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Abstract

Program or process is an integral part of almost every
IT/OT system. Can we trust the identity/ID (e.g., ex-
ecutable name) of the program? To avoid detection,
malware may disguise itself using the ID of a legitimate
program, and a system tool (e.g., PowerShell) used by
the attackers may have the fake ID of another com-
mon software, which is less sensitive. However, exist-
ing intrusion detection techniques often overlook this
critical program reidentification problem (i.e., checking
the program’s identity). In this paper, we propose an
attentional heterogeneous graph neural network model
(DeepHGNN) to verify the program’s identity based
on its system behaviors. The key idea is to leverage
the representation learning of the heterogeneous pro-
gram behavior graph to guide the reidentification pro-
cess. We formulate the program reidentification as a
graph classification problem and develop an effective
attentional heterogeneous graph embedding algorithm
to solve it. Extensive experiments — using real-world
enterprise monitoring data and real attacks — demon-
strate the effectiveness of DeepHGNN across multiple
popular metrics and the robustness to the normal dy-
namic changes like program version upgrades.

1 Introduction

Modern enterprises often rely on intrusion detection
system (IDS), either misuse-based or anomaly detection
based, to protect their IT and OT systems. However,
existing IDS techniques overlook one critical problem,
which is the program reidentification: given a program,
with a claimed ID (such as executable name), running
in the system, can we confirm the program’s identity
and guarantee that this program is not a disguised
malicious program, or a hijacked program with different
behaviors, by comparing it to the normal program with
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the same ID? To make the attack processes stealthy
and avoid detection, hackers often falsify the IDs of
the tools they have used to bypass the IDS. For
example, a malware may have the ID of a benign
software and a system tool (e.g., PowerShell) used
by the hackers may have the ID of another software
which is less sensitive [17]. In fact, running programs
with fake IDs is a strong signal of the system being
compromised [11]. Capturing the programs with fake
IDs can help identifying very stealthy attacks and
reduce the security risks in enterprise networks.

Existing techniques cannot be directly applied to
address the problem of program reidentification. Dig-
ital code signing techniques, such as Public Key In-
frastructure (PKI) [13], may help identify the certified
authors of programs. However, many open-source pro-
grams that are widely used in enterprises may not con-
tain valid signatures. Further, modern programs are
evolving at a fast pace. Each version of the program
has a unique signature. Handling the fast inflating set of
signatures for programs is practically difficult. Malware
detection or Anti-Virus may detect malware. Yet, hack-
ers may also use common system tools to finish their
attacks, such as malware free attacks [25]. Besides, a
sophisticated malware can also bypass the anti-virus by
hiding its malicious features, and a hacker can also hi-
jack the memory of a benign program to perform mali-
cious actions [3]. There are more sophisticated program
watermarking techniques to identify a program [19], but
their computational costs are prohibitively high so that
they cannot be widely applied to modern enterprise en-
vironments, which contain thousands of programs.

We observe that the system behaviors, such as file
accessing, inter-process communications, and network
communications, of a program have distinguishable pat-
terns [21]. For example, every instance of excel.exe loads
a fixed set of .DLL files while opening a spreadsheet file.
If an EXCEL.EXE instance performs a rare operation,
such as loading an unseen .DLL file or initiating an-
other process, this excel.exe is very likely to be hijacked
or even malware with the ID of EXCEL.EXE. Such pat-
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terns are stable during the evolution of the program, and
the system behavioral events can be efficiently collected
by system monitoring techniques [1,2]. Based on this
observation, in this paper, we propose DeepHGNN,
an attentional deep heterogeneous graph neural network
based approach for program reidentificaion by modeling
the system behaviors of the program.

In particular, we design a compact graph modeling,
the program behavior graph, to preserve all the use-
ful information from massive system monitoring data
and capture the interactions between different system
entities. The constructed behavior graph is a hetero-
geneous graph , which involves a hierarchy of differ-
ent dependencies from simple to complex. Among all
the dependencies, the complex ones are not exposed di-
rectly by the edges in the graph but can be inferred by
a hierarchy of deep representation. To capture the hier-
archical dependencies, we first propose a multi-channel
transformation module to transform the heterogeneous
graph into the multi-channel graph guided by the meta-
paths. After the multi-channel transformation, we feed
the resulted graph and its corresponding entity features
into a graph neural network for graph embedding. We
propose a contextual graph encoder and stack it layer
by layer to learn the hierarchical graph embedding via
propagating the contextual information. Noticing the
different importance of the different channels, channel-
aware attention is further developed to align the multi-
channel graph embeddings. We conduct an extensive
set of experiments on real-world enterprise monitoring
data to evaluate the performance of our approach. The
results demonstrate the effectiveness of our proposed
algorithm. We also apply DeepHGNN to real enter-
prise security systems. The results show our method
is effective in identifying the disguised signed programs
and robust to the normal dynamic changes like program
version upgrade.

In summary, the contributions of this paper are:

e We identify the important problem of program
reidentification in intrusion detection, which is
often overlooked by the existing intrusion detection
systems;

e We propose a heterogeneous graph model to cap-
ture the interactions between different system enti-
ties from large-scale system surveillance data;

e We develop a multi-channel transformation to
transform a heterogeneous information network
into a multi-channel graph;

e We propose a heterogeneous graph neural network
based approach to learn the graph embedding via
propagating the contextual information;

e We propose a channel-aware attention mechanism
to learn the representation from different channels
jointly;

e Our empirical studies on real enterprise monitoring
data demonstrate the effectiveness of our method.

2 Preliminaries and Problem Statement

In this section, we first present the preliminaries, then
define the machine learning problem that we are con-
cerned with Deep Program Reidentification.

System Entity There are three main types of system
entities in an operating system [6, 16]: processes, files,
and Internet sockets (INETSockets). And each entity is
associated with a set of categorical attributes. In this
paper, we use “program” and “process” interchangeably
whenever there is no ambiguity.

System Event A system event is an interaction be-
tween a pair of system entities. Formally, a system event
e = (vs,vq,t) represents a source entity v, destination
entity vg, and their interaction happens at time stamp
t. There are multiple types of system events, due to
the existence of different types of entities. We consider
three different types of system events, including: (1) a
process forking another process (P-P), (2) a process ac-
cessing a file (P-F), and (3) a process connecting to an
INETSocket (P-I).

Problem Statement Given a target program with
corresponding event data during a time window U =
{e1,e2,...} and a claimed name/ID, we check whether
it belongs to the claimed name/ID. If it matches the
behavior pattern of the claimed name/ID, the predicted
label should be +1; otherwise it should be —1. More
formally, given event data U of a program, a mapping
function f is used to map U to a binary label Y €
{+1, -1}, such that f: U — {+1,-1}.

3 Algorithm

3.1 Overview In this section, we introduce
DeepHGNN, a graph neural network based ap-
proach to verify the system program in a data-driven
manner. The framework of DeepHGNN (as shown in
Figure 1), consists of the following six components:

e Surveillance Data Collection. This module
collects three different types of system events (see
Section 2 for definition) from IT/OT systems;

e Behavior Graph Modeling. Based on the col-
lected program event data, a compact heteroge-
neous program behavior graph is constructed for
the target process to capture the complex interac-
tions and eliminate the data redundancies;

e Multi-Channel Transformation. This module
transforms the generated heterogeneous behavior
graph to a multi-channel graph with each channel
modeling one type of meta-path relationship;

e Contextual Graph Encoder. Based on the gen-
erated multi-channel graph, we propose an effective
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Figure 1: System architecture of deep program reidentification.

graph neural network with propagation layer and
perceptron layer to extract the graph embedding;

e Channel-Aware Attention. In this module, an
attention mechanism is proposed to align the graph
embeddings extracted from different channels and
generate the attentional joint embedding;

e Program Reidentification After the joint
embedding being extracted, the resulted low-
dimensional vector is fed to a classification layer
to generate the prediction.

3.2 Behavior Graph Modeling Real information
networks like the enterprise networks often generate a
large volume of system behavioral data with rich infor-
mation on program/process level events. We utilize a
system monitoring tool (i.e., Windows ETW [2]) to col-
lect the program behavioral event data. The data has
four properties: (1) High Volume. The system event
data collected from a single computer system in one day
can easily reach 20 GB and the number of events relates
to one specific program can easily reach thousands. It
is prohibitively expensive to perform the analytic task
on such massive data in terms of both time and space;
(2) High Dimensionality. Each system event is asso-
ciated with hundreds of attributes, including informa-
tion of involved system entities and their relationships,
which causes the curse of dimensionality [23]; (3) Cat-
egorical. All available attributes are categorical, and
each attribute has hundreds of categories. Analysis of
categorical data is very challenging due to the lack of
intrinsic proximity measure [24]; (4) Redundant. The
attributes are redundant. Most of the attributes of sys-
tem entities are the same. Repeatedly saving these at-
tributes results in a significant redundancy. The events
are also redundant. The events with the same system
entity and relationship are usually repeatedly stored,
which also causes a notable redundancy. These chal-

lenges motivate our idea of graph modeling.

We construct the compact graph to model the pro-
gram behaviors. Formally, given the program event
data U across many machines within a time win-
dow (e.g., 1 day), a heterogeneous graph G genavior =
(VBehaviors EBenavior) 1s constructed for the target pro-
gram. VBehavior denotes a set of nodes, with each rep-
resenting an entity of three types: process (P), file (F),
and INETSocket (I). Namely, Vpepavior = P U F U I.
EBehavior denotes a set of edges (vg,vq, ) between the
source entity v, and destination entity vy with relation
r. We consider three types of relations, including: (1)
a process forking another process (P—P), (2) a process
accessing a file (P—F), and (3) a process connecting
to an Internet socket (P—T). Each graph is associated
with an adjacency matrix A. With the help of the be-
havior graph modeling, we reduce the data redundancy
significantly but keep important information.

3.3 Attentional Heterogeneous Graph Neural
Networks After the graph modeling, a heterogeneous
program behavior graph is constructed. There exist a
hierarchy of different dependencies from simple to com-
plex. Among all the dependencies, the complex ones
are not exposed directly by the edge in the graph but
can be inferred by a hierarchy of deep representation.
For example, a process accessing a file (P—F) is a sim-
ple dependency, two processes accessing the same file
(P—F+P) is a complex dependency. To infer the re-
lationship of two processes accessing the same file, we
can check whether they share the same context. Due to
the complex and obscure dependency, it requires a deep
graph structure learning model to capture the hierar-
chical dependency. However, recent deep graph neural
network methods [9, 12,15, 22] only focus on the ho-
mogeneous graph and can not capture the heterogene-
ity within the heterogeneous graph. To learn the hier-
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archical dependency representation (hierarchical graph
embedding) from heterogeneous graph, we propose an
attentional heterogeneous graph neural network, which
consists of multi-channel transformation, input layer,
contextual graph encoder, and channel-aware attention.
Multi-channel Transformation Due to the hetero-
geneity intrinsic of entities (nodes) and dependencies
(edges) in a heterogeneous graph, the diversities be-
tween different dependencies vary dramatically, which
significantly increase the difficulty of applying graph
neural network. To address this challenge, we design a
multi-channel transformation module to transform the
heterogeneous graph to a multi-channel graph guided
by the meta-paths. A meta-path [20] is a path that
connects entity types via a sequence of relations over
a heterogeneous network. For example, in a computer
system, a meta-path can be the system events (P—P,
P—F, and P—T), with each one defining a unique rela-
tionship between two entities.

The multi-channel graph is a graph with each
channel constructed via a certain type of meta-path.
Formally, given a heterogeneous graph G with a set of
meta-paths M = {Mj, ..., M|¢|}, the transformed multi-

channel network G is defined as follows:

where E; denotes the homogeneous links between the
entities in V;, which are connected through the meta-
path M;. Each channel graph G; is associated with
an adjacency matrix A;. |C| indicates the number
of meta-paths. Notice that, the potential meta-paths
induced from the heterogeneous network G pepauvior Can
be infinite, but not everyone is relevant and useful for
the specific task of interest. Fortunately, there are
some algorithms [8] proposed recently for automatically
selecting the meta-paths for particular tasks.
Input Layer After the multi-channel transformation,
an input layer is applied to construct the feature vector
for each entity. Specifically, two types of features
are constructed: connectivity features and statistic
features. Since these features are constructed without
any expert knowledge, they are knowledge free.
Connectivity features are constructed to describe
the pairwise proximity between entities. The con-
nectivity feature of entity v is defined as X{" =
{ev,1.-, €y, v |}, which denotes the first-order proximity
between v and other entities. Graph statistical feature
of an entity v is generated based on the graph theory. It
can be defined as X3t = { X35!, X352, X33 X34}, includ-
ing four graph measurements: degree centrality, close-
ness centrality, betweenness centrality, and clustering
coefficient.

Contextual Graph Encoder! In this step, we feed
the multi-channel graph and the corresponding entity
features to a graph neural network for graph embed-
ding. To learn the hierarchical graph representation,
we propose contextual graph encoder (CGE) and stack
a deep graph neural work. Given the one-channel graph
G = (V,E,A) with each V associated with a corre-
sponding feature X, our target is to learn an encoding
function fo : G — hg, that encodes the graph to a
low dimensional vector (graph embedding), where h¢
denotes the generated graph embedding vector. Specif-
ically, we use the representation of the target entity h,,
(target contextual entity embedding), which encodes
both contextual structure and its features by a map-
ping function fy : V' — hy, as the representation of
the graph. In this way, we reduce the graph embedding
problem into the target entity embedding. Formally,
our graph encoder can be defined as follows:

(3-2) he = hy, = fv (Vi)

The basic contextual graph encoder consists of a
propagation layer PROP() and a perceptron layer
PERCE(). The propagating layer propagates the in-
formation from the context of the target entity. We
define the propagation layer PROP() as follows:

(3.3) ht = PROP(h!) = P'h!

where [ denotes the layer number, P! denotes the prop-
agation matrix at layer [, and h! indicates the output
of PROP() at layer I. The first layer h® = X takes the
features of each entity. The propagation layer propa-
gates information to the target entity within a region,
named graph receptive field F. The graph receptive
field F usually consists of all L-hop contexts of target
entities. The propagation operation encodes both the
graph structure and the entity features, which is sim-
ilar to performing a graph convolution operation [15].
After the propagation is performed, a perceptron layer
PERCEY() is applied to the propagated representation
of the entities, such that:

(3.4) R+t = PERCE(W') = o(h'Wh)

where W' is the shared trainable weight matrix for all
the entities at layer [ and o() is a nonlinear gating func-
tion. Benefit from weight sharing, it is both statistically
and computationally efficient compared with traditional
entity embedding. Weight sharing can act as powerful
regularization to preserve the invariant property in the
graph, and the number of parameters is significantly re-
duced.

TIn this subsection, we remove the subscripts of channel

indicator for all the graph related symbols for simplification.
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We design our propagation layer by performing
the random walk on the graph via a diffusion process
characterized by a specific probability ¢ € [0,1] and
a state transition matrix D~'A. Here, D denotes
the degree matrix of the adjacency matrix A, such
that D = diag(A1). 1 is a all one vector. After
some transitions, such Markov process converges to
a stationary distribution P € RN*N with ith row
indicates the likelihood of diffusion from the entity,
hence the proximity of that entity. This stationary
distribution of the diffusion process is proven to have
a closed form solution [4]. When considering the 1-
step truncation of the diffusion process, the propagation
layer is defined as follows:

(3.5) h'=PROP(h')=D7'Ah' = > P,,h
uEN (vt)

The receptive field is defined as F = {N(v;)}, with
N (v;) denoting all the contexts of target entity v;. The
propagation layer computes the weighted sum of the
contexts’ current representation. We set P = Pl =
P2 = D' A and build a three-layer CGE as follows:

(3.6) h' = ReLU((P°X)W?)
(3.7) h? = ReLU((P'AY )W)
(3.8) h? = ReLU((P?h?)W?)
(3.9) he = h,, = h®

where RELU() is a element-wise rectified linear acti-
vation. We perform the CGE to each channel graph
and generate corresponding graph representation re-
spectively.
Channel-Aware Attention Going through the CGE,
the graph embeddings for each channel graph are ex-
tracted. However, different channels should not be con-
sidered equally. For example, Ransomware is usually
very active in accessing the files, but it barely forks an-
other process, or opens an internet socket, while the
VPN is generally very active in opening the internet
socket, but it barely accesses a file or forks another pro-
cess. Therefore, we need to treat different channels dif-
ferently. Here, we propose a channel-aware attention,
an attention mechanism, to align the graph embeddings
from different channels and generate the joint embed-
ding. Specifically, we learn the attention weights for
different channels automatically.

Formally, given the corresponding graph embedding
hg, for each channel i = 1,2,...,|C|, we define the
attention weight as follows:

o exp(o(aWahg, |[|[Waha,]))
(3.10) ;= Y wreic exp(o(a[Waha,[[Waha,,]))

where hg, is graph embedding of the target channel,
ha, denotes the representation of the other channels.

a denotes a trainable attention vector, W, denotes a
trainable weight mapping the input features to the
hidden space, || denotes the concatenation operation,
and o denotes the nonlinear gating function. We
formulate a feed-forward neural network that is used to
compute the correlation between one channel and other
channels. This correlation is normalized by a Softmax
function. Let ATT (h¢,) represent Eq.(3.10). The joint
representation of each channel can be represented as
follows:
IC]
(3.11) hGyom = 3 ATT(ha,)ha,

i=1

The channel-aware attention allows us to better infer
the importance of different channels by leveraging their
correlations and learn a channel-aware representation.

3.4 Program Reidentification After the joint
graph embedding is generated from program event data,
a binary classifier is used to verify whether the program
matches its claimed name. Specifically, we trained the
binary classifier for each known program. Our frame-
work takes a claimed program event data as the input
and generates the corresponding prediction. The final
output is +1 or -1, indicating the identified or uniden-
tified prediction result.

To train a verification model for a particular
program, we collect a set of program events U =
{U1,Us,...,Uy} including events belong to that pro-
gram and the ones do not belong to that program.
Their corresponding labels are Y = {y1,y2, ..., ym } with
y; € {41, —1}. If the event data belongs to the claimed
program, its ground truth label y; = 41, otherwise its
ground truth label y; = —1. Our target is to design an
end-to-end binary classifier. Specifically, we propose to
use logistic regression classifier, and the objective func-
tion is defined as follows:

m

(3.12) 1= % > lyiloggi + (1 —y;)log(1 — 5y)]

i=1

where ¢; denotes the predicted label. We optimize the
above objective with Adam optimizer. The gradients
of the parameters are calculated recursively according
to the graph topology. Since our approach is end to
end, we directly optimize the reidentification objectives.
Once the model achieves a good performance (e.g.,
using accuracy (ACC) as the measure), the training
process terminates, and the trained model is suitable
for program reidentification.

4 Experiments

4.1 Data In the experiments, we evaluate the pro-
posed method on the real-world system monitoring

Copyright (© 2019 by SIAM

697 Unauthorized reproduction of this article is prohibited



Downloaded 09/15/24 to 73.197.85.103 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

data. The data is collected from a real enterprise net-
work composed of 87 machines, in a time span of 20
consecutive weeks. The sheer size of the data set is
around 3 Terabytes. We consider three different types
of system events as defined in Section 2. Each entity
is associated with a set of attributes, and each process
has an executable name as its identifier/ID. In total,
there are about 300 million event records, with about
2,000 processes, 600, 000 files, and 18, 000 Internet sock-
ets. Based on the system event data, we construct the
heterogeneous behavior graph (see Section 3.2) per pro-
gram per day. For each entity, we construct three dif-
ferent types of features according to Section 3.3: fea-1:
connectivity feature, fea-2 statistics feature, and fea-3:
the combination of fea-1 and fea-2.

4.2 Experiment Setup

4.2.1 Baselines We compare the proposed method
DeepHGNN with the following typical and state-of-
art classification models:

e LR and SVM: LR and SVM represent the Logis-
tic Regression and Linear Support Vector Machine,
respectively. They are two typical classification
methods. The raw features extracted from each
process are used as the input, including the con-
nectivity features and the graph statistics feature.
The LR and SVM are implemented using sciket-
learn.

e XGB: XGB represents the gradient boosting. It
is a decision tree based classification model imple-
mented using XGBoost [7]. It is the state-of-art
linear classification model for most of the tasks.
We set maximum 500 trees with the learning rate
equals to 0.1.

e MLP: MLP represents the Multi-layer Perceptron,
which is a deep neural network based classification
model with multiple non-linear layers between the
input layer and the output layer. It is a special
case of our contextual graph encoder if we define
the propagation layer as an identity matrix.

Since our approach DeepHGNN consists of six
components, we consider different variants as well.

4.2.2 Evaluation Metrics Similar to [6, 16], we
evaluate the performance of different methods using
a variety of measures, including accuracy (ACC), F-1
score, AUC score, precision, and recall.

4.3 Synthetic Experiments To evaluate the pro-
posed method in a more controlled setting, we conduct
three sets of synthetic experiments on 500 most active
programs as follows: (1) We evaluate the effectiveness

of multi-channel transformation and channel-aware at-
tention modules; (2) We evaluate the performance of
our method on normal program reidentification; (3) We
perform the parameter sensitivity analysis. We perform
5-fold cross-validation on each program and report the
average testing results of all the programs for each eval-
uation metric. We conduct a grid search on the param-
eter of each method to identify the parameter setting
that yields the best result, which is done using cross-
validation. In particular, we set the dimension of the
hidden layer to 500.

Evaluation Criteria
Meta-Path 60 1 AUC
DeepHGNN,, | 0.838 0.864 0.843
DeepHGNN,, ¢ 0.821 0.855 0.838
DeepHGNN,,; 0.579 0.635 0.592
DeepHGNN,,, | 0.876 0.901 0.890
DeepHGNN 0.905 0.929 0.908

Table 1: Reidentification results of different meta-paths.

4.3.1 Evaluation of Different Meta-paths In this
experiment, we evaluate the performance of different
kinds of meta-paths and their combinations. Giving
each kind of meta-path, such as P—P, P—F, or P—I,
corresponding to one type of system event, we construct
the multi-channel graph with entity features and then
feed them to the contextual graph encoder to generate
the graph embedding. After the graph embedding ob-
tained, we feed it to logistic regression to train the clas-
sification model for program reidentification. We denote
these baselines as DeepHGNN,,, DeepHGNN,,;,
and DeepHGNN,;. To effectively evaluate our at-
tention module, we consider both direct concatenation
and our proposed attentional version, which are denoted
as DeepHGNN,,,, and DeepHGNN;;. From Table
1, we can observe that: (1) The DeepHGNN,;; out-
performs DeepHGNN with any single type of meta-
path and their simple combination; (2) The combina-
tions of multiple meta-paths perform better than any
single meta-path, since they cover multiple types of de-
pendency and provide complementary information; (3)
The one with channel-aware attention performs better
than simple concatenation, since the importance of dif-
ferent meta-paths vary for different programs. Channel-
aware attention captures that difference and computes
a weighted combination of different meta-paths.

4.3.2 Evaluation on Normal Program Reiden-
tification In this experiment, we evaluate the perfor-
mance on normal program reidentification by comparing
DeepHGNN with other four baselines including LR,
SVM, XGB, and MLP. We use the constructed features
as described in Section 4.1. To show the effectiveness of
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. Evaluation Criteria
Method Settings ACC F-1 AUC Precision  Recall
fea-1 0.693 0.755 0.699  0.632 0.948
LR fea-2 0.705 0.770 0.703  0.655 0.950
fea-3 0.724  0.772 0.727  0.675 0.948
fea-1 0.502 0.662 0.502  0.505 0.970
SVM fea-2 0.795 0.778 0.725 0.701 0.935
fea-3 0.504 0.652 0.504  0.505 0.975
fea-1 0.775 0.802 0.776 0.732 0.930
XGB fea-2 0.833  0.860 0.846  0.821 0.936
fea-3 0.855 0.866  0.856  0.827 0.937
fea-1 0.633 0.745 0.643  0.626 0.938
MLPshation fea-2 0.775 0.808 0.779  0.724 0.932
fea-8 0.778 0.808 0.780 0.726 0.932
fea-1 0.633 0.743 0.653  0.625 0.945
MLPyeep fea-2 0.801 0.830 0.805 0.769 0.921
fea-3 0.815 0.831 0.816  0.778 0.923
DeepHGNN haiiow | / 0.905 0.929 0.908 0.905 0.933
DeepHGNN e, / 0.929 0.961 0.935 0.932 0.936

Table 2: Comparison on normal program reidentification.

the deep learning model, we consider both shallow and
deep versions of the neural network based model, which
is denoted as " X X X pa1i00” and 7 X X Xgeep”, respec-
tively. We consider the one-layer configuration as the
shallow model and the three-layer configuration as the
deep model. For the baseline methods, we use the con-
structed raw features: fea-1, fea-2, or fea-3 as the input,
respectively. Table 2 shows that overall, DeepHGNN
consistently and significantly outperforms all baselines
in terms of all metrics. More specifically, (1) fea-3 (con-
catenate the connectivity feature and graph statistic
feature) helps to improve the performance for all base-
line classification models, but since they are all raw fea-
tures without considering graph structure, their perfor-
mance can not catch up with the proposed method; (2)
fea-2 (graph statistic feature) is more useful than fea-1
(graph connectivity feature), since fea-1 is very sparse,
which is difficult to use for some state-of-art methods,
such as SVM; (3) The deep model outperforms the shal-
low model for our approach, since the deep model can
capture the hierarchical dependency representation.

0.94

0.92

8 0.90
<

0.88

0867560 300 400 500 600
Hidden layer dimension
Figure 2: Parameter sensitivity analysis results.

In this experiment, we also conduct the sensitivity

analysis of how different choices of parameters will affect
the performance of our proposed approach. Specifically,
DeepHGNN has an important parameter: the number
of dimensions in each perceptron layer. Figure 2
shows that the performance of DeepHGNN is not
significantly affected by the number of hidden layer
dimensions.

4.4 Real-world Experiments In this section, we
evaluate the performance of the DeepHGNN in two
real-world tasks: disguised program detection and nor-
mal program upgrade detection.
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Figure 3: Disguised program detection results.

4.4.1 Disguised Program Detection In order to
avoid detection, hackers usually disguise their malicious
program as a legitimate program. To test the perfor-
mance of DeepHGNN in disguised program detection,
we simulate five different types of real advanced attacks
including: (1) WannaCry: A crypto worm which dis-
guised itself as 7z.exe; (2) Phishing Email: A malicious
Trojan is downloaded as an Outlook attachment, and
the enclosed macro is triggered by Excel to create a
fake java.exe, and the disguised malicious java.exe fur-
ther exploits a vulnerable server to start cmd.exe in or-
der to create an info-stealer; (3) Emulating Enterprise
Environment: The hackers generate telnet process to
create a Trojan malware binary with a disguised nor-
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mal program name. Then, DLL is injected through the
running process notepad.exe. The hackers use mimikaz
and kiwi for memory operation inside the meterpreter
context. Finally, malware PwDump7.exe and wce.exe
are copied and run on target hosts; (4) Diversifying At-
tack Vectors: The hacker first writes malicious PHP
file by HT'TP connection, then downloads the malware
process (Trojan.exe), and connects back to the hacker
host. The process notepad.exe is run to perform DLL
injection. The hacker further uses mimikaza and kiwi to
perform memory operation inside meterpreter context.
Finally, it copies and runs Pwdup7.exe and wce.exe on
the target host; (5) Domain Controller Penetration:
The hackers first send an email attaching a document
that includes the malware python32.exe. This malware
opens a connection back to the hackers so that they
can run notepad.exe and perform reflective DLL in-
jection to obtain the needed privileges. Finally, they
transfer password enumerator and run the process gsec-
dumpv2bb.exe to get all user credentials. We try each
type of the attacks ten times during different time win-
dows to generate different testing samples.

The detection performance is evaluated using the
true positive rate (TPR) and false positive rate (FPR).
The TPR defines the fraction of intrusion attacks that
are detected during the evaluation. FPR, on the other
hand, describes the fraction of normal event sequences
that trigger an alert during the evaluation. We compare
our method with the four baselines and use the deep
model for all neural network based techniques. Figure
3 shows that DeepHGNN outperforms all the other
baselines by at least 12% in TPR and 10% in FPR.

t-SNE view of Program Representation
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Figure 4: Scatter plot embedding of different versions
of CHROME.EXE vs FIREFOX.EXE.

4.4.2 Robustness Study on Program Upgrade
The normal program usually gets the upgrade with mul-
tiple versions. However, different versions have differ-
ent signatures, which may cause false alarms in intru-
sion detection systems. In this experiment, we eval-

uate the robustness of DeepHGNN on normal pro-
gram upgrades. In particular, we select the web browser
software CHROME.EXE for a case study. We col-
lect the data of CHROME.EXE with three different
versions and one version of another web browser soft-
ware FIREFOX.EXE. Then, the graph embedding be-
fore the classifier for these CHROME.EXE data and
FIREFOX.EXE data are extracted and visualized us-
ing t-SNE. From Figure 4, we can see that in the em-
bedding space, the data points belong to the differ-
ent versions of CHROME.EXE are close to each other,
even though they have different signatures, while the
data points of FIREFOX.EXE are far away from all the
CHROME.EXE data points, which demonstrates our
method is robust to the normal program upgrades.

5 Related Work

5.1 Intrusion Detection In general, intrusion de-
tection refers to the process of monitoring the events
occurring in a computer system or network and ana-
lyzing them for signs of intrusions. Currently, there
are two main types of approaches, namely anomaly de-
tection and misuse detection [14]. Anomaly detection
approaches define and characterize correct/wrong be-
haviors of the system, while the misuse detection ap-
proaches monitor for explicit patterns, with the intru-
sion patterns known in advance. Existing anomaly de-
tection approaches in large-scale enterprise network sys-
tems have been separately considering different data
representations. In particular, host-based anomaly de-
tection methods [6,10,16] locally extract patterns from
process-level events as the discriminators of abnormal
intrusion. In contrast, network-based anomaly detec-
tion methods [18] focus on disclosing abnormal sub-
graph structures from network-level events, most of
which are inspired by graph properties.

5.2 Graph Representation Learning Representa-
tion learning [5] has become a very promising topic in
machine learning with wide applicability. Many repre-
sentation learning work aim at learning representations
with deep learning due to its powerful feature learn-
ing ability. In recent years, several deep learning ap-
proaches have been proposed on graph-structured data,
including [9,12,15,22]. They leverage convolution op-
eration in the spatial domain or spectral domain. [9]
proposes the fast localized convolutions. [15] proposes
a first-order approximation scheme to reduce the com-
putation cost of graph filter spectrum. [12] extends the
graph convolution with a more general form of sample
and aggregation function for node context. More recent
work [22] learns the context aggregation with consider-
ing the weights between the neighborhood and current
nodes. However, these work mainly focus on the node
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classification for heterogeneous network. Different from
theirs, our work focuses on learning the embedding from
the heterogeneous graph.

6 Conclusion

In this paper, we investigate the problem of program
reidentification in IT/OT systems, which is often over-
looked by traditional intrusion detection techniques. We
propose DeepHGNN, an attentional heterogeneous
graph neural network method to verify the program’s
identity based on its heterogeneous behavior graph. Dif-
ferent from the existing homogeneous graph neural net-
work methods, DeepHGNN is able to capture and
encode the heterogeneous complex dependency among
different entities in a hierarchical way. The experimen-
tal results show that DeepHGNN outperforms all the
baseline methods by at least 10% in terms of all the met-
rics. We also apply DeepHGNN to a real enterprise
system for disguised program detection. Our method
can achieve superior performance and demonstrate ro-
bustness across the normal dynamic changes.
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