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ABSTRACT
Graph Convolutional Networks (GCNs) have shown to be a pow-
erful tool for analyzing graph-structured data. Most of previous
GCN methods focus on learning a good node representation by
aggregating the representations of neighboring nodes, whereas
largely ignoring the edge information. Although few recent meth-
ods have been proposed to integrate edge attributes into GCNs
to initialize edge embeddings, these methods do not work when
edge attributes are (partially) unavailable. Can we develop a generic
edge-empowered framework to exploit node-edge enhancement,
regardless of the availability of edge attributes? In this paper, we
propose a novel framework EE-GCN that achieves node-edge en-
hancement. In particular, the framework EE-GCN includes three
key components: (i) Initialization: this step is to initialize the embed-
dings of both nodes and edges. Unlike node embedding initialization,
we propose a line graph-based method to initialize the embedding
of edges regardless of edge attributes. (ii) Feature space alignment:
we propose a translation-based mapping method to align edge em-
bedding with node embedding space, and the objective function is
penalized by a translation loss when both spaces are not aligned.
(iii) Node-edge mutually enhanced updating: node embedding is
updated by aggregating embedding of neighboring nodes and asso-
ciated edges, while edge embedding is updated by the embedding of
associated nodes and itself. Through the above improvements, our
framework provides a generic strategy for all of the spatial-based
GCNs to allow edges to participate in embedding computation and
exploit node-edge mutual enhancement. Finally, we present exten-
sive experimental results to validate the improved performances
of our method in terms of node classification, link prediction, and
graph classification.
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1 INTRODUCTION
Graph Convolutional Networks (GCNs), especially spatial-based
GCNs, have been an emerging graph analysis tool and shown ex-
ceptional performances on modeling graph-structured data. Due to
the high efficiency and generality, spatial-based GCNs have drawn
wide attentions [1, 13, 29, 30, 38–40] in various disciplines, such as
computer vision [23, 45, 46], natural language processing [2, 27, 28],
and chemistry [11, 17, 35].

The idea of the spatial-based GCNs is to model node embed-
dings by aggregating the embeddings of neighbors [13, 30, 38].
Although promising results have been demonstrated, these clas-
sical GCNs only consider the node embeddings with node infor-
mation (attributes), ignoring edge-related information. The lack of
such information prevents classical GCNs from learning a holis-
tic view of graphs, since edge information (attributes) contains
semantically-rich relations among nodes, compared with plain link
indicators [3, 24]. For example, in social networks, edge attributes
represent different types of relationships (e.g., family, alumni, col-
leagues) among users; in road networks, edge attributes (e.g., traffic
volumes, road condition) describe how passengers commute among
different locations. Therefore, our hypothesis is that introducing
edge information into the embedding space can further improve
the performance of GCNs.

Recently, some attempts have been made to consider edge infor-
mation. For example, the message passing framework is the first
proposed to generate messages with both node and edge informa-
tion [12]. Bettaglia et al. extended this message passing framework
by jointly updating both node and edge representations [3]. Li et al.
claimed that their proposed GCN-LASE is the first algorithm that
incorporates edge attributes into GCNs [24]. However, these meth-
ods exhibit several limitations when integrating edge influences:
(i) these methods do not work when edge attributes are (partially)
unavailable; (ii) there is no mechanism to align edge embedding
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with node feature space, so that edges and nodes can participate
in the calculation of each other’s embedding; (iii) it is unclear how
node-edge mutual enhancement can be quantified in embedding
calculation.

Therefore, a generic framework that improves current GCNs by
incorporating edge information is highly desired to address the
following challenges: (i) How can we develop an edge embedding
initialization approach that works well even when edge attributes
are (partially) unavailable? (ii) How can we devise an alignment
method that can align edge embeddingswith node embedding space,
in order to allow edges and nodes to participate in the embedding
calculation? (iii) How can we mathematically exploit node-edge
mutual enhancement into embedding-update rules? Below wemore
formally introduce each of these challenges and how we address
them in our proposed framework.

First, the initialization of embeddings is an essential step of
GCNs. We aim to bring in both nodes and edges to participate in
embedding learning. In a natural way, it is necessary to initialize
the embeddings of both nodes and edges. Traditional methods typi-
cally initialize edge embeddings by edge attributes. Such methods
have limitations, since it does not work when edge attributes are
unavailable or partially available. Another possible solution is to
randomly initialize edge embeddings. However, this strategy could
make models sensitive to initialization and jeopardize the robust-
ness of model performances. To address the above limitations, we
propose a robust and reliable initialization strategy for edge embed-
dings. Specifically, we first convert the original graph into the line
graph, where edges (nodes) in the original graph become nodes
(edges) in the line graph. We then leverage a robust node embed-
ding method (e.g., DeepWalk) to learn the node embeddings of the
line graph, which in fact are the edge embeddings of the original
graph. The line graph-based initialization method can provide a
more trustworthy initial embedding for edges.

Second, in order to exploit node-edge mutual enhancement, we
need to introduce both edges and nodes to participate in the em-
bedding calculation. However, node attributes (e.g., surrounding
area with a POI as a node) and edge attributes (e.g., road condi-
tion, traffic volume with a road segment as an edge) have different
semantic meanings and dimensions, and thus are not comparable
directly. It is naturally desirable to align the edge embedding space
with the node embedding space. Inspired by the translation-based
embedding model in the knowledge graph, we propose a mapping
method that maps the edge embedding into the node feature space.
This is under the translation assumption that given a pair of nodes
and their corresponding edge, the embedding of one node adds the
embedding of the edge, resulting in the embedding of the other
node. This assumption will serve as a regularization term in the
loss function in order to align the edge embedding space with the
node embedding space.

Third, the prior study in [3] has shown that node and edge
embeddings affect each other through mutual interactions, which
inspires us to combine both nodes and edges from the perspective
of mutual interactions. All of the evidence shows it is promising to
exploit node-edge mutual enhancement to improve GCNs. Given an
edge with two end nodes, there are three types of meta interactions
among them, i.e., (i) the interactions from a node to the edge, (ii) the
interactions from the edge to a node, and (iii) the interactions from

a node to the other node. Be sure to note that the interactions from
a node to the other node have already been considered by original
GCNs. To take into account the three meta interactions above, we
design a new updating strategy to exploit the node-edge mutual
enhancement. Specifically, (i) the node embedding is updated by
aggregating embeddings of neighboring nodes (original GCNs)
and associated edges (via interactions from an edge to a node),
and (ii) the edge embedding is updated by aggregating itself and
embeddings of associated nodes (via interactions from a node to an
edge). Through this updating strategy, node and edge embeddings
are mutually enhanced by each other.

In summary, in this paper, we propose a generic edge-empowered
framework for graph convolutional networks (EE-GCN). Specifi-
cally, our contributions are as follows: (1) The proposed framework
EE-GCN is generic that can enable any current spatial-based GCNs
to incorporate edge information for improving the learning perfor-
mance. (2) We propose a line graph-based method for initializing
edge embedding when edge attributes are (partially) unavailable. (3)
We propose a translation-basedmappingmodel that aligns node and
edge embeddings into the same feature space. (4) We propose new
mutually interacted updating rules to jointly model node and edge
embeddings. (5) We conduct extensive experiments on real-world
datasets to validate the proposed method.

2 PRELIMINARIES
2.1 Definitions

Definition 2.1. Attributed Graphs. In this paper, we consider
undirected graphs with both node attributes and edge attributes.
Formally, the attributed graphs can be represented as a graph:

G = (V, E,XV ,XE ), (1)

whereV denotes the set of nodes, E denotes the set of edges, XV
denotes the set of node attributes, and XE denotes the set of edge
attributes. Specifically, in some cases, edge attributes may (partially)
unavailable.

Definition 2.2. Embeddings. In this paper, we use embeddings
to denote the learned vectors for nodes and edges. Formally, let hv
denote the node embedding for the node v , and hEvv′ denote the
embedding for the edge Evv ′ .

2.2 Problem Statement
In this paper, we study the problem of improving GCNs by incor-
porating edge information, especially when the edge attributes
are (partially) unavailable. We aim to learn node and edge embed-
dings jointly in GCNs, which enables node embeddings to ben-
efit from edge information. Formally, given an attributed graph
G = (V, E,XV ,XE ), the objective is to obtain the mapping func-
tion f : xv → hv , xE → hE . The notations used in this paper are
summarized in Table 1.

3 EE-GCN: EDGE-EMPOWERED GRAPH
CONVOLUTIONAL NETWORK

In this section, we introduce our framework in detail. We start with
the overall framework of our proposed Edge-Empowered Graph
Convolutional Network (EE-GCN). Then, we present the details of
each component in EE-GCN, and summarize the algorithm.
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Figure 1: Overview of Edge-Empowered Graph Convolutional Network.

Table 1: Summary of Notations.
Symbol Definition
G Undirected graph
V Node set.
E Edge set.
X(·) Feature set.
x(·) Attributes.
hi
(·)

Embeddings at the ith hidden layer.
F(·)(·) Meta-interactions.
N(v) Neighboring nodes of the node v .
v
′

One neighboring node of the node v , v
′

∈ N(v).
Evv ′ The edge between the node v and v

′

.

ĥiEvv′

Aligned embedding (mapped from
edge feature space into node feature space)
of the edge Evv ′ at the i

th hidden layer.
W(·) Weights of the model.
b(·) Biases of the model.
L(·) Loss function.

λ
Parameter used to control the contribution

of feature mapping loss.
L(G) Line graph of the graph G.
M Mapping matrix for feature space alignment.
z(·) Final learned embedding.

3.1 Overview
EE-GCN aims to provide a generic framework that enables any
spatial-based GCNs to incorporate edge information for improving
the learning performance. An overview of EE-GCN is given in
Figure 1. The input is an attributed graph, and the output is the
node and edge embeddings. EE-GCN includes three key steps: (i)
Initialization: the framework exploits initialization for node and
edge embeddings. (ii) Feature space alignment: edge embedding
is aligned into the node feature space. (iii) Node-edge mutually
enhanced updating: node and edge embeddings are updated based
on the interactions among nodes and edges.

3.2 Line Graph-Based Initialization
For the first step, Line Graph-Based Initialization, our goal is to
initialize both node and edge embeddings in our learning model.

For the node embedding, we simply follow the initialization step of
original GCNs.

However, due to the data collection difficulties, edge attributes
are often (partially) unavailable under certain circumstances, such
as road conditions in the road network. In such cases, the edge
embedding cannot be initialized with edge attributes. An alternative
solution is to initialize the edge embedding randomly. However,
deep learning methods, especially embedding methods, are very
sensitive to the initialization step. Random initialization would
jeopardize the robustness of model performance. Therefore, we
propose a line graph-based method for reliable edge embedding
initialization.

The line graph was originally proposed to represent the ad-
jacency relationship between edge in an undirected graph [14].
Specifically, given an undirected graph G, the corresponding line
graph L(G) is a graph such that each node of L(G) represents an
edge of G; and two nodes in G are adjacent if and only if their cor-
responding edges share a common endpoint in G. Figure 2 shows
an example of line graph construction. Take node 1, node 3, and
node 4 in Figure 2a as an example. There are two edges among
these three nodes: an edge (1, 3) between node 1 and node 3, and
an edge (1, 4) between node 1 and node 4. Then, edge (1, 3) and
edge (1, 4) will become nodes in the line graph L(G), as shown in
Figure 2b. There will also be an edge between (1, 3) and (1, 4) in the
line graph L(G), as shown in Figure 2c, since the two edges (1, 3)
and (1, 4) in G share the same endpoint node 1.

In this work, we propose the line graph-based initialization, as
shown in Line 2-6 of Algorithm 1. Specifically, given the original
graph G, we first convert it into the corresponding line graph L(G).
Then, we apply an existing node embedding method (e.g., Deep-
Walk) to learn the node embedding from L(G), which is essentially
the edge embedding of original graph G. Such edge embedding
initialization method can be considered as a pre-trained model. Re-
lated work [14] has shown that the line graph can preserve the
essential properties of edges from the original graph. Therefore, the
proposed line graph-based method provides a reasonable edge em-
bedding initialization after pre-training a node embedding model
over the corresponding line graph. We validate the effectiveness of
this line graph-based initialization method in Section 4.
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Figure 2: An example of line graph construction.

3.3 Node-Edge Feature Space Alignment
After the initialization, in this work, we would like to incorpo-
rate node and edge information together into modeling to improve
the performance of GCNs. However, the feature size and semantic
meanings for node and edge information (attributes) are not typi-
cally aligned, because the node and edge information (attributes)
are used to describe different dimensions of objects. In other words,
the mis-aligned node and edge information (attributes) are not
comparable and cannot be combined directly.

To address this challenge, we propose a node-edge feature space
alignment method, inspired by the translation-based embedding
methods in knowledge graph. The translation-based embedding
methods [8, 25, 42] have been proposed to align the entity and
relation embedding space in knowledge graph. The main idea is
to learn a mapping matrix that maps the entity embedding into
the relation space, with the mapping assumption that the mapped
head embedding plus the relation embedding should be equal to the
tail embedding. Following the idea of translation-based embedding
methods, in our problem, we can assume that given a triplet of one
edge and the two endpoints <v , Evv ′ , v

′

> the embedding of v (v
′

)
plus the embedding of EAB should be equal to that of v

′

(v). To
achieve this, a mapping matrixM needs to be learned to map the
edge embedding hEvv′ into the node feature space. Formally, the
mapping process is represented as:

ĥEvv′ = MhEvv′ + bM , (2)

where hEvv′ denotes the original edge embedding, and ĥEvv′ de-
notes the mapped edge embedding, and bM is the bias term.

Then, the objective is to minimize the mapping loss:

Lmapping =
∑

v ∈V,v ′ ∈N(v)

|hv + ĥEvv′ − hv ′ | (3)

where N(v) denotes the neighbor set of node v .
Then, the aligned node and edge embedding can be fed into the

updating step to learn mutually enhanced embeddings.

3.4 Node-Edge Mutually Enhanced Updating
After aligning the node-edge feature space, node and edge embed-
dings are still difficult to be jointly modeled, due to the complex
interactions between nodes and edges. A classical GCN learns the
node embedding by aggregating its neighbors’ embedding, where
the interactions between nodes are considered as the linear rela-
tion. However, when the edge embedding is taken into account, the

interactions become more complicated. This is due to the different
types of interactions that can be categorized into: (i) interactions
from nodes to edges, (ii) interactions from edges to nodes, and (iii)
interactions from nodes to nodes.

To address this challenge, we first define three types of meta-
interactions. Then, we propose a framework to incorporate edge
embedding by preserving each of the meta-interactions.

3.4.1 Meta-Interaction. The interactions among nodes and edges
can be investigated from two perspectives, i.e. direction and quan-
tity. For the direction side, nodes and edges interact with each other
following three of directions, (i) the direction from endpoints to
the associated edge, (ii) the direction from the edges to endpoints,
and (iii) the direction from nodes to neighboring nodes. For the
quantity side, the interaction can be regarded as how much one
affects another, which can be represented as a weight in the range
of [−1, 1]. Therefore, the quantity of interaction can be modeled by
the tanh function.

Based on the above intuitions, we define three types of meta-
interactions as follows. Formally, letW s denote weights and bs
denote biases,

(1) Interactions from Nodes to Edges F1(hv ,hEvv′ )

vv v
0

v
0

Evv0Evv0

Figure 3: An example of interactions from nodes to edges.

F1(hv ,hEvv′ ) = tanh(W1[hv ,hEvv′ ] + b1) (4)

(2) Interactions from Edges to Nodes F2(hEvv′ ,hv )

vv

Figure 4: An example of interactions from edges to nodes.

F2(hEvv′ ,hv ) = tanh(W2[hEvv′ ,hv ] + b2) (5)
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(3) Interactions from Nodes to Nodes F3(hv ,hv ′ )
The interactions from nodes to nodes have been defined by
the original GCNs. For example, in GraphSAGE, the ADD
aggregator defines the interactions from nodes to nodes as
the summation, while the MEAN aggregator defines the
interactions from nodes to nodes as the mean of embeddings.
Here, we keep the definition of aggregator and denote it as
F3(hv ,hv ′ ).

3.4.2 Updating Scheme. Based on the above definitions of meta-
interactions, we design the following updating scheme to update
node and edge embeddings. Formally, let the superscript i denote
the corresponding embedding in the ith hidden layer (W s and bs
denote the weights and biases, respectively, the same as in Section
3.4.1), then we apply rules to update node embeddings and edge
embeddings, as below:

(1) Updating Node Embedding
Equation 6 shows the node embedding updating rule that in-
cludes two parts: effects from neighboring nodes and effects
from the associated edges. To capture the effects from neigh-
boring nodes, we adopt the output of the original updating
rules of GCNs. Since the interaction from the edges to nodes
depicts how much the associated edges can affect the node,
to capture the effects from associated edges, we calculate
the Hadamard product between the edge embedding and
the interactions from edges to nodes. Then, we sum up the
effects from both neighboring nodes and associated edges
as the new node embedding.

hl+1v =

Original Updating Rules of GCNs︷               ︸︸               ︷
F3(h

i
v ,h

i
v ′ ∈N(v)

)

+Wv
∑

v ′ ∈N(v)

F2(ĥ
i
Evv′
,hiv ) ⊙ ĥ

i
Evv′︸                                  ︷︷                                  ︸

Effects from Edges

(6)

(2) Updating Edge Embedding
Equation 7 shows the edge embedding updating rule that
includes two parts: effects from the two endpoints and ef-
fects from the edge itself. To capture the effects from the
endpoints, we calculate the Hadamard product between the
node embedding and the interactions from nodes to edges.
Then, we sum up the effects from both nodes and the edge
itself as the new edge embedding.

ĥl+1Evv′
=σ (We

Effects from Two Endpoints︷                                                 ︸︸                                                 ︷
[F1(h

i
v , ĥ

i
Evv′
) ⊙ hiv , F1(h

i
v ′
, ĥiEvv′

) ⊙ hi
v ′
,

ĥiEvv′︸︷︷︸
Effects from Edge Self

] + be )
(7)

3.4.3 Training Procedure. To adapt our framework into any super-
vised learning pipeline, such as node classification, link prediction,
and graph classification, etc., we model the training procedure as
an optimization problem by minimizing the cost associated with

the learning. In particular, the loss function includes two parts:
(1) supervised learning loss, and (2) feature space mapping loss.
Formally, let Ls denote the supervised learning loss, the overall
training loss L can be represented as:

L = λLs + (1 − λ)Lmapping, (8)

where the objective is to minimize the overall training loss L, and
λ is the weight to control the contribution of feature mapping loss
to the total loss.

3.5 Algorithm Specification
Algorithm 1 shows the details about the whole EE-GCN frame-
work. The framework includes three key steps: (i) initializing em-
bedding, (ii) aligning feature space, and (iii) modeling interactions
among nodes and edges. The framework takes the undirected graph
G = (V, E) as input, and node and edge embeddings as output.
First, the framework conducts the initialization procedure (Line 1-9
in Algorithm 1). For the procedure of node embedding initialization,
we follow the initialization steps of the classical GCNs. For the pro-
cedure of edge embedding initialization, when the edge attributes
are available, we initialize the edge embedding with edge attributes;
otherwise, we convert the original graph into its line graph, and
then apply Deepwalk to learn the node embedding of line graph
(i.e., the edge embedding of the original graph). Then, we align
the feature space by learning the mapping matrix that maps node
embedding into the edge feature space (Line 10-13 in Algorithm 1).
In addition, we jointly update the node and edge embedding by
incorporating three types of meta-interactions (Line 15-24 in Algo-
rithm 1). The output of the final layer will be learned embeddings
of nodes and edges Finally, we put the framework in a supervised
learning pipeline (e.g., node classification, link prediction, and graph
classification, etc) and jointly minimize the supervised learning loss
and feature alignment loss (shown as in Equation 8).

4 EXPERIMENTS
This section details the empirical evaluation of our proposed frame-
work in terms of various tasks: node classification, link prediction,
and graph classification.

4.1 Data Description
We evaluate our framework EE-GCN on four datasets with edge
attributes, i.e., BZR_MD [19, 37],DFHR_MD [19, 37], ER_MD [19, 37],
and FIRSTMM_DB [31]. The statistics of the datasets are shown in
Table 2.

(1) BZR_MD: BZR is a set of 405 ligands for the benzodiazepine
receptor. BZR_MD is the reduced version with Tc = 0.95
(Tanimoto coefficient) threshold of 2-D (structural) finger-
prints [37].

(2) DFHR_MD: DFHR is a set of 756 inhibitors of dihydrofolate
reductase. DFHR_MD is the reduced version with Tc = 0.90
(Tanimoto coefficient) threshold of 2-D (structural) finger-
prints [37].

(3) ER_MD: ER is a set of 1009 estrogen receptor ligands. ER_MD
is the reduced version with Tc = 0.85 (Tanimoto coefficient)
threshold of 2-D (structural) fingerprints [37].
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Algorithm 1: EE-GCN: Edge-Empowered Graph Convo-
lutional Network.
Input :Undirected graph G = (V, E);

Input node features {xv ,∀v ∈ V};
Edge attributes xEvv′ ;
Number of hidden layers i;
Neighborhood function N : v → 2V ;
Non-linearity σ ;
Mapping matrixM ;
Bias matrix bM ;
Weight matrix for node embeddingW i

v ,
∀i ∈ {1, · · · , I };
Weight matrix for edge embeddingW i

Evv′
,

∀i ∈ {1, · · · , I };
Bias vector for node embedding bv ;
Bias vector for edge embedding be ;
DeepWalk function DEEPWALK;
Updating rule of node embedding from original
GCNs f ;

Output :Vector representations zv for all v ∈ V , vector
representations zEvv′ for all Evv ′ ∈ E

1 // Initialization for Node Embedding.

2 h0v ← xv ,∀v ∈ V;
3 // Intitialization for Edge Embedding.

4 if IsAvailable(xEvv′ ), ∀Evv ′ ∈ E then
5 h0Evv′

← xEvv′ ,∀Evv ′ ∈ E;
6 else
7 // Line Graph-Based Initialization.

8 Convert G into line graph L(G);
9 h0Evv′

← DEEPWALK(L(G)),∀Evv ′ ∈ E;
10 // Feature Space Alignment.

11 for v ∈ V do
12 v ′ ← N(v);
13 ĥ0Evv′

← M × h0Evv′
+ bM

14 // Node-Edge Mutually Enhanced Updating.

15 for i = 1, · · · , I do
16 for v ∈ V do
17 v ′ ← N(v);
18 // Updating Node

19 hiv ← f (hi−1v , hi−1v ′
) +Wv

∑
v ′

F2(ĥiEvv′
,V i

A) ⊙ ĥi−1Evv′
;

20 // Updating Edge

21 ĥiEvv′
← σ (We [F1(hi−1v , ĥi−1Evv′

) ⊙ hiv ,

22 F1(hi−1v ′
, ĥi−1Evv′

) ⊙ hi−1
v ′
, ĥi−1Evv′

] + be );

23 zv ← hIv ,∀v ∈ V;
24 zEvv′ ← hIEvv′

,∀Evv ′ ∈ E;

(4) FIRSTMM_DB: FIRSTMM is a set of 41 simulated 3D point
clouds of various household objects for (semantic and graph-
based) object category prediction. FIRSTMM_DB is obtained
from a previously defined 3D mesh of the object by up-
sampling points using midpoint surface subdivision [31].

All of these four datasets can be downloaded online1. Note that
since BZR_MD, DFHR_MD and ER_MD are fully-connected graphs,
we only use FIRSTMM_DB for the link prediction task. We use
BZR_MD,DFHR_MD, and ER_MD for the tasks of node classification
and graph classification. To generate the initialized node embedding
of these datasets, we leverage DeepWalk with dim = 100 as the
node attributes.

4.2 Experimental Settings
To evaluate the proposed framework, in the high level, we conduct
experiments on two types of GCNs: no-edge-empowered (original)
and edge-empowered (EE-GCN). For the edge-powered type, we
have two different initialization versions. Then, we compare the
performance of GCNs in different tasks in terms of two types of
aggregators ADD and MEAN [13]. We describe the experimental
settings below.
4.2.1 Comparison Methods. For comparison, we evaluate three
current spatial-based GCNs and their edge-empowered versions
based on our proposed framework.

(1) GraphSAGE: an inductive GCN that learns node represen-
tations by sampling and aggregating local neighbors’ repre-
sentations [13].

(2) K-GNN: a GCN variant with higher-order graph structures
at multiple scales [30].

(3) GAT: a GraphAttention Network that adopts attentionmech-
anisms to aggregate neighbors’ representations by learning
the relative weights between two connected nodes [38].

(4) *-Edge: the edge-empowered GCN version (GraphSAGE,
GraphSAGE, K-GNN, or GAT) with the original edge at-
tributes as the initialization of edge representations.

(5) *-LineEdge: the edge-empowered GCN version (GraphSAGE,
GraphSAGE, K-GNN, or GAT) by initializing edge represen-
tations based on the line graph.

(6) *-RandomEdge: the GCN version (GraphSAGE, GraphSAGE,
K-GNN, or GAT) with random edge representation initial-
ization.

4.2.2 Node Classification. In the node classification task, for each
of the graphs in each dataset, we randomly select 50% nodes from
each class as the training set, 25% nodes as the validation set, and
the remaining 25% nodes as the testing set. Note that in some graphs
of BZR_MD, DFHR_MD and ER_MD, the number of nodes in some
classes is less than three. These classes can not be split into the
training, validation and testing set. Hence, we remove these graphs
in our experiment. In the end, we have 276 graphs of BZR_MD, 389
graphs of DHFR_MD, and 302 graphs of ER_MD for evaluation.

To conduct the experiment, we adopt the implementation of
node classification framework2. We set the learning rate to 0.05,
the dropout for node representations to 0.8, and the number of

1https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
2https://github.com/rusty1s/pytorch_geometric/tree/master/benchmark/citation
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Table 2: Statistics of the experimental datasets.

Name Num. of
Graphs

Num. of
Graph Classes

Num. of
Node Classes

Avg. Num.
of Nodes

Avg. Num.
of Edges

Node Attribute
Dimensions

Edge Attribute
Dimensions

BZR_MD 306 2 8 21.30 225.06 - 1
DHFR_MD 393 2 7 23.87 283.01 - 1
ER_MD 446 2 10 21.33 234.85 - 1

FIRSTMM_DB 41 11 5 137.27 3074.10 1 2

Table 3: Average accuracy of node classification w.r.t. MEAN and ADD aggregators.

BZR_MD
(MEAN)

DFHR_MD
(MEAN)

ER_MD
(MEAN)

BZR_MD
(ADD)

DFHR_MD
(ADD)

ER_MD
(ADD)

GraphSAGE 0.810 ± 0.135 0.701 ± 0.195 0.895 ± 0.022 0.571 ± 0.411 0.542 ± 0.321 0.686 ± 0.291
GraphSAGE-Edge 0.833 ± 0.146 0.714 ± 0.229 0.899 ± 0.013 0.662 ± 0.306 0.556 ± 0.315 0.732 ± 0.242

GraphSAGE-LineEdge 0.799 ± 0.083 0.666 ± 0.190 0.861 ± 0.067 0.659 ± 0.262 0.561 ± 0.300 0.730 ± 0.249
GraphSAGE-RandomEdge 0.792 ± 0.129 0.621 ± 0.226 0.799 ± 0.115 0.582 ± 0.253 0.443 ± 0.212 0.726 ± 0.272

K-GNN 0.722 ± 0.235 0.657 ± 0.243 0.855 ± 0.126 0.494 ± 0.421 0.541 ± 0.327 0.606 ± 0.302
K-GNN-Edge 0.776 ± 0.133 0.650 ± 0.212 0.860 ± 0.112 0.665 ± 0.263 0.615 ± 0.304 0.732 ± 0.221

K-GNN-LineEdge 0.771 ± 0.226 0.647 ± 0.208 0.857 ± 0.129 0.658 ± 0.316 0.616 ± 0.269 0.727 ± 0.244
K-GNN-RandomEdge 0.741 ± 0.197 0.655 ± 0.336 0.845 ± 0.117 0.661 ± 0.275 0.593 ± 0.185 0.689 ± 0.306

GAT 0.310 ± 0.387 0.423 ± 0.329 0.465 ± 0.426 0.326 ± 0.395 0.318 ± 0.312 0.428 ± 0.396
GAT-Edge 0.737 ± 0.187 0.641 ± 0.270 0.833 ± 0.118 0.428 ± 0.233 0.455 ± 0.273 0.568 ± 0.334

GAT-LineEdge 0.733 ± 0.214 0.640 ± 0.191 0.829 ± 0.143 0.414 ± 0.371 0.459 ± 0.280 0.563 ± 0.361
GAT-RandomEdge 0.702 ± 0.269 0.611 ± 0.191 0.833 ± 0.147 0.398 ± 0.292 0.426 ± 0.364 0.501 ± 0.224

Table 4: Average AUC of link prediction over FIRSTMM_DB
w.r.t. MEAN and ADD aggregators.

MEAN ADD
GraphSAGE 0.971 ± 0.007 0.976 ± 0.006

GraphSAGE-Edge 0.981 ± 0.005 0.980 ± 0.006
GraphSAGE-LineEdge 0.978 ± 0.006 0.980 ± 0.007

GraphSAGE-RandomEdge 0.970 ± 0.007 0.977 ± 0.006
K-GNN 0.970 ± 0.001 0.973 ± 0.006

K-GNN-Edge 0.989 ± 0.006 0.977 ± 0.009
K-GNN-LineEdge 0.977 ± 0.007 0.979 ± 0.007

K-GNN-RandomEdge 0.969 ± 0.009 0.979 ± 0.013
GAT 0.977 ± 0.008 0.974 ± 0.010

GAT-Edge 0.985 ± 0.005 0.978 ± 0.008
GAT-LineEdge 0.983 ± 0.006 0.972 ± 0.005
GAT-LineEdge 0.978 ± 0.011 0.966 ± 0.005

GAT-RandomEdge 0.969 ± 0.020 0.961 ± 0.017

hidden layers to 2. In addition, for edge-empowered versions, we
set the dropout for edge representations to 0.8, and λ = 0.9.

We evaluate the performance of different GCNs on the task of
node classification in terms of average accuracy. To this end, we
first calculate the classification accuracy for each graph in each
dataset. Then, we calculate the average accuracy over all graphs in
each dataset as the final evaluation metric.

4.2.3 Link Prediction. In the task of link prediction, since BZR_MD,
DFHR_MD, and ER_MD are fully-connected graphs, we only con-
duct experiment on FIRSTMM_DB to evaluate the model perfor-
mance. We adopt the SEAL framework [48] for the implementation
of link prediction. For each of the graphs in each dataset, we first
sample the positive and negative links. Then, among both positive

and negative links, we randomly select 90% for training and remain-
ing 10% for testing. In the experiment, we set the learning rate to
0.05. For edge-empowered versions, we set λ = 0.9.

We evaluate the performance of different GCNs on the task
of link prediction in terms of average AUC. To this end, we first
calculate the AUC for each of the graphs in each dataset. Then, we
calculate the average AUC value over all graphs in each dataset as
the final evaluation metric.

4.2.4 Graph Classification. We evaluate all four datasets in the
task of graph classification. To do the experiment, we adopt the
implementation of graph classification framework3. We set the
number of hidden layers = 3, the hidden size = 128, and the batch
size = 10. In addition, for edge-empowered versions, we set λ = 0.9.

We evaluate the performance of different GCNs on the task of
graph classification in terms of average accuracy. To this end, we
first run the experiment with 4-fold cross validation. Then, we
calculate the average accuracy over all folds. All experiments were
conducted on Ubuntu 18.04.3 LTS, Intel(R) Core(TM) i9-9920X CPU
@ 3.50GHz, with Titan RTX and memory size 128G.

4.3 Experimental Results
4.3.1 Node Classification. In the node classification task, we com-
pare the original GCN models with two edge-empowered versions.
Table 3 shows the average accuracy of different GCNs.

Overall, in the high level, EE-GCN (i.e., *-Edge, *-LineEdge)
outperforms the original GCNs (no-edge-empowered), except for
the K-NN group on the DFHR_MD dataset with MEAN aggregator.
In this case, even thougn the average accuracy of K-NN is slightly
higher than K-NN-Edge and K-NN-LineEdge, the variance of K-NN
is larger than the edge-empowered versions. This indicates the

3https://github.com/rusty1s/pytorch_geometric/tree/master/benchmark/kernel
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Table 5: Average accuracy of graph classification w.r.t. ADD and MEAN aggregators.

BZR_MD
(MEAN)

DFHR_MD
(MEAN)

ER_MD
(MEAN)

BZR_MD
(ADD)

DFHR_MD
(ADD)

ER_MD
(ADD)

GraphSAGE 0.476 ± 0.042 0.679 ± 0.003 0.585 ± 0.017 0.477 ± 0.066 0.547 ± 0.042 0.493 ± 0.030
GraphSAGE-Edge 0.699 ± 0.032 0.753 ± 0.114 0.685 ± 0.042 0.517 ± 0.059 0.580 ± 0.147 0.522 ± 0.009

GraphSAGE-LineEdge 0.697 ± 0.198 0.749 ± 0.139 0.682 ± 0.175 0.517 ± 0.059 0.577 ± 0.075 0.520 ± 0.026
GraphSAGE-RandomEdge 0.683 ± 0.207 0.724 ± 0.139 0.663 ± 0.219 0.503 ± 0.198 0.578 ± 0.142 0.500 ± 0.143

K-GNN 0.477 ± 0.072 0.679 ± 0.003 0.598 ± 0.009 0.493 ± 0.031 0.570 ± 0.059 0.497 ± 0.053
K-GNN-Edge 0.751 ± 0.221 0.825 ± 0.093 0.689 ± 0.113 0.508 ± 0.023 0.596 ± 0.047 0.504 ± 0.056

K-GNN-LineEdge 0.740 ± 0.257 0.828 ± 0.018 0.686 ± 0.184 0.507 ± 0.025 0.598 ± 0.052 0.503 ± 0.047
K-GNN-RandomEdge 0.727 ± 0.229 0.803 ± 0.191 0.661 ± 0.263 0.507 ± 0.039 0.572 ± 0.039 0.503 ± 0.099

GAT 0.513 ± 0.000 0.679 ± 0.003 0.594 ± 0.001 0.503 ± 0.019 0.679 ± 0.003 0.594 ± 0.001
GAT-Edge 0.548 ± 0.036 0.683 ± 0.040 0.618 ± 0.047 0.495 ± 0.053 0.681 ± 0.023 0.596 ± 0.004

GAT-LineEdge 0.546 ± 0.050 0.679 ± 0.003 0.594 ± 0.001 0.493 ± 0.025 0.679 ± 0.029 0.594 ± 0.001
GAT-RandomEdge 0.533 ± 0.097 0.680 ± 0.012 0.595 ± 0.011 0.490 ± 0.047 0.681 ± 0.057 0.590 ± 0.014

node classification can be improved with the contribution of edge
information. In other words, the node classification of spatial-based
GCNs effectively benefit from our edge-empowered framework via
node-edge mutual enhancement.

Comparing two different versions of edge initialization in EE-
GCN, we can observe that the results of edge attributes-based
initialization are better than (but close to) those of line graph-based
version. In the case of DFHR_MD (ADD), the performance of line
graph-based initialization is even slightly better. The potential ex-
planation is that line graph preserves the essential topology in-
formation of edges in the original graph. DeepWalk over the line
graph can be considered as a pre-train styled initialization that
takes advantage of topology information effectively.

In terms of aggregators, we can see that the MEAN aggregator
helps GCNs achieve a better performance than the ADD aggregator
in the task of node classification. This observation is similar to the
results in [13].

4.3.2 Link Prediction. We evaluate the performance of link predic-
tion task over the FIRSTMM_DB dataset whose results are shown in
Table 4. From the table, we can observe that EE-GCN outperforms
the original GCNs. The traditional link prediction in original GCNs
aims to determine whether there exists an edge between nodes
only based on node embeddings. Incorporating edge information
contributes to the learning of node embeddings.

For the two different versions of EE-GCN, edge attributes-based
initialization typically has a slightly better performance than line
graph-based, which is similar to the observation in the node clas-
sification task (Section 4.3.1). In terms of aggregators, the MEAN
aggregator is overall slightly better than the ADD, but the difference
is trivial.

4.3.3 Graph Classification. Table 5 shows the results of graph clas-
sification task. Overall, we have similar observations as in the node
classification task. EE-GCN outperforms the original GCNs on the
graph classification task. In addition, for the two different versions
of EE-GCN, the results of edge attributes-based initialization are
better than (but close to) those of line graph-based. In terms of
aggregators, the results of MEAN aggregator are much better than
those of ADD.

4.4 Analysis of λ
We study the effects of the hyperparameter λ over the performance
of EE-GCN. In the training procedure, the feature mapping loss
is to regularize the framework to align the node and edge feature
space. λ is the parameter to control the contribution of feature
mapping loss to the total loss. The larger the λ is, the less the
contribution of feature mapping loss is.

To study the effects of λ, we set the scale of λ into
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], while keeping other hyperpa-
rameters the same. We run the experiment across all the values of λ
for all three tasks of node classification, link prediction and graph
classification. Then, we plot the results into Figure 5, Figure 6 and
Figure 7. Due to the page limitation, we only illustrate the results
with the MEAN aggregator.

Figure 5, Figure 6, and Figure 7 show that the model performance
is quite sensitive to the value of λ. For the node classification task
on the same dataset, all the models achieve the best performance
in the middle range of λ, while for the graph classification task,
there is no such pattern. However, for the link prediction task, the
edge-empowered framework can roughly achieve the best perfor-
mance in the upper and lower range of the λ values. Above results
indicate that different tasks require different levels of feature space
alignment.

4.5 Analysis of Training Time
We study the training time for both the original GCNs and edge-
empowered versions (i.e. *-Edge and *-LineEdge). We run the same
parameter setting for 100 times. Then we calculate the average
training time per epoch. We test the training time for node classifi-
cation, link prediction and graph classification with the MEAN and
ADD aggregator. Due to the page limitation, we only illustrate the
results on the MEAN aggregator.

Figure 8, Figure 9 and Figure 10 show the results. We can ob-
serve that in the task of node classification and link prediction,
the training time of edge-empowered versions is 1.3 times longer
than the original GCNs. But for the graph classification, the differ-
ence between edge-empowered versions and the original GCNs is
relatively small. Because of edge embedding, EE-GCN has more
parameters to update and additional computation about the edge

2151



Edge-Empowered Graph Convolutional Network WWW ’20, April 20–24, 2020, Taipei, Taiwan

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

λ

A
ve

ra
g
e
 A

c
c
u
ra

c
y

GraphSAGE−Edge

GraphSAGE−LineEdge

K−GNN−Edge

K−GNN−LineEdge

GAT−Edge

GAT−LineEdge

(a) Node classification on BZR_MD.

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

λ

A
ve

ra
g
e
 A

c
c
u
ra

c
y

GraphSAGE−Edge

GraphSAGE−LineEdge

K−GNN−Edge

K−GNN−LineEdge

GAT−Edge

GAT−LineEdge

(b) Node classification on DFHR_MD.

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1.2

λ

A
ve

ra
g
e
 A

c
c
u
ra

c
y

GraphSAGE−Edge

GraphSAGE−LineEdge

K−GNN−Edge

K−GNN−LineEdge

GAT−Edge

GAT−LineEdge

(c) Node classification on ER_MD.

Figure 5: Average accuracy of node classification w.r.t. different λ values.
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(c) Graph classification on ER_MD.

Figure 6: Average accuracy of graph classification w.r.t. different λ values.
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Figure 7: Average AUC of link prediction w.r.t. different λ
values.

embedding, which leads to the relative higher time consuming.
However, since it only needs very small numbers of training epoch
for edge-empowered versions to outperform the original GCNs,
the trade-off of relative higher time consuming is acceptable in
practice.

5 RELATEDWORK
Graph Convolutional Networks. Our work is connected with
Graph Convolutional Networks (GCNs). GCNs generalize the con-
volution operation from grid-structured data to graph-structured
data. The core idea of GCNs is to learn node representations by

aggregating neighbors’ representations [44]. GCNs can be cate-
gorized into two different types: (i) spectral-based GCNs and (ii)
spatial-based GCNs.

The spectral-based GCNs design the convolution operation over
graph by introducing filters from the perspective of graph signal
processing [44]. The graph convolutions are regraded as removing
graph signal noises [36]. The spectral-based GCNs assume the filter
as a set of learnable parameters and consider graph signals with
multiple channels [10, 18]. Some solutions are further proposed to
make improvements over GCNs using other symmetric matrices,
like Adaptive Graph Convolutional Network (AGCN) [22] and Dual
Graph Convolutional Network (DGCN) [49].

The spatial-based GCNs define the graph convolutions by explic-
itly aggregating local information based on the topology structure.
For example, Neural Network for Graphs (NN4G) is proposed to
sum up a node’s neighborhood information directly by applying
residual connections and skip connections to memorize informa-
tion over each layer [29]. Diffusion Convolutional Neural Network
(DCNN) assumes graph convolutions as a diffusion process by as-
signing a certain transition probability for information transferred
from one node to another [1]. GraphSAGE is proposed to aggregate
neighbor’s information through a sampling strategy [13]. Graph
Attention Network (GAT) adopts the attention mechanism to learn
the relative weight to quantify the contributions of neighboring
nodes [38]. Morris et al. propose k-GNNs by taking higher-order
graph structures into account at multiple scales [30].

These classical GCNs only consider aggregating neighboring
node information, but ignoring edge information. While some
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(c) Node classification on ER_MD.

Figure 8: Average training time per epoch in node classification.
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GraphSAGE K−GNN GAT

A
ve

ra
g
e
 T

ra
in

in
g
 t
im

e

0

1

2

3

4

5

Original
*−Edge
*−LineEdge
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(c) Graph classification on ER_MD.

Figure 9: Average training time per epoch in graph classification.
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Figure 10: Average training time per epoch in link
prediction.

work [3, 12, 24] attempts to incorporate edge information into
GCNs, the common drawback is that they are specifically defined
and limited, which prevents them from being applicable to current
well-performed GCNs. To address this drawback, in this paper, we
propose a flexible edge-empowered GCN framework that enables
current spatial-based GCNs to benefit from the edge information.

Network Embedding. Our work is also connected with rep-
resentation learning that can be categorized into three main ap-
proaches: (i) the probabilistic models, (ii) the geometrically moti-
vated manifold-learning approaches, and (iii) the reconstruction-
based algorithms related to auto-encoder.

The key idea of the probabilistic model-based approaches is to
use unsupervised feature learning to learn a hierarchy of features
one level at a time [4, 7, 15, 21, 32, 34, 41]. In the second category, the
large majority of the algorithms adopt a non-parametric approach,
based on a training set nearest neighbor graph [9, 26, 33, 43, 43].
Compared to probabilistic models, the auto-encoder based methods
do not need complicated posterior distributions thanks to the use of
latent variables. Auto-encoders can directly parameterize features
or representation functions, and learn a direct encoding [5, 6, 16,
20, 47, 50].

6 CONCLUSIONS
Graph Convolutional Networks (GCNs) have shown to be a pow-
erful tool for modeling graph-structured data. Recently, few meth-
ods have been proposed to integrate edge attributes into GCNs.
However, they do not work when edge attributes are (partially)
unavailable. To address this issue, we propose EE-GCN, a generic
edge-empowered framework that achieves node-edge enhancement,
regardless of the availability of edge attributes. In EE-GCN frame-
work, three key components (i.e., initialization, feature space align-
ment, and node-edge mutually enhanced updating) are designed
and introduced to address the corresponding challenges in the
learning process. We evaluate the proposed framework on differ-
ent types of real-world datasets (with all/partial/no edge attributes
available). The extensive experimental results demonstrate the ef-
fectiveness of our proposed framework in various of tasks including
node classification, link prediction, and graph classification.
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