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Abstract

Change point detection aims to identify abrupt shifts occurring at
multiple points within a data sequence. This task becomes partic-
ularly challenging in the online setting, where different types of
change can occur, including shifts in both the marginal and joint
distributions of the data. In this paper, we address these challenges
by tracking the Riemannian geometry of correlation matrices, al-
lowing Riemannian metrics to compute the geodesic distance as an
accurate measure of correlation dynamics.

We introduce R10-CPD, a correlation-aware online change point
detection framework that integrates the Riemannian geometry of
the manifold of symmetric positive definite matrices with the cumu-
lative sum (CUSUM) statistic for detecting change points. Ri1o-CPD
employs a novel CUSUM design by computing the geodesic distance
between current observations and the Fréchet mean of prior obser-
vations. With appropriate choices of Riemannian metrics, Rto-CPD
offers a simple yet effective and computationally efficient algo-
rithm. We also provide a theoretical analysis on standard metrics
for change point detection within R1o-CPD. Experimental results
on both synthetic and real-world datasets demonstrate that Rio-
CPD outperforms existing methods on detection accuracy, average
detection delay, and efficiency.
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1 Introduction

Change point detection (CPD) [42] aims to identify abrupt shifts in
the underlying distribution of a system based on noisy temporal
observations. CPD plays a vital role across various domains, in-
cluding climatology [47], finance [44], and healthcare [62]. It can
be performed in either an offline or online setting, with the latter
posing greater challenges due to its real-time constraints and the
need for minimal detection delay. In this work, we focus on unsu-
pervised online CPD in a discrete-time setting, where multivariate
time series are streamed, multiple change points may arise, and no
ground-truth labels are available throughout the process.

Despite significant progress in online CPD techniques in recent
years [4], efficiently capturing changes in various patterns, such as
those in the marginal distribution (e.g., independent magnitude) and
joint distribution (e.g., correlations between covariates), remains
challenging. Correlation-aware CPD methods [8, 10, 30, 63, 64]
have gained attention due to their practical impact in fields such
as behavioral science [40] and root cause analysis in AIOps [54—
56, 65, 66]. However, these methods were not originally designed
for online use. The reason comes in two-fold: first, extracting corre-
lations for CPD in multivariate time series often involves complex
techniques like graph neural networks or probabilistic graphical
models, which are inherently challenging to adapt to an online
setting. Second, these methods typically require an extended pro-
cessing time, making them inefficient for real-time applications.
As a result, despite the pressing need, there remains limited work
specifically tailored for correlation-aware online CPD.

On the other hand, a significant portion of the existing work
on online CPD falls under the category of Subspace Models. These
approaches estimate a subspace for each batch of time series data
and then use a metric to compute the distance between consecutive
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Figure 1: Comparison between Rio-CPD and subspace model. B; rep-
resents the i-th batch of time series data, and d; denotes the distances
between neighboring batches in the subspace.

batches, as illustrated in Figure 1. A change point is detected if
there is an abrupt change in this distance. Examples of subspace
estimation techniques include singular spectrum analysis [4], state
space models [21], dimension reduction [26], and refined metric
design [28]. Although subspace models are relatively easy to adapt
to online settings, they often suffer from accuracy issues due to
distortions in subspace approximation, as well as computational
inefficiencies stemming from their high processing cost.

To address these challenges, in this work, we extend the sub-
space model and propose R10-CPD, a Riemannian geometry-based
non-parametric method for correlation-aware Online Change Point
Detection. At a schematic level, R1o-CPD is inspired by the obser-
vation that Pearson correlation matrices are symmetric positive
semi-definite, hence can be characterized by Riemannian geom-
etry and all fall into one subspace of Riemannian manifold. The
distance between the correlations of two batches of time series data
corresponds to the geodesic between two points on the Riemann-
ian manifold, which can be computed using a specific Riemannian
metric. These distances are then used to construct the cumulative
sum (CUSUM) statistic, which performs sequential hypothesis test
to determine whether a time step is a change point. The R1o-CPD
framework is flexible with the choice of Riemannian metrics and
CUSUM statistic construction, although there may be trade-offs.
We employ the Log-Euclidean and Log-Cholesky metrics, which
avoid Riemannian optimization in CUSUM statistic computation,
thereby ensuring efficiency. Details of our design are provided in
Section 3.

We present a comparison between R10-CPD and subspace model-
based methods in Figure 1. R1o-CPD addresses key limitations of
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subspace models by: (1) operating directly on the Riemannian
manifold of correlation matrices rather than an estimated sub-
space, which can introduce distortion; and (2) bypassing the time-
consuming subspace learning process. As a result, the R1o-CPD
framework enhances the subspace model with improved accuracy
and computational efficiency.

Our contributions can be summarized as follows:

e Problem: We tackle the problem of correlation-aware online
change point detection, aiming to accurately and efficiently iden-
tify changes in both individual variables and correlations within
multivariate time series data. Existing methods either lack the
ability to handle correlations or are unsuitable for real-time de-
tection, motivating the need for a new approach.

o Framework: We propose R10-CPD, a non-parametric framework
that leverages the Riemannian geometry of correlation matrices
and the CUSUM procedure to detect change points. R1o-CPD is
capable of detecting changes in both independent and correlated
patterns while being highly efficient and flexible in choosing
Riemannian metrics to balance performance trade-offs. We also
provide a theoretical analysis on two standard metrics for change
point detection of R1o-CPD.

e Evaluations: We conduct extensive experiments on both syn-
thetic and real-world datasets to validate the effectiveness of our
approach. The results show that R1o-CPD significantly outper-
forms the state-of-the-art methods in terms of detection accuracy
and efficiency.

2 Preliminary

2.1 Problem Statement

Let X(t) = [X1(t),...,Xm(t)] € R™ be an observation of a discrete
multivariate time series at time index ¢, where t € [T], and denote
fi : Z* — R as the latent distribution of the i-th time series, such
that the observation at time t take the form of X(t) = f(t) +
e(t), where f(t) = [fi(t),..., fin(t)] and e(¢) is a zero-mean i.i.d.
random variable representing the noise. In particular, the change
point detection (CPD) task aims to find all 7 € [T] such that:

() = {f(t) +e(t), t<r
ft)+e(t), t>1

for some functions f # f’. Another perspective of the CPD problem
is to perform sequential hypothesis testing at each time step ¢ such
that one of the following is accepted:

Hy : E[X(8)] = f(1)
H :E[X(0)] = f'(1)
Let 7 = inf{t|H; is accepted at ¢}, for any CPD algorithm, an

essential property is to identify the change point promptly, i.e.,
7> rand 7 — 7 is small.

2.2 Standard Notions in Riemannian Geometry

A manifold M is a topological space that is locally diffeomorphic to
a Euclidean space. To measure geometric properties, a Riemannian
manifold is defined as a manifold equipped with a Riemannian
metric, formally as below:
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Definition 2.1 (Riemannian Manifold). A Riemannian manifold
(M, g) is a smoothed manifold M endowed with a smoothly vary-
ing family of inner products gx : oM X Ty M — R, where T, M
is the tangent space of M at x € M.

The geodesic of a Riemannian manifold can be defined by using
the inner product. Specifically, for two points p, g € M, the geodesic
distance between them follows:

1
d(p.a) = inf /0 NZORAON W

where y : [0,1] — M is a smooth curve such that y(0) = p and
y(1) =q.

To facilitate computations on such manifolds, the exponential
and logarithm maps play a crucial role by linking the geometry of a
Lie group with its Lie algebra. The Lie algebra can be seen as the tan-
gent space of the Lie group at the identity element, providing a local
linear approximation of the manifold. In our context, these maps
establish a one-to-one correspondence between symmetric positive
definite (SPD) matrices and a vector space structure, ensuring that
geodesics are well-defined and can be computed effectively.

Definition 2.2 (Exponential and Logarithm Map of Matrices). Given
amatrix A, the exponential map is defined by exp(A4) = X7 Ak k1,
while the logarithm map, denoted as log(A), serves as its inverse.

Finally, we introduce the Fréchet mean of a set of matrices within
a given metric space.

Definition 2.3 (Fréchet mean). Let (M,d) be a complete met-
ric space, and let Py,... P, be points in M. The Fréchet mean of
P1,...Py is defined as:

n
Op = argmin Z d%(x, Py) 2)
xeM 3

3 Methodology

The proposed framework assumes linear dependencies between
different attributes of the time series. Our approach is therefore
motivated by the observation that in practice!, Pearson correlation
matrices lie in S}, which exhibits Riemannian structures [6]. This
allows us to apply a Riemannian metric to correlation matrices with
minimal distortion. Based on this metric, the R1o-CPD framework
proceeds in three stages.

First, the Riemannian metric is used to track the distances be-
tween consecutive correlation matrices until a change point is
identified. Next, we construct the CUSUM statistics by measur-
ing the distance between the current correlation matrix and the
“centroid” of the sub-manifold representing the collection of past
correlation matrices. If a change point is present, this distance will
be significantly large, indicating that the current matrix should
belong to the cluster representing the post-change distribution, and
is an “outlier” to the current one. Finally, the third stage involves
applying the CUSUM sequential hypothesis test to detect and report
a change point as soon as it occurs. An illustration of the R1o-CPD
framework is provided in Figure 2.

!Correlation matrices are positive semi-definite, but under reasonable assumptions,
such as linear independence of data columns, they are positive definite.
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It is important to note that constructing the CUSUM statistics
is non-trivial, as it is closely related to the choice of Riemannian
metrics. In general, the centroid of a Riemannian manifold, repre-
sented by the Fréchet mean, may not have a closed-form solution
and often requires approximation through optimization. However,
with the use of two specific Riemannian metrics, known as the
Log-Euclidean and Log-Cholesky metrics, the Fréchet mean has a
closed-form solution. This property allows R1o-CPD to bypass the
complexities of Riemannian optimization.

3.1 CUSUM Procedure

The CUSUM statistic is a measure of the likelihood that a given
timestamp represents a change point, and it has been widely used in
hypothesis testing. To construct the CUSUM statistic at timestamp ¢,
a detection score is required, which typically evaluates the “distance”
between the observation at timestamp t and the distribution of the
time series observed so far. Formally,

Definition 3.1 (CUSUM Statistic). Given an observation X (t) at
time step t and a detection score D(t), the CUSUM statistic for the
time series {X(1),...,X(#)} isdefined as y(t) = maxi<j<s Zj.:l. D(j).

It is well-known from the literature [42] that Theorem 3.1 can
alternatively be expressed as y(t) = max{y(t — 1) + D(t), 0}, where
y(0) = 0. This recursive formulation improves the efficiency of
testing by utilizing only the previous step’s history. The CUSUM
procedure proceeds as follows: At each timestamp ¢, we perform
the hypothesis test:

Y()2p? where

Hy : t is not a change point,

H(t) = Hy

Hj : t is a change point.

Note that p > 0 is a threshold. Therefore, the set of change points
is given by ¢ | y(t) > p.

Although the CUSUM procedure may seem straightforward for
change point detection, designing the detection score D(t) is often
challenging and plays a critical role in the overall performance of
the method. In parametric settings, D(t) can be defined as the log-
likelihood ratio between two distributions. However, this requires
knowledge of the post-change distribution, which is often unavail-
able in practice and limits its applicability to general scenarios.

In the following sections, we explain how R1o-CPD constructs
D(t). A key requirement for D(t) is its ability to effectively dif-
ferentiate between change points and regular timestamps, which
necessitates that E[D(t)|Hy] < 0 and E[D(t)|H1] > 0.

3.2 Log-Euclidean Metric

We first introduce the Lie group structure of S¥, which enables a
bi-invariant Riemannian metric derived from any inner product
between S} and its tangent space. Given two matrices P;, Py €
S}, we define the logarithm addition and multiplication, with the
exponential and logarithm map (see Definition 2.2).

PieP= exp(logP1 + long)
A© P; =exp(4-logPy)

where A is a real number.
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Figure 2: An overview of the proposed CPD framework: (1) construct a correlation matrix for each batch within the sliding window, (2) compute
the distance of the current observation from the previous centroid (large distances suggest a new cluster), and (3) compute the CUSUM statistic

using these distances to perform a hypothesis test for change detection.

The matrix logarithm for Log-Euclidean is defined as:
¢LE(P1) = Uln(2)U"

where P; = USUT is the eigenvalue decomposition.
The geodesic distance under the Log-Euclidean metric is:

drg(P1, P2) = |l¢re(P1) — dLe(P2)|IF (3)

While the computation of the Log-Euclidean metric can be theo-
retically demanding due to the logarithm map, there are techniques
available to reduce computation time. One notable advantage of
the Log-Euclidean metric is that it provides a closed-form solution
for the Fréchet mean of SPD matrices, which can be regarded as the
“centroid” of the S} geometry. Similar to the centroid in Euclidean
space (e.g., the k-means objective), the Fréchet mean minimizes the
squared error of the geodesic distances to all SPD matrices.

The Fréchet mean of Log-Euclidean geometry (also known as
Log-Euclidean mean) is given by [6]:

n

OLE(PL .. Pa) = exp (= > d1e(PD) @)

=
It is worth noting that the Log-Euclidean mean is a natural
generalization of the geometric mean. If P; are positive real numbers,
their geometric mean follows the same formula. The Log-Euclidean
and Log-Cholesky metrics are the only Riemannian metrics that
admit a closed-form solution for the Fréchet mean. For other metrics,

the Fréchet mean may not even be unique.

3.3 Log-Cholesky Metric

The Log-Euclidean and Log-Cholesky metrics [35] share several
similarities and, at a high level, are topologically equivalent because
L~ 8" ~ Rr(nt)/2 2 The Log-Euclidean metric is obtained
through the matrix logarithm: S? — 8™, while the Log-Cholesky

ZNotation: £ denotes the Cholesky space of dimension r, and ~ represents homotopic
equivalence. These notations are used only once here.

metric is based on S} — L. The definition of the Log-Cholesky
metric begins with the Cholesky decomposition, which provides a
unique representation of any Hermitian and positive definite matrix
A in the form LLT, where L is a lower triangular matrix and LT
is its upper triangular counterpart. The matrix logarithm for the
Log-Cholesky geometry is defined as:

¢rc(Pr) = [L] +In(D(L))

where | L] is the strictly lower triangular part of L, and D(L) denotes
the diagonal matrix extracted from L, with all other entries set to 0.
The geodesic distance under Log-Cholesky metric is defined as:

drc(P1, P2) = llgrc(P1) — drc(P)lIF

= (ILLa) - L2 )
1/2
+1ln (D(L) = In (D(L2) I3
where P; = L1L1T and Py = LZLZT.
The Log-Cholesky metric also has a convenient closed-form
expression for its Fréchet mean over n matrices Py, ..., P, € S}

orc(Py, ..., Py) = op (L1, .., Ln) - op(L1, ..., L)

where P; has Cholesky decomposition LiLl.T and oy, is the Fréchet
mean of Cholesky space L:

oL (PP = - (Ll +exp (Y logB(I)  (6)
i=1 i=1

3.4 RIO-CPD Algorithm

R10-CPD requires one parameter to be specified in advance: the
size of the sliding window W. The algorithm proceeds in three
steps at each time step ¢: (1) Using the time series data from ¢ to
t + W — 1, construct the correlation matrix B;. (2) Monitor the
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geodesic distance between B; and o;_1, the Fréchet mean of the
collection of previous correlation matrices. (3) Compute the CUSUM
statistic based on this distance and perform hypothesis testing. If
the test does not detect a change point, proceed to ¢ + 1; otherwise,
report a change point at ¢ and repeat the process for the next batch.

Step 1. Transform observations in the sliding window into cor-
relation matrices. Suppose at time t we have X; = [X(t),..., X (¢ +
W —1)], then construct

X¢ — E[X¢]
Var(X;)

Step 2. Let g be either the Log-Euclidean or Log-Cholesky metric.
We compute af_l, the Fréchet mean of By, ...,B;_; using Equa-
tion (4) or Equation (6). Next, we calculate the distance from B; to
O'?_l, ie,d; = g(Bt, O'?_l). 3

Step 3. Construct the detection score D(t) required for CUSUM.
We define D(t) as d; minus r;_1, the radius of the subspace formed
by B], ey Bt—1> ie.

B;=X;- )~(tT, where X; = is normalized.

D(t)=d; —ri-1 =g(Bs 0} ) - ien[lf_xl] a(Bi, 0} )

With the detection score D(t), the CUSUM test iteratively com-
putes y(¢) for t > W, starting with y(W) = 0, until a change point
is detected, i.e., y(t) > p for a given threshold p. Specifically,

r=g%ﬁlwﬂ>p}

The procedure can be extended to handle multiple change points
by restarting the process at 7 + 1 after detecting a change point 7,
with a new base correlation matrix B;,;. We provide further in-
sights into our algorithm and discuss its computational complexity
in the remarks below.

Remark 3.2. The design of the detection score D(t) is inspired by
clustering and incorporates strong geometric insights. Essentially,
R10-CPD first projects the correlation dynamics into the Riemann-
ian manifold, if the input data follows a stable distribution, the
projection would become a cluster of points in the Riemannian
manifold. Therefore, a change in distribution would lead to a shift
of the cluster. R1o-CPD identifies ¢ as a change point if B; is an
outlier from the cluster formed by By, ..., B;_1. To detect an outlier,
we calculate the difference between the current distance and the
“radius” of the cluster. If this difference exceeds a certain threshold,
it is likely that B; is an outlier, indicating a change point.

Remark 3.3. The primary computational bottleneck for our algo-

rithm arises from eigen decomposition (Log-Euclidean) and Cholesky
decomposition (Log-Cholesky), both of which are performed with

O(m?) time complexity for m-dimensional symmetric matrices. In

theory, the exponent can be reduced to a constant close to w (the

fast matrix multiplication constant). Note that m is the number of

time series in our setting and is typically a constant, making the

algorithm highly efficient in practice.

3Here we consider a 1-lag. If the observations are sampled at high frequency, the
algorithm can use By, Byyr, Bisor, . . ., where L > 1 becomes a parameter.
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4 Theoretical Analysis

There are two standard metrics for evaluating the performance of
CPD algorithms: the Average Run Length (ARL) and the Expected
Detection Delay (EDD). The ARL corresponds to the expected stop-
ping time in the absence of any change points, while the EDD
measures the delay in detecting a true change once it occurs. We
present theoretical analyses of the proposed R1o-CPD framework
under these two metrics, drawing on classical results from prior
work [49] and the derivation of the Kullback-Leibler (KL) diver-
gence with respect to Riemannian geometry.

In deriving our theoretical results, we introduce one key pa-
rameter. Although R10-CPD is flexible with diverse choices of Rie-
mannian metrics, we denote by § that any Riemannian metric has
distortion no larger than § for R1o-CPD. Our main result is stated
below.

Theorem 4.1. LetEoo [Ty ] be ARL and Eo [Ty ] stand for EDD, sup-
pose p is the minimum threshold appeared in the CUSUM sequential
tests of R1o-CPD, we have:

852 - eP 852
> BolTw] < —
P p

Theorem 4.1 provides upper bounds on both ARL and EDD, as
worst-case performance guarantees for R1o-CPD. Since our algo-
rithm consistently employs the three-sigma rule for selecting p, its
performance is primarily constrained by the potential distortion
of the chosen Riemannian metrics, which may arise from metric
design, selection, or noise in the time-series data.

Proor. We start with the textbook results restated from [49].

Proposition 4.2. Let p be the threshold of CUSUM test, fy and foo
be the pre- and post-change distribution of the time series, then we

have the following:

ep
Bl E egerpoot @
- P o
Sl B oo e @

Recall the definition of Kullback-Leibler divergence between two
distributions f(x), g(x):
f&)

Do) = [ fo1og 25

Therefore, above equations for ARL and EDD can be rewritten w.r.t.
the KL divergence:

dx 9)

ep
el B "
_ P
Eo[Tw] = DKL(ﬁ)IIfoo)(l+0(1)) (11)

We next establish a connection between the KL divergence and
Riemannian metrics. In particular, we show that

651 (Bso, 00) = 2Dk (foo I o) (12)

where gF T refers to the Fisher information metric, which is a
Riemannian metric. 8, 0y are two points on the Riemannian mani-
fold corresponding to fo, fo. This result has been discussed in prior
works without explicit proof, for completeness we show the details.
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Now we prove that Equation (12) is true, starting from defining the
Fisher Information matrix.

Definition 4.3. Given a manifold with coordinates ® = (601, 0s,...),
let p(x|6) be the likelihood and normalized to 1, i.e. _/x p(x|0)dx = 1.

& log p(x|0)
0 ————p(x]|0)d
ot 0)= [ T (sl
Our goal is to show Dxr,(6;]10;) = 3 (6; —0,)T -95.1(0) -(0; - 0)).
It is essentially obtained by Taylor expansion.

Dxr (0 || 0;) ~ Dxr(6; | 9j)|9 -0,

(9 s )T aDKL(Gz || 9_1

ae] |0]—9
1 79Dk (6; || 6)
+5(0,=0) o000, lo,=, (07 = 0)

It is convenient to verify that the first two terms are 0.

D (6 11 6)g,—g, = / p(x;6:) log 2 (( : ’)d xo,-o,

= /p(x; 0;)log1ldx =0

oDk (0i | 05) p(x;0i)
—a,- lo,=0, = %0 /p(xe)lg( )dx|j_9i

/p(x 0;) (log p(x; 6;) — log p(x;6;) )dx|9 _o,
-- / (3300 30-p(x50)) el

= a81'/;7(x9)dx—

It then falls into the fact that the third term is related to the
Fisher Information metric.

Dy, (6; |l 9]‘)‘
39]'39]' 0;=0;

/p(x 0;) (log p(x; 0;) — log p(x;06;)) dx|9 -a,

ae,aej
- p(x;eom1ogp<x:0j>dx|e:9,.

=~ [ pls60) 5 log s 0)dx = a1 0

We have verified Equation (12). Recall our CUSUM statistics
design in R10-CPD, the hypothesis testing reports a change point
when D(t) = dg(By, c;—1) = p, where D(t) is the distance between
the current batch and the centroid of previous points, and g is a
Riemannian metric used for R10-CPD. With the assumption that
Riemannian metrics have distortion at most §, we have

D(t) = 8(Bs, cr-1) < 877 (8co, 60) - 28

~ 22Dk (feollf0) 6
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Plugging this back into Theorem 4.2, we obtain upper bounds
for ARL and EDD:

852 - e
o[ Tw] < pE (13)
852
Eo[Tw] < 7 (14)

Our proof does not rely on the assumptions with respect to the
geometric parameters of a Riemannian manifold such as geodesic
convexity, Lipschitz gradient, smoothness, etc. However, the as-
sumption that Riemannian metrics have small distortion is also
non-trivial. we refer to future work to directly establish a connec-
tion between the KL divergence and other Riemannian metrics,
especially the Log-Euclidean and Log-Cholesky metrics used in
this paper. Another future direction of theoretical interest is to
characterize the distribution changes in correlation matrices and
show how it might impact the performance of R1o-CPD. O

5 Experiments

In this section, we evaluate the performance of R1o-CPD in terms of
accuracy and efficiency. We begin by evaluating general scenarios
in which the multivariate time series are derived from a dynamic
system, with various types of change points. We then consider
the task of human action recognition as a concrete application
of change point detection and present the corresponding results.
All experiments were conducted on a Linux system equipped with
AMD EPYC 7302 16-core processors and two Nvidia RTX5500 GPUs
with 24GB of memory, although most baseline methods do not
require the use of a GPU.

5.1 Setup

Datasets. We evaluate our model R1o-CPD using both synthetic
and real-world datasets. Three synthetic datasets are derived from
a particle-spring system [64], which features five particles moving
within a rectangular space. The particles are randomly connected
by invisible springs, and their movement follows Newton’s and
Hooke’s laws. The Connection data set exhibits correlation changes,
with change points occurring when spring connections change. In
contrast, the Speed and Location datasets show change points related
to the particles’ speed and location, respectively. For real-world data,
we use several benchmark datasets commonly compared in prior
works, including Beedance®* and HASC®, which do not necessarily
exhibit correlation-based change points. In addition, we include the
Product Review Microservice dataset [67], which contains change
points due to system irregularities. In this dataset, the system per-
formance metrics are correlated because of the underlying system
architecture. We provide basic statistics for all datasets inTable 1.

Baselines. We compare R1o-CPD with four baselines represent-
ing different families of online change point detection methods:
KL-CPD [12], which extends the kernel two-sample test and opti-
mizes a lower bound of the test power via an auxiliary generative
model; BOCPDMS, the Spatial-temporal Bayesian Online CPD [29],
which augments the vanilla Bayesian CPD with Bayesian vector
autoregressions; MSSA-CPD [4], which employs CUSUM statistics

“https://sites.cc.gatech.edu/ borg/ijev_psslds/
Shttp://hasc.jp/hc2011/
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Table 1: Dataset statistics. #CP represents the number of change
points, and #TS denotes the number of independent time series (not
concatenated). A checkmark in the Correlation column indicates
that the change point is due to correlation changes.
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Table 2: F1 score on real and synthetic datasets. A higher score indi-
cates better performance.

Algorithm Microservice Beedance HASC

Default Best Default Best Default Best
Dataset Length #CP #TS Dimension Correlation KL-CPD 0 0 0.092 0.167 0.078 0.204
Connection 100 1 50 R® v BOCPDMS 0.061 0.109 0.092 0.167 0.078 0.204
Speed 100 1 50 R® X MSSA-CPD 0.154 0.308 0.500 0.659 0.177 0.327
Location 100 1 50 R® X Contra-CPD 0.122 0.258 0.167 0.293 0.151 0.239
Microservice 1548-1767 8 4 RC v R10-CPD (LE) 0.778 0.875 0.518 0.625 0.320 0.345
Beedance 608-1124 117 6 R3 X R10-CPD (LC) 0.933 0.933 0.535 0.643 0.360 0.463

HASC 11738-12000 196 18 R3 X Connection Speed Location
Default Best Default Best Default Best
KL-CPD 0.087 0.120 0.155 0.263 0.052 0.199
BOCPDMS 0.031 0.096 0 0.114 0 0.043

based on subspace estimation via multivariate Singular Spectrum
Analysis; and Contra-CPD [45], which designs a test statistic that
extends the concept of maximizing the discrepancy between pre-
and post-change distributions. For Contra-CPD, we select the poly-
nomial function family among its variants.

Evaluation metrics. We evaluate detection performance primarily
using the F1 score, which is crucial for accuracy, as CPD can be
treated as a binary classification problem. The second metric is
detection delay, which is particularly important in practice when
delays can have significant consequences. The delay is reported by
counting the number of time steps. We also report running time to
assess efficiency.

Parameters. Only two parameters are required: the threshold
p of the CUSUM statistic and the window size W. We adopt a
consistent strategy for selecting p, the three-sigma rule [46], namely
p = 3 - o, where o is the standard deviation calculated over the
data samples until a change point occurs. The three-sigma rule is a
well-established statistical concept and a common heuristic widely
used across various applications. In our experiments, W is usually
set as 10 or 20 and we did not prioritize extensive optimization of
this parameter.

5.2 Detection Performance

We first evaluate the accuracy of R10-CPD on both synthetic and
real-world datasets and report the F1 score under two settings:
Default, which uses the vanilla parameter initialization, and Best,
which involves a fine-tuning process. A change point is considered
successfully detected if it falls within the sliding window reported
by the algorithm. For baseline methods that do not use a sliding
window, we omit the error caused by the value of W to ensure a
fair comparison.

The results in Table 2 indicate that R1o-CPD, with both Log-
Euclidean (LE) and Log-Cholesky (LC) metrics, consistently per-
forms better than or at least competitively with other methods.
In particular, for datasets with correlation-based change points,
R10-CPD significantly outperforms other methods. We observe
that other methods suffer from both false negatives and false posi-
tives—they tend to miss correlation changes while also reporting
more change points due to local perturbations. Notably, KL-CPD
has an F1 score of 0 on the Microservice dataset due to the absence
of any true positive detections. For other datasets with change
points not specified as correlation-based, Rto-CPD also shows fa-
vorable performance. This is due to the dual ability of R1o-CPD

MSSA-CPD 0.179 0.330 0.292 0.485 0.153 0.308
Contra-CPD 0.268 0.304 0.315 0.396 0.283 0.342
R10-CPD (LE) 0.446 0.496 0.412 0.510 0.378 0.493
Rio-CPD (LC) | 0.494 0.511 0.473 0.500 0.459 0.482

to detect both general and correlation-based change points. We
provide more discussions on this observation with a toy example
in Section 7.

Furthermore, the LC metric is claimed to be more numerically
stable and computationally efficient compared to the LE metric [35],
which is supported by our experiments, as R1o-CPD with the LC
metric demonstrates slightly better performance. An example of
change points detected by R1o-CPD is shown in Figure 3.

Table 3: Average delay on all datasets. ‘N.A. is used when no positive
detection occurs within a reasonable delay window. All values are
rounded to the nearest integer.

Algorithm Microservice Beedance HASC

KL-CPD 11 7 N.A.

BOCPDMS 8 6 N.A.
MSSA-CPD 14 11 41
Contra-CPD 10 16 33
R10-CPD (LE) 0 8 25
R10-CPD (LC) 0 6 19

Connection Speed Location

KL-CPD N.A. N.A. N.A.
BOCPDMS 9 6 7
MSSA-CPD 2 4 3
Contra-CPD 5 5 4
R1o-CPD (LE) 2 2 2
R10-CPD (LC) 2 2 3

We next evaluate the average detection delay for each algorithm.
Detection delay measures the sensitivity of a CPD algorithm in
an online setting, with a shorter delay preferable. To avoid false
alarms, we calculate the average delay only for points detected
within twice the window size. Detections outside this range are
not considered related to the current change point. The results are
presented in Table 3. Additionally, we demonstrate the running
time of all algorithms on three datasets: Microservice, Beedance,



CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

1e6 1e6

o T
Rio-CPD ! . ! ‘ MSSA-CPD
25 25

i,
Iy

“‘H \\‘
1l M ‘

cpP2

System KPI
System KPI

P2 cp2 cP1

o0] G

0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750
Time step Time step

T
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
v
i

T
i
i
'
'
'
'
'
'
'
¥
i
|
|
|
I
'
'
'
'

Figure 3: Detected change points by Rio-CPD and MSSA-CPD on the
Microservice dataset, with false alarms omitted for MSSA-CPD.

and Connection in Figure 4. The reported numerical values are
logarithmically transformed.
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Figure 4: Running time comparison on three datasets.

An immediate observation is that R1o-CPD, with either metric,
runs faster than all baseline methods and has a lower detection
delay. This efficiency is due to the simplicity of the metrics and our
design of the CUSUM procedure with a closed-form solution for
the Fréchet mean, which can be computed quickly.

5.3 Human Action Recognition

Human action recognition is another real-world application of
change point detection, where a change point typically refers to
abrupt changes in physical activity. We evaluate R1o-CPD using
both the Log-Euclidean and Log-Cholesky metrics on the WISDM
dataset [60], which contains 3-dimensional accelerometer measure-
ments collected from a smartphone at a sampling rate of 20 Hz.
The dataset includes 17 human activity changes, corresponding
to 17 change points. Following prior work [45], the dataset is pre-
processed through sub-sampling.

We also compare R1o-CPD against MSSA-CPD and Contra-CPD
in terms of F1 score and detection delay, as previous results have con-
sistently shown these methods outperform KL-CPD and BOCPDMS.
Unless stated otherwise, the sliding window size for R1o-CPD is
set to W = 20. The results are presented in Table 4.

We again observe that R1o-CPD, with both Riemannian metrics,
significantly outperforms other methods, especially in terms of the
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Table 4: F1 score and average delay (AD) on WISDM dataset.

Algorithm F1 (Default) F1 (Best) AD
MSSA-CPD 0.225 0.406 15
Contra-CPD 0.314 0.378 23

R10-CPD (LE) 0.378 0.453 15
Rio-CPD (LC) 0.400 0.495 14

FLscore F1 score

w=2s w=10 w=30

w=30 w=s w=10

w=3s w=s0 w=40

w=40 w=4s w=s0

Figure 5: Sensitivity analysis of window size W for Rio-CPD.

F1 score. Moreover, the Log-Cholesky metric slightly outperforms
the Log-Euclidean metric, as presented in Table 2.

5.4 Parameter Sensitivity Analysis

We outline the parameters used for Rto-CPD. Recall that R1o-CPD
has one "hard" parameter—the sliding window size—and two "soft"
parameters: the threshold p in CUSUM and L, which represents the
lag between sampled data. For all datasets except HASC, we set
L =1, as HASC contains a long sequence, for which we use L = 5.
The window size W is set to 10 for the Beedance dataset, 20 for
Microservice and HASC, and 5 for all synthetic datasets. For the
CUSUM threshold, we tested a heuristic approach by setting p to
three times the variance of the pre-change distances, along with
small integer values not greater than 5.

The performance of online algorithms is usually subject to the
choice of window size. As previously discussed, we did not exten-
sively optimize this parameter in our experiments, as our goal was
to evaluate the robustness of R1o-CPD against parameter choice.
To demonstrate this point, we analyze the sensitivity of W in Fig-
ure 5. We run R1o-CPD on the Microservice and WISDM datasets
with different choice of W and report the F1 score results. It can
be observed that with a reasonable range for W, the performance
stays stable.

6 Related Work

Change Point Detection has been studied in both offline and
online settings. The offline CPD problem is often approached as
time series segmentation and has been extensively studied [14, 36,
37,51, 52]. According to [5], change point detection methods can be
categorized into four types: probabilistic, kernel-based, likelihood
ratio, and subspace models. Likelihood ratio methods are typically
parametric, while the others can be parametric or nonparametric.
Online CPD has received more attention recently. The first notable
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method is BOCPD (Bayesian Online Change Point Detection) [1],
which inspired numerous follow-up works [2, 3, 17, 29, 38, 61].
Gaussian process-based methods [11] also fall under probabilistic
models. Kernel-based approaches originated from kernel maximum
mean discrepancy for change point detection [23], later refined
for online settings [22, 33, 34]. Recently, neural network-based ap-
proaches [12, 13, 32] have also been classified as kernel-based meth-
ods. On the other hand, likelihood ratio methods, with the longest
history, began with CUSUM [42] and the generalized likelihood
ratio test [25], followed by many variants [20, 48, 57-59]. These
methods are parametric, assuming known distributions. Subspace
models assume that time series data lie in a low-dimensional mani-
fold, approximated through singular spectrum analysis [4], metric
design [15, 19, 28], or other learning-based approaches [21, 26, 27].
Our R10-CPD model falls into the category of refined subspace
model based methods, but has merits on accuracy and efficiency by
exploring the Riemannian geometry of correlation matrices. Also
different from existing work, R1o-CPD is capable of detecting both
magnitude-based changes and correlation-based changes.

Riemannian Metrics on the Space of SI. The manifold S} repre-
sents the space of positive definite matrices of dimension n, which
can be equipped with various metrics. Canonical choices include
the Log-Euclidean metric [6], Log-Cholesky metric [35], affine-
invariant metrics [41, 43], and Bures-Wasserstein metrics [9, 18, 50].
The Log-Euclidean and Log-Cholesky metrics exhibit Lie-group bi-
invariance and provide simple closed forms for the Fr’echet average
of SPD matrices. The affine-invariant metric is inverse-consistent
and invariant under congruence actions, such as affine transforma-
tions, and is geodesically complete. The Bures-Wasserstein metric,
while not geodesically complete, is bounded by the positive semi-
definite cone. Recent works also explore the Riemannian geometry
of correlation matrices [16, 24], as well as more general positive
semi-definite matrices [39, 53].

7 Discussion

Riemannian Geometry for Change point Detection. Geometry-
inspired methods have recently gained attention in data mining
and machine learning [7, 31]; however, their application to the
CPD problem remains underexplored. In contrast, the Riemannian
metric—a key concept in differential geometry—offers significant
potential due to the broad applicability of symmetric positive def-
inite (SPD) matrices, denoted as S}. Our framework is designed
to accommodate all well-defined Riemannian metrics on SI. We
have chosen the Log-Euclidean and Log-Cholesky metrics for in-
tegration into R10-CPD because of their efficiency and simplicity.
Other metrics could be incorporated using the Karcher mean, a
generalized version of the Fréchet mean, computed via Riemannian
optimization methods. However, this approach may involve more
complex techniques and could impact the efficiency or accuracy of
the R10-CPD framework.
Dual Ability to Detect Change Points based on Magnitude
and Correlation. We give insights into why R10-CPD is capable
of detecting changes on both joint and marginal distributions. We
start from the intuition behind the algorithm design.

R10-CPD integrates two complementary aspects of time series
change detection.
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e Intra-relationship modeling: Correlations between time se-
ries attributes are explicitly captured using correlation matrices.
These matrices provide a structured representation of the rela-
tionships among variables, allowing the model to detect changes
in these relationships.

Inter-relationship modeling: Temporal dynamics are modeled
by incorporating changes over time through a sliding window.
This primarily tracks variations in correlations and implicitly
captures changes in magnitudes within the sliding window.

For instance, even when correlations remain stable, a shift in
magnitudes introduces variations in the geodesic distances between
correlation matrices over successive windows. These variations are
incorporated into the CUSUM statistic, enablingR10-CPD to identify
magnitude-based changes alongside correlation-based ones.

A Toy Example. We construct a synthetic time series with three
attributes (A, B, C) and 10 time steps:

e A:[10,11,10,9,10, 20, 20,21, 19, 20].
e B:[54,6,4,511,10,11,10,9].
e C:[1,3,9,5,7,16,11,19,9,12].

Here, A and B are correlated, while C is largely independent.
A change point occurs at step 6, where the magnitudes of A and
B double, resulting in a mean shift from (A = 10,B = 5) to (A =
20,B = 10). Using a sliding window of size 5, we compute correlation
matrices for successive windows and calculate the log-Euclidean
distances:

e Window X (steps 1-5): Correlation matrix for [10, 11, 10,9, 10],
[5,4,6,4,5], and [1,3,9,5,7].

e Window X; (steps 3-7): Correlation matrix for [10, 9, 10, 20, 20],
[6,4,5,11,10], and [9, 5,7, 16, 11].

e Window X3 (steps 6-10): Correlation matrix for [20, 20, 21, 19, 20],
[11,10,11,10,9], and [16,11, 19,9, 12].

The geodesic distances between these matrices are:

e d(X,Xy) =544
e d(X1,X3) =5.08
e d(X,X2) =294

Despite the similarity in correlations between X and X, the
distances involving X are significantly larger due to the magnitude
changes at step 6. With a proper parameter choice, a change point
can be identified. This demonstrates R1o-CPD’s ability to detect
magnitude-based change points using the same geodesic distance
framework applied to correlation matrices.

8 Conclusion

We address the novel problem of Correlation-aware Online Change
Point Detection, which has become a crucial task in many real-
world applications. We propose R10-CPD, a non-parametric frame-
work inspired by the Riemannian geometry of correlation matrices.
We instantiate R1o-CPD with the Log-Euclidean and Log-Cholesky
metrics, due to their simplicity and stability, and introduce a novel
design of the CUSUM statistics. We evaluate R10-CPD using these
metrics across various datasets, both with and without correlation
changes, demonstrating its superior performance in terms of accu-
racy and efficiency. Potential future directions include extension to
high-dimensional data, and enhancement with explainability.
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