Vh ), C difference threshold

do
4 Updating l(Vh ), C by fixing VH, VE.
5 while not reaching the inner VH, VE difference threshold do
6 Updating VH, VE by fixing l(Vh ), C .

7 return VH,VE, l(Vh ), C

Algorithm 2: Updating VH and VE Given C and l(VH )
Input: Collection of process-level events DP ; Collection of

network events DN ; Two parameters kP and kN
controlling the sizes of negative samples; Step size η;
Mini-batch sizes bP and bN ;

Output: Learned embedding vectors VH and VE
1 Initialize host embedding vectors VH = {vh |∀h ∈ H } and

event embedding vectors VE = {ve |∀e ∈ E}, t = 0
2 while not converged do
3 Choose mini-batch DbP ⊂ DP of size bP and DbN ⊂ DN

of size bN , uniformly at random
4 Generate two sets of negative samples D ′bP and D ′bN ,

according to a noise distribution and kP and kN
5 Let O(VH ,VE ) =

− 1
bP

[ ∑
(h,e)∈DbP

logσ (vh ·ve )+
∑
(ĥ,e ′)∈D′bP

logσ (−vĥ ·

ve ′)
]
− 1

bN

[ ∑
(h,e,ĥ)∈DbN

logσ (vh · vĥ ) +∑
( Ûh, Üh)∈D′bN

logσ (−v Ûh · v Üh )
]

6 Update VH (t+1) ← V
(t )
H − η∇Ou (VH (t ))

7 Update VE (t+1) ← VE
(t ) − η∇Ou (VE (t ))

8 t = t + 1
9 return VH ,VE

The process of updatingVH andVE , givenC and l(Vh ), is shown
in Algorithm 2. Given two sets of data samples DP and DN , in
each iteration, we uniformly sample two mini-batches of process-
level events and network events, DbP and DbN (step 3). Then, we
generate a set of negative samples D ′bP for each data sample from
DbP and a set of negative samples D ′bN for each data sample from
DbN , which are drawn according to a noise distribution and two
parameters controlling the sizes of negative samples kP and kN
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(step 4). Then, mini-batch gradient descent over VH and VE is used
to minimize the objective functionO(VH,VE) until converged (step
5-8). In the end, Algorithm 2 returns the embedding vectors of all
hosts and events. We follow the ideas in most existing embedding
learning work [15, 21, 29] to empirically tune a few parameters.
Finally, we set the embedding dimension as 32, the number of
negative samples as 5, the batch size for process-level events as
128, and the batch size for network-level events as 64 (bP and bN
in Algorithm 2, respectively). The initial value of η is 0.1 and it
linearly drops until it reaches 0.0001.

Algorithm 3 shows the details of updating C and l(Vh ), given
VH andVE . It essentially shares a similar idea with the expectation-
maximization (EM) algorithm. The inputs include the learned em-
bedding vectors for all hosts returned by Algorithm 2 and an integer
K as the number of host communities to be found.

First, we select K hosts at random as the centers (centroids)
of communities (step 1; details of determining K are described in
Section 5). Then, we assign every host to its closest group centroid
according to the Euclidean distance function (step 2-3). Next, we
recalculate the centroid of all hosts in each group (step 5-8). The
values of the centroids are updated, taken as the geometric mean of
the points that have the same label as the centroid’s (step 9-13). We
repeat iteratively until all the hosts (vectors) can no longer change
groups. The algorithm outputs a set of labels corresponding to the
community membership of each host.

Algorithm 3: Updating C and l(Vh ) Given VH and VE
Input: Host embedding vectors VH, returned by Algorithm 2;

The number of communities K
Output: Host community membership L = {l(vh )|∀vh ∈ V }

1 Initialize the set of community centroids C = {c1, c2, ..., cK }
by randomly selecting K elements from V

2 for each vh ∈ VH do
3 l(vh ) = arдminj ∈{1, ...,K } | |vh − c j | |2

4 chanдed = f alse

5 while chanдed = f alse and not converged do
6 for each c j ∈ C do
7 Sj = {vh |l(vh ) = j}
8 c j =

1
|Sj |

∑
vh ∈Sj vh

9 for each vh ∈ VH do
10 minDist = arдminj ∈{1, ...,K } | |vh − c j | |2
11 if minDist , l(vh ) then
12 l(vh ) =minDist

13 chanдed = true

14 return L,C

4 HOST ANOMALY ASSESSMENT
How to intelligently exploit the obtained community membership
information for host anomaly assessment? And how to quantify
the severity level of a host’s behavioral status? We look into two
perspectives: host and event.

From the host perspective, we can see if a host’s behavior gets
changed from its past status via referring to its behavioral commu-
nity peers that are found in the past. We propose the behavioral
anomaly score дh (h) of a host h as follows:

дh (h) = 1 − |S(h) ∩ S
′(h)|

|S(h) ∪ S ′(h)| , (7)

where S(h) is the set of community peers found in the past, and
S ′(h) is the set of community peers identified later on. Both S(h)
and S ′(h) can be computed through Algorithm 1.

From the event perspective, given a set of events collected from
one host, since we also have obtained the embedding vectors of all
events via Algorithm 1, we can compute how different the events
on that host and the events on its community peers are. This can
be computed by:

дe (h) = 1 − 1
|Eh | |S(h)|

∑
e ∈Eh

∑
h′∈S (h)

max
e ′∈Eh′

cos(e, e ′), (8)

where Eh is the set of events monitored from host h. cos(e, e ′) is the
similarity between the embedding vectors of event e and event e ′.
In particular, for each event on a host h, we compute the distance
between it and its closest event on each community peer of h, in
terms of the cosine similarity. Then, we take the average over all
peer hosts. Finally, we take the average of all events from one host
as the returned score for this host.

We combine those two together and have the following:

д(h) = αдh (h) + βдe (h), (9)

which returns the anomaly score of host h. The two parameters α
and β are weighting factors that indicate the contributions of host
perspective and event perspective, respectively.

5 EXPERIMENTS

Data. We collect data from a real enterprise information network
of an Information Technology company. The data is similar to the
example shown in Fig. 1. Within three weeks, we collect more
than 60 million system events (including 59.6 million process-level
events and 0.5million network-level events (see Section 2 for event
data description)) from 71 machines. We treat Windows and Linux
separately, since hosts with different operating systems can have
distinct behavioral patterns (e.g., process, port, protocol and et al.).
Hence, if a host installs both operating systems, we consider it as
two hosts with distinct host behaviors.

5.1 Host Community Detection

Experiment Setup.Determining the optimal number of communi-
ties is a fundamental issue in practice. Unfortunately, there is no rule
of thumb addressing this issue. In most cases, domain knowledge
is needed, and yet such information is rarely available in reality.
One simple attempt is to inspect the dendrogram generated by a
hierarchical clustering alike algorithm. However, that still calls for
a pre-determined distance threshold in order to produce the host
communities we need.

In this work, we adopt three popular approaches that mitigate
this issue and suggest the number of communities to detect:
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• Average silhouette method [27]. The silhouette coefficient of a
data instance measures how closely it is matched to data within
its community (cluster) and how loosely it is matched to data of
its neighboring community. Average silhouette method computes
the average silhouette score over all observations for different
numbers of communities. The estimate of the best is the one that
maximizes the average silhouette over a range of possible values.
In concrete, silhouette coefficient for one sample is D1−D0

max(D0,D1)
where D0 is that sample’s mean intra-cluster distance, and D1 is
the mean distance between this sample and the nearest cluster it
does not belong to.
• Gap statisticmethod [30]. Gap statisticmethod compares the total
within intra-cluster variation with the expected variation under
null reference distribution of the data, for different numbers of
clusters. The estimate of the best is the one that yields the largest
gap statistic — when the clustering structure is far away from
the random uniform distribution of all data instances.
• G-means method [13]. G-means is based on a statistical test for
the hypothesis that a subset of data follows a Gaussian distri-
bution. In particular, it repeatedly tests whether the data in the
neighborhood of a cluster centroid looks Gaussian, and if not it
splits the cluster.
Each of these three methods can automatically return a sugges-

tion for the number of communities. In some cases, however, these
suggestions may not agree with each other. We take the “majority
vote” if it exists. Otherwise, we need a manual inspection and elbow
method [17] is one of the most popular methods. Elbow method
looks at the total within-cluster sum of square (WSS) as a function
of the number of clusters. One would like to choose a number of
clusters so that adding another cluster does not improve much
better the total WSS. This heuristic approach usually tries to find a
“elbow criterion” when plottingWSS against the number of clusters.

To evaluate the performance of the proposed model, we need the
ground truth of host communities. Such ground truth does not exist
and there is no general rule for preparing the ground truth. Thus,
we inquire with three security experts from the company, where we
collect the data. These experts determine which hosts are supposed
to behave similarity, based on the user and the role of each host.
For example, the hosts of the department administrators and HRs
from different departments are labeled as the Operating community.
And the 8 servers, running the data analytic application, are labeled
as the Analytic community. Note that this manual labeling serves
only for evaluation purpose. Labeling for all hosts is an extremely
expensive task, even for domain experts. This motivates us to design
a data-driven approach purely based on massive system monitoring
data. The proposed framework is completely unsupervised and
assumes no partial information of host community is known.

Evaluation Metrics. We pick four popular metrics in community
detection evaluation — purity, normalized mutual information (NMI),
adjusted mutual information (AMI), and adjusted rand index (ARI)
[10, 20, 31].

The purity score is calculated through the function:

purity(Ω,G) = 1
N

∑
k

max j |wk ∩ дj | (10)

where Ω = {w1, ...,wk } is the set of detected labels and G =
{д1, ...,дj } contains the true labels, i.e., ground truth.

The formula to compute NMI is:

NMI (Ω,G) = I (Ω;G)√
S(Ω)S(G)

(11)

where I is the mutual information and S is the entropy.
An extension of NMI is AMI. AMI is proposed more recently and

normalized against chance through using the expected value of I :

AMI =
I − E[I ]

max (S(Ω), S(G)) − E[I ] . (12)

And the ARI is computed via

ARI =
RI − E[RI ]

max(RI ) − E[RI ] . (13)

RI is the raw (unadjusted) Rand Index given by RI = (a + b)/CN
2 ,

whereCN
2 is the total number of possible host pairs; a is the number

of host pairs that belong to the same community in both ground
truth and returned result; and b is the number of host pairs that are
in different communities in both ground truth and returned result.

Baselines. Our problem setting includes both process-level and
network-level events. Traditional community detection methods
can not handle process-level events in enterprise information net-
works. Recent work have started combining network topology and
note attribute, but they require that each host has well-curated
attributes that are not available in our data (see more discussions
in Section 6). Fortunately, the network-level events naturally form
a graph in which an edge connects from a source host to a destina-
tion host. Hence, we build such a directed graph, where edges are
weighted by event frequency, and apply three classic graph-based
community detection algorithms, as baselines. We add two more
baselines by considering two variants of our proposed framework.
• Optimal Modularity (OM) [23]. This method computes the opti-
mal modularity score of the graph and the corresponding com-
munity structure by solving a large integer optimization problem
via linear programming.
• Random Walk (RW) [26]. This random walk based algorithm
finds the community structure of the graph based on the idea
that short random walks tend to stay in the same community.
• Leading Eigenvector (LE) [24]. This algorithm recursively splits
the graph into two components according to the leading eigen-
vector of the graph’s modularity matrix.
• Network-only. It considers only network-level events in our pro-
posed framework, i.e., excluding O1 in Eq. 6.
• Process-only. It considers only process-level events in our pro-
posed framework, i.e., excluding O2 in Eq. 6.

Results. The evaluation results are shown in Table 1. Our method
surpasses other alternatives across all four evaluation metrics. In
concrete, our approach can achieve at least 0.95 in terms of any
metric whereas the baselines perform no more than 0.83 in three
metrics. Our proposed framework also works better when consid-
ering either network-level events only or process-level events only.
All improvements here are significant, validated by statistical test-
ing. LE and OM, both derived from modularity maximization, have
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close performances in all cases. The random walk based model does
not workwell in our problem setting. All these findings demonstrate
the effectiveness of our proposed approach.

Table 1: Performances of host community detection on four
metrics

Proposed Network-only Process-only LE OM RW
Purity .982 .904 .927 .894 .895 .737
NMI .966 .893 .918 .825 .820 .719
AMI .957 .796 .814 .772 .770 .584
ARI .959 .733 .801 .657 .641 .493

5.2 Host Anomaly Assessment

Experiment Setup.We need to prepare the ground truth of “ab-
normal hosts” to evaluate the proposed approach. Unfortunately,
in reality, compared to normal events the intrusion attacks rarely
happen. In one single enterprise network, real attacks happen only
several times in a year. Therefore, we want to make the evaluation
as close to real scenarios as possible. We internally build the “attack
testbed”, and randomly pick a few hosts as targets on which differ-
ent types of attacks are injected. In particular, we collaborate with
an industrial company working on commercial enterprise security
products. The attacks were performed by professional hackers hired
by the company. We choose six typical attacks in the following:

Figure 2: Attack testbed example related to the Diversifying
Attack Vectors attack

• Diversifying Attack Vectors. This intrusion scenario is a six-step
attack chain (Fig. 2). First, hackers create malicious php files,
download malware binary (trojan.exe), and connect back to them.
Then, they run the process notepad.exe to perform DLL injection.
Next, they use mimikatz and kiwi to perform memory opera-
tion inside the meterpreter context. Finally, they copy and run
PwDump7.exe and wce.exe on target hosts.
• Emulating Enterprise Environment. This intrusion includes seven

steps. First, attackers generate telnet processes to create malware
binary, open reverse connection, and download malware binary

(trojan.exe). Then, trojan.exe is created to connect back to hackers,
and DLL is injected through the running process notepad.exe. The
hackers use mimikatz and kiwi for memory operation inside the
meterpreter context. Finally, malware PwDump7.exe and wce.exe
are copied and run on target hosts.
• Domain Controller Penetration. In this five-step attack chain, the
hackers first send an email attaching a document that includes
the malware python32.exe. This malware opens a connection
back to hackers so that they can run notepad.exe and perform
reflective DLL injection to obtain needed privileges. Then, they
transfer password enumerator and run the process gsecdump-
v2b5.exe to get all user credentials. Finally, they probe the SQL
server address and dump the database into their own bases.
• MLS Attack (MLS): This attack targets at the /selinux/mls file,
which defines the Multi-Level Security(MLS) classification of
files within the host. In general, the /selinux/mls file should be
kept secret to all users except for security administrator, as it
exposes security rules of a computer system and enables attackers
to find potential vulnerabilities. By the intrusion attack, attackers
first exploit the ssh process to access /selinux/mls file. If the file
access is successful, file content is sent to attacker’s hosts.
• Snowden Attack (SNO): This attack targets at the /etc/passwd file,
which stores the password digest of all users as well as user group
information. First, the attacker tries to access /etc/passwd file by
gvfs process, which enables easy access from a remote host via
FTP. Then the attacker tries to send the file via an INETSocket.
• Botnet Attack (BOT): In this attack, the remote intruder employs
the bash process to scan a sensitive file /var/log/apt/history.log.
This file stores detailed installation messages. Attackers are in-
terested in it as they can exploit the vulnerabilities of installed
softwares. The sensitive information is leaked via an INETSocket.
We consider all events within the first two weeks as the “long-

term normalities” upon which we run Algorithm 1. Then, we in-
troduce those injections discussed above into the events within
the third week. We work with domain experts from that security
company in order to reflect the real attack scenarios as much as
possible. For example, those six types of attacks are sampled by
different probabilities based on how often they appear in real in-
trusion attacks. In the meanwhile, the number of infected normal
events is determined by how many events usually get impacted by
certain type of intrusion attack.

Results. Fig. 3 shows the performances of our algorithm for the task
of host anomaly assessment. In particular, our algorithm returns
every host an anomaly score and we rank them to find out how
many compromised hosts are in the top list. The size of this top
list is determined by how many hosts are picked and attacked in
our real test. We choose the overall accuracy and the recall as
two metrics. The recall metric reflects the false positive, which
is a common point of interest (and a big challenge) among many
anomaly detection applications.

We repeat our experiment ten times and each time we randomly
pick target hosts. As shown in Eq. 9, we have two parameters
tuning the contribution weights. Thus, we try their different com-
binations and find that considering both perspectives of host and
event equally gives the best performance in terms of both metrics
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(as shown in Fig. 3). We can achieve very promising results — 0.768
accuracy and 0.567 recall. The confidence intervals here are all
based on the 95% confidence level. All these observations show
that (1) our host community detection method can help identifying
hosts with suspicious behaviors; and (2) we get benefit from con-
sidering both perspectives of host and event when assessing the
host anomaly status.
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Figure 3: Performance of host anomaly assessment under
different values of α and β .

We have seen in Table 1 that our approach outperforms other
three baselines for the task of host community detection. Now for
the second task of host anomaly assessment, we find that many
traditional anomaly detection methods can not perfectly handle
our inputs — a collection of hosts with massive events generated
on them. Most of those approaches focus on either numerical data
or in supervised settings, and yet our problem calls for an unsuper-
vised solution on heterogeneous categorical events data. Thus, we
first run all those host community detection algorithms shown in
Table 1 and then apply our solution of host anomaly assessment.
We also compared our algorithm with the state-of-the-art intrusion
detection algorithm (APE) [2]. APE detects abnormal events via
probabilistic pairwise interaction and entity embedding. The host
with any abnormal events identified by APE would be labeled as
abnormal host. Table 2 gives the comparison on accuracy and recall.
Still, ours works better than the other baselines, and behavior-based
community detection can help reduce the false positives compared
to event-based intrusion detection algorithm. And we validate the
gaps are significant by statistical testing. For instance, the accura-
cies of LE and OM are barely around 0.6 and RW’s is as low as 0.4,

and their recalls only span between 0.3 and 0.4, while APE achieves
a high recall 0.5 but low accuracy 0.6, because it suffers from the
high false positive rate.

Table 2: Results of host anomaly assessment

Proposed Network-only Process-only LE OM RW APE
Accuracy .768 .658 .673 .607 .594 .410 .627
Recall .567 .412 .451 .405 .349 .283 .503

Summary. We evaluate the proposed host community detection
algorithm on a real enterprise information network, where more
than 60 million events are collected within a three-week period.
The results show our approach significantly outperforms other
baselines, consistently across four popular metrics. Then, for the
task of host anomaly assessment, we design a scoring scheme to
assess the host behavioral status based on both perspectives of host
and event. The results demonstrate quite encouraging potentials
that our proposed framework can benefit the application of host
anomaly assessment in real enterprise information networks.

6 RELATEDWORK

Community Detection. One classic thread of community detec-
tion algorithms was inspired by network topology information and
derived based on graph theory [4, 26]. For example, Clauset et al.
proposed a greedy algorithm that maximizes the modularity score
of the graph [8]. Newman recursively splits the graph according
to the leading eigenvector of the modularity matrix [24]. In a re-
lated direction, algorithms based on random walks have become
increasingly popular for detecting communities [26, 32]. These ap-
proaches, however, typically only consider the tightness of external
links between nodes while ignoring the closeness between nodes
in terms of their internal characteristics and properties.

Recently, several efforts have begun to combine network topol-
ogy and node attribute for community detection [18, 28, 33, 34, 37].
For example, Zhou et al. used a random walk based algorithm on
an augmented attributed graph [37]. Xu et al. found a probabilistic
model that defines a joint probability distribution over all possible
clusterings and attributed graphs [33]. Yang et al. also proposed a
probabilistic generative model including both network structures
and node attributes [34]. These methods, however, require the well-
curated categorical attributes of each node as the input, which may
not be available in many enterprise information networks.

Anomaly Detection. Existing anomaly detection approaches in
large-scale enterprise network systems have been separately con-
sidering different data representations. In particular, host-based
anomaly detection methods locally extracted patterns from process-
level events as the discriminators of abnormal intrusion [9, 14, 22].
In contrast, network-based anomaly detection methods focused
on disclosing abnormal subgraph structures from network-level
events, most of which were inspired by graph properties [16, 25].
All these related work, however, did not take into account both
types of events together and did not involve anything about the
task of community detection. Indeed, we have seen some studies
took care of both community detection and anomaly detection in
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the same time[4–7, 11]. However, we find we cannot directly adopt
them into our problem setting with two main reasons. First, we
need a unified framework that can handle both process-level and
network-level events together. Second, according to the scale of
our data, it becomes extremely difficult to run on a matrix/graph
structure with millions of columns/nodes.

7 CONCLUSION
In this paper, we propose a unified optimization framework that
can tackle two problems in the domain of enterprise information
networks — host community detection and host anomaly assess-
ment. Our perspectives in both tasks are based on host behaviors.
This particular domain comes up with unique data characteristics,
new community formulation, and great challenges of community
detection and anomaly assessment. We propose an embedding-
based model to investigate intricate behavioral patterns of each
host purely based on their historical events. Empirical studies on
real enterprise information networks show our proposed model
can effectively identify host communities and assess host behav-
ioral anomaly status, and outperform other popular community
detection methods. An interesting direction for further exploration
would be applying the proposed framework to other applications
(such as social networks) and tasks (such as root cause analysis).
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