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Abstract

Categorical data are ubiquitous in real-world databas-
es. However, due to the lack of an intrinsic proximity
measure, many powerful algorithms for numerical data
analysis may not work well on their categorical counter-
parts, making it a bottleneck in practical applications.

In this paper, we propose a novel method to trans-
form categorical data to numerical representations, so
that abundant numerical learning methods can be ex-
ploited in categorical data mining. Our key idea is to
learn a pairwise dissimilarity among categorical symbol-
s, henceforth a continuous embedding, which can then
be used for subsequent numerical treatment. There are
two important criteria for learning the dissimilarities.
First, it should capture the important “transitivity”
which has shown to be particularly useful in measuring
the proximity relation in categorical data. Second, the
pairwise sample geometry arising from the learned sym-
bol distances should be maximally consistent with prior
knowledge (e.g., class labels) to obtain a good general-
ization performance. We achieve them through multiple
transitive distance learning and embedding. Encour-
aging results are observed on a number of benchmark
classification tasks against state-of-the-art.

1 Introduction

Categorical data are often encountered in practical
learning problems [1, 2, 8]. Unlike numerical variables
that can take values arbitrarily in the real domain, a cat-
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egorical variable (or sometimes called nominal variable)
can only take one of a limited number of possible values
or levels, such as the blood type of a person (A, B, AB
or O), the weather condition (windy, cloudy or rainy)
[3, 12], and severity of a symptom (mild, moderate, or
severe). These possible values will be referred to as
“symbols” throughout this paper. Categorical symbols
usually do not have any intrinsic ordering, and they can
not be simply treated using algebraic operations, thus
many popular numerical learning algorithms are not di-
rectly applicable. On the other hand, even the categor-
ical symbols can be turned into numbers with encoding
schemes, algorithms designed for numerical data may
give poor results on the categorical counterparts. Both
are bottlenecks for categorical data analysis.

We believe these difficulties arise from the fact that
there lacks a well-defined distance between categorical
symbols. As a result, the distances between samples
are hard to compute, so is the geometry of sample dis-
tributions. While in many popular learning algorithm-
s, the pairwise sample distance/similarity is the key to
the learning results, such as support vector machines
[6, 24], spectral clustering [13], Gaussian processes [14],
and manifold learning [5, 10, 19, 23].

Motivated by this observation, in this paper we pur-
sue the interesting topic of transforming categorical da-
ta into numerical ones to resolve the aforementioned
difficulties in categorical data analysis. The key objec-
tive is to find a numerical representation of the cate-
gorical data, i.e., each symbol in the data is replaced
with a number (or a r-dimensional numerical vector),
and as a result many numerical learning and data min-
ing algorithms can be readily applied on them. In order
to achieve this, we need to first learn a pairwise dis-
similarity measure on the categorical symbols. Once
the distance between symbols is defined, it can be used
to compute the distances between samples1, and many

1As will be clear in Section 2, the distance between two samples
is simply the sum of the distances between their respective
attributes across all dimensions, which is similar to the custom
in handling numerical (Euclidean) data.
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learning algorithms can therefore be readily applied.
Another important advantage of considering the

pairwise symbol dissimilarity is that, equivalently, it
leads to a continuous embedding using techniques of
manifold learning [5, 10, 19, 23]. In other words, each
symbol is then endowed with a numerical representa-
tion, which allows them to be treated exactly as numer-
ical data. This can significantly broaden the applicabil-
ity of many learning algorithm in categorical data anal-
ysis, and can also bring more computational efficiency
than explicitly computing pairwise sample distances.

Embedding of the categorical symbols also has
the advantage of giving a data-driven visualization for
better understanding the relation between symbols.
Note that categorical symbols are defined by human
experts, which can be subjective and in many cases lack
a strict, quantitative base. It can be very hard to tell the
similarity or difference between two symbols. While the
embedding of the categorical symbols in our approach is
based on the co-occurrence behavior of all the symbols
as well as the class labels, which will faithfully reflect
the relationship between the categorical symbols with
particular respect to the learning task at hand (such
as classification). We believe it is very valuable for
domain experts to combine the data-driven embedding
with the domain knowledge. For example, by examining
the embedding results as shown in Figure 1, human
experts will have a direct intuition on how the symbols
are similar to each other, so as to explore their relations
or even refine their definitions.

The pairwise symbol dissimilarities should capture
intrinsical structures in the data, in order for the re-
sultant embedding to be a useful one. To achieve this,
we propose two important learning criteria. First, the
proximity relation underlying the dissimilarities should
be “transitive”. Specifically, the relation between two
symbols should be determined by globally taking into
account their relation with other symbols, so that the
“closeness” can be systematically transmitted among
symbols. Such transitivity has been shown that particu-
larly useful in measuring the proximity relation among
categorical variables [18]. Second, the pairwise sam-
ple geometry arising from such symbol distances should
be maximally coincident with prior knowledge, such as
the class labels, to obtain a good generalization per-
formance. In particular, it is preferred that embedded
samples will be compact within one class, while well
separated among different classes.

To satisfy these two criteria, we propose a novel,
multiple distance learning and embedding approach to
obtain a mixture of transitive symbol distances using
the class labels as a guidance. The resultant mixture
distance captures both unsupervised and supervised in-

formation about the data. The unsupervised informa-
tion is related to co-occurrence statistics of the cate-
gorical symbols, which is summarized into a number of
bipartite graphs based on different choices of the prox-
imity measure; the supervised information is related to
the class labels, which serves as a guidance on how the
different proximities (or graphs) should be combined
together to maximize the generalization performance.
To the best of our knowledge, this is the first work
attempts to find numerical representations of categori-
cal variables through (semi-)supervised learning frame-
work. Our method opens up the possibility to exploiting
the abundant, numerical learning algorithms for cate-
gorical data analysis. Encouraging results are observed
on a number of benchmark classification tasks against
state-of-the-art.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some necessary definitions and formal-
ly defines the problem. In Section 3, we discuss the em-
bedding of categorical variables using various types of
transitive distance measures. In Section 4, we propose
a multiple distance learning framework to combine the
different base-distances calculated in Section 3. Section
5 discusses several related work in handling categorical
symbols in clustering tasks. Section 6 reports the em-
pirical evaluations, and compares the proposed method
with both baseline coding schemes and state-of-the-art
methods in transforming categorical data into numeri-
cal ones. In Section 7, we make concluding remarks and
point out some interesting future directions.

2 Problem Statement

Suppose we have a categorical data represented as a
n × d symbolic matrix X, where n is the sample size
and d is the number of features (or attributes). We
also have the class labels y ∈ {1,−1}n. Let Aj be
the symbols used in the jth feature, where |Aj | = cj ,
and A be the set of all symbols, i.e., A = ∪d

j=1Aj , and

|A| =
∑d

j=1 |Aj | = c. Our goal is to learn a pairwise

distance measure S ∈ R
c×c on all the symbols, or a

r-dimensional embedding, e ∈ R
c×r, such that a good

generalization performance can be obtained using the
learned distance/embedding for training and testing.

To simplify notations and express our main idea
more conveniently, let A be an ordered set, i.e.,

A =(2.1)

{al1+1, al1+2, ...︸ ︷︷ ︸
A1

, al2+1, al2+2, ...︸ ︷︷ ︸
A2

, ..., ald+1, ald+2...︸ ︷︷ ︸
Ad

},

where lj =
∑j−1

k=1 ck, for j ≥ 2, and l1 = 0. Also, we
transform the categorical data X into an integer matrix
X as follows. Let A(k) denote the kth symbol in A (Eq.
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2.1). Then

Xij = k if Xij = A(k).(2.2)

Here, Xij denotes the jth symbolic feature of the ith
instance. Namely every symbol in X is represented
by its position in A. The reason to use such an
integer representation is that it can greatly simplify the
indexing in our derivations.

In manipulating the distance between symbolic
variables, we follow the convention of the Lθ-norm
distance. That is, the Lθ distance between two instances
is the sum of the Lθ distance along each dimension.
In particular, the distance between the ith and jth
instance in X can be represented as

dis (Xi, Xj)
θ

=
d∑

k=1

dis (Xik, Xjk)
θ
.(2.3)

This assumption makes our derivations tractable, which
also seems natural for categorical symbols that will be
endowed with numerical representations. In practice,
we can choose θ as 1 or 2, which bears the resemblance
to Hamming distance and Euclidean distance, respec-
tively.

3 Symbolic Embedding Via Transitive

Proximities

Categorical symbols do not have any intrinsic ordering
associate with them. Therefore, in order to obtain a
numerical representation for categorical symbols, we
will first resort to computing the pairwise proximity
among the symbols, and then compute a Euclidean
embedding that recovers such a proximity.

3.1 Transitive Proximity Co-occurrence is proba-
bly the most direct way to measure the relation between
categorical symbols. However, the co-occurrence statis-
tics has one limitation that it is not transitive. For ex-
ample, symbol a often co-occurs with b, and b often co-
occurs with c, but a and c seldom co-occur. Then, based
on the co-occurrence statistics, a and c are not close (or
very dissimilar). However, arguably, both a and c are in-
directly connected by b, therefore they should also share
certain level of similarity.

To better understand this, consider using a graph to
encode the co-occurrence structures among the symbols
in A, where each node represents a symbol and an
edge denotes co-occurrence. Since symbols belong to
the same dimension would never appear together, we
will naturally have a d-partite graph, each partition
containing the alphabets of one dimension of the data,
Ai, for i = 1, 2, ..., d. Based on this graph, symbols
in the same Ai’s are considered having a similarity 0

since they will not be connected with each other by any
edge. Now, imagine we compute the distance between
two instances (as in Eq. 2.1), then we would need the
distance between symbols in the same dimension Ai,
while it appears difficult to define the distance between
two symbols with zero similarity. In other words, the
co-occurrence itself is an “incomplete” proximity.

In order to “augment” the co-occurrence based
similarity, we propose to use the shortest path distance
on the d-partite graph as a new proximity measure.
Note that each node of the d-partite graph represents
a symbol in A. Therefore, the shortest path distance
between every pair of nodes, A(p) and A(q), provides a
systematic way to augment the initial symbol relation
by collectively considering their relation with other
symbols. In particular, symbols belonging to the same
dimension Ai can now be related with each other by
their connections with other dimensions. Therefore
the proximity relation is transitive. We use a matrix
Sθ ∈ Rc×c to denote the shortest path distance, whose
(p, q)th entry is

Sθ
(p,q) = dis(A(p), A(q))θ,(3.4)

1 ≤ p, q ≤ c.

where θ is a power parameter. We call S θ-norm
symbolic distance matrix.

Construction of the d-partite Graph. The
initial d-partite graph is constructed as follows. Suppose
we have c nodes, each represents one symbol in A. Then
we link all pairs of nodes A(p) and A(q) for 1 ≤ p, q ≤ c
that belong to different dimensions. By doing this,
the resultant graph is always d-partite. In table 1, we
list different choices for computing the edge weights.
Here, ai ∈ {0, 1}n×1 is a vector of 1/0’s recording the
occurrence of the ith symbol with all the n instances,
for i = 1, 2, ..., c.

Note that the proximity listed in Table 1 can
be either in terms of “similarity” or “distance”. In
order to compute the shortest path distance, however,
we will need to transform the similarity to distance.
For zero similarity, the corresponding distance will be
infinity. For non-zero similarity, we can use different
transfer functions: (1)f(x) = 1; (2)f(x) = 1

x
; and

(3)f(x) = − log(x). In some cases, one might want to
further sparsify the d-partite graph by removing those
connections that are not within k-nearest neighbors.
Here, k is an integer bounded by d.

One might want to apply the distances defined in
Table 1 (Euclidean or Hamming) to directly compute a
dense, pairwise distance matrix, in which even symbols
with zero-occurrence can still have a finite distance a-
mong them. However, this can be less robust, because
distances between symbols that are not very correlated
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Table 1: Edge weights for different proximity measures.

Proximity Connected Edge Non-connected Edge

Co-occurrence |ap ∩ aq|
Similarity Normalized occurrence |ap ∩ aq|/|ap ∪ aq|

Mutual information
∑

e,ẽ∈{0,1} p(ap = e,aq = ẽ) 0

× log
(

p(ap=e,aq=ẽ)
p(ap=e)·p(aq=ẽ)

)
Hamming distance |ap − aq|

Distance Euclidean distance ‖ap − aq‖2 +infinity

Cosine distance arccos(a′paq/
√
‖ap‖ · ‖aq‖)

may no longer faithfully reflect their proximities, and
in practice, not all symbols are closely related to each
other. In comparison, by only connecting very correlat-
ed symbols and then using shortest path to link less-
correlated symbols, we expect to obtain much more ro-
bust proximity.

3.2 Proximity Preserving Embedding After
computing the pairwise symbol distance matrix Sθ

(as in Eq. 3.4), we can then find a r-dimensional
embedding coordinates ei’s that preserve the distances,
i.e.,

‖ep − eq‖
2
2 ≈ Sθ

(p,q).(3.5)

This is often called manifold learning (or dimension
reduction). Various approaches have been proposed
to compute a non-linear representation that captures
the data proximity relations. Most of these approaches
first compute a pairwise similarity (or distance) between
objects, and then obtain the embedding results through
an eigenvalue decomposition.

For example, if Sθ is chosen as squared Euclidean
distance, then one can find embedding (as in Eq. 3.7)
that exactly recovers such distances, via so called multi-
dimensional scaling [5]. To obtain such an embedding,
one computes the eigenvalue decomposition of the fol-
lowing matrix

−
1

2
HSH = UΛU,(3.6)

where H is the double centering matrix, U has columns
as the eigenvectors and Λ is a diagonal matrix with
eigenvalues. Then the embedding E = [e1 e2 ...; ec]

′

can be chosen as

E = UkΛ
1
2

k .(3.7)

In [10], the pairwise distance between objects is chosen
as the geodesic distance (approximated by the shortest

path distance on a pre-computed graph), leading to the
well known ISOMAP. In this case, since the distances
in S are obtained in non-Euclidean manner, matrix in
(Eq. 3.6) can be indefinite and the embedding only
approximately recovers the distances in S.

Note that we also used the shortest path distances
as discussed in Subsection 3.1. However, we believe that
using the shortest path distance to obtain a “transitive”
distance measure between categorical symbols is a novel
application. In addition, instead of using only one
distance measure, we compute the mixture of a number
of “base” shortest-path distances with the guidance of
the label information, which corresponds to a more
generalized, semi-supervised setting.

4 Learning with Multiple Transitive Distances

As discussed in Section 3.1, in constructing the d-partite
graph, one can choose different proximity relations or
the neighborhood size k. It is unclear which choice leads
to the best proximity measure, and how to perform
model selection is typically a challenging task. In
case of unsupervised learning, since there is no label
information, one may have to make choices empirically.
When class labels are available, we can use them as
a guidance for model selection. Here, inspired by the
works of multiple kernel learning, we propose a multiple
distance learning scheme to solve the model selection
problem in our setting.

4.1 Multiple Kernel Learning In the literature on
the SVM and kernel methods [23], researchers have em-
phasized the need to consider multiple kernels instead
of a single kernel matrix. This can improve the model
flexibility, and also reflect the practical situation that
learning problems often involve multiple, heterogeneous
data sources (aspects). Usually, the learning procedure
will compute a conic combination of a set of base ker-
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nels Ki’s, where the mixing coefficients are obtained by
simultaneously optimizing a performance measure cor-
responding to the generalization performance of classi-
fiers [20, 21, 22, 25]. For example, [20] used the following
SDP formulation

min ω(K)

s.t. trace(K) = c,

K 	 0, K =
∑m

i=1 μiKi,

where ω(K) is the performance measure correspond-
ing to an SVM with dual variables v, defined as
ω(K) = maxv 2v

�e−v�
(
yy�

⊙
K + τ · I

)
v, 0 ≤ v ≤

C,v�y = 0. Here, C is the regularization (const) pa-
rameter, I is the identity matrix. The resultant prob-
lem can be solved by a second-order cone programming.
Later more efficient formulation called SimpleMKL [22]
was proposed to obtain sparse kernel combinations.

4.2 Multiple Transitive Distance Learning In-
spired by the multiple kernel learning framework, we
apply similar idea in dealing with multiple distance ma-
trices as computed in Section 3. Suppose we have ob-
tained a number of symbol distance matrices Sθ

k ∈ R
c×c

for k = 1, 2, ..., L, each of which is computed using d-
ifferent choices of proximity or neighborhood size (or a
combination). Note that these “base” distance matri-
ces may reflect different aspect of the data structures.
For example, a larger neighborhood size reveals long
term interactions among symbols, making the resultant
pairwise distance matrix denser, while a smaller neigh-
borhood size relates to short range interactions, leading
to sparser distance matrices. On the other hand, the
choice of the different proximity measure (Table 1) will
also have an impact on the resultant base distance ma-
trices.

Then, our goal is to obtain a weighted average of
all these “base” distances, in the form of

Sθ =

L∑
m=1

αmSθ
m,(4.8)

where αm’s are non-negative coefficients. To make the
mixture distance useful in practical classification tasks,
a natural criterion is that the resultant embedding
using the mixture distance Sθ should lead to desirable
learning performance.

To see how Sθ (or Sθ
m’s) will practically affect the

learning performance of a future classifier, we need to
transform them to pairwise sample distances, the latter
fully determining the geometry of samples hence the
output of a classifier. Let the pairwise sample distances
be Dθ ∈ R

n×n. Then its (i, j)th entry, i.e. the power-θ

distance between ith and jth sample can be written as

Dθ
(i,j) = dis(Xi, Xj)

θ

=

d∑
k=1

dis(Xik, Xik)
θ

=

d∑
k=1

Sθ
(Xik,Xjk)

=

d∑
k=1

L∑
m=1

αmSθ
m(Xik,Xjk)

=

L∑
m=1

αmDθ
m(i,j)

where we have used the relation in Eq. 2.3, and

Dθ
m(i,j) =

d∑
k=1

Sθ
m(Xik,Xjk)

.(4.9)

In other words, the pairwise sample distance matrix Dθ

can also be deemed as the mixture of a set of base
sample distance matrices, Dθ

m’s, each arising from a
base symbol distance matrix Sθ

m for m = 1, 2, ..., L.
Consequently, we have a mixed sample distance matrix
in the form of

Dθ =

L∑
m=1

αmDθ
m.(4.10)

The advantage of using expression (Eq. 4.10) is that,
since Dθ

m’s can be readily computed using Sθ
m’s, and Dθ

is directly associated with the learning performance, our
problem can be easily formulated as an optimization of
the mixing coefficients αm’s to obtain desired distribu-
tions of embedded samples.

Instead of using the learning criterion in multiple
kernel learning [20, 21, 22] that is associated with the
performance of a specific classifier (SVM), here we wan-
t to adopt a general criterion to optimize the learning
with multiple distances. In the machine learning com-
munity, one such criterion is that samples belonging to
the same class should be close to each other; while sam-
ples from different classes should be far away from each
other[16]. Based on this idea, in the following we pro-
pose a discriminative embedding approach to optimize
mixing coefficients αm’s, such that the resultant sample
distance matrix Dθ will have small intra-class distances
and large inter-class distances. Note that the mixing co-
efficients have been shown to apply to both the sample
distance matrices Dθ

m’s (Eq. 4.10) and the symbol dis-
tance matrices Sθ

m’s (Eq. 3.4). Therefore, after learning
αm’s, we can finally obtain the mixed distance Sθ (E-
q. 3.4), based on which a numerical embedding for all
symbols can be computed as in Section 3.2.
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4.3 Discriminative Embedding Suppose we are
given a set of must link and cannot link constraints,
S and D, respectively. To measure the intra-class
compactness, define JS as the the sum of all dis-
tances from the same-class-pairs (subject to power
ε). Define α = [α1 α2 ... αL]

�, and μθ
ij =

[Dθ
1(i,j) Dθ

2(i,j) ... Dθ
L(i,j)]

�. Then JS can be writ-
ten as

J
(θ,ε)
S =

∑
(i,j)∈S

(
Dθ

(i,j)

)ε

=
∑

(i,j)∈S

(
L∑

m=1

αmDθ
m(i,j)

)ε

=
∑

(i,j)∈S

(
(μθ

ij)
�α

)ε
.

Similarly, define J
(θ,ε)
D as the the sum of distances from

the different-class-pairs (with power ε).

J
(θ,ε)
D =

∑
(i,j)∈D

(
(μθ

ij)
�α

)ε
.

If we want to maximize J
(θ,1)
D − J

(θ,1)
S , we have the

following linear programming problem:

max
α

(∑
(i,j)∈D μθ

ij −
∑

(i,j)∈S μθ
ij

)�

α(4.11)

s.t. α ≥ 0, α�1 = 1

One can also choose to minimize the ratio
J

(θ,2)
S

J
(θ,2)
D

.

Then we have the problem:

min
α�

(∑
(i,j)∈S μθ

ij(μ
θ
ij)

�
)
α

α�
(∑

(i,j)∈D uθ
ij(μ

θ
ij)

�
)
α
.

Define the following variables,

Aθ =
∑

(i,j)∈S

μθ
ij(μ

θ
ij)

�

Bθ =
∑

(i,j)∈D

μθ
ij(μ

θ
ij)

�

let B
1
2

θ α = β, then we have the following problem,

min β�
(
B

− 1
2

θ AθB
− 1

2

θ

)
β(4.12)

s.t. B
− 1

2

θ β ≥ 0

β�B
− 1

2

θ 1 = 1.

This is a standard quadratic programming (QP), for
which a global optimal solution can be obtained effi-
ciently in polynomial time. In practice one can choose
θ = 1 or θ = 2, which corresponds to the original and
squared shortest-path-distance in Eq. 3.4.

5 Related Work

Categorical data are often observed in data mining
tasks, and researchers have proposed to use coding
systems to turn categorical variables into numbers for
analysis [11]. The coding scheme should minimize
redundancy while still representing the complete data
set. The most popular choice is the dummy variable
coding (DVC). Symbols in the ith feature, Ai, are coded
with ci-dimensional vectors (|Ai| = ci), where each
vector has a single 1 corresponding to that symbol, and
all rest entries are 0’s. By doing this, the original data
X will be transformed to c-dimensional numerical data,
where c =

∑d

i=1 |Ai|. Although such a coding scheme
is easy to implement, it assumes that the distance
among all the symbols equals to 1. Considering that
the symbols used to represent the data can have various
meanings and levels, this assumption obviously deviates
from the truth.

In [17], the authors proposed a density-based lo-
gistic regression (DLR) framework. The DLR maps the
data to a feature space using p(y|xd), the posterior prob-
ability of the attribute xd belonging to class with label y.
In case of continuous data, a kernel density estimator
needs to be computed whose bandwidth parameter is
jointly optimized with the logistic regression procedure.
In case of categorical data, this then becomes replacing
each symbol with the histogram of class labels associ-
ated with that symbol. Such a transformation also im-
poses a distance measure between categorical symbols,
namely, if two symbols are associated with the same dis-
tribution of class labels, then they will have the same
representation and henceforth a zero distance between
them.

In [18], the authors proposed a dynamical system
approach to analyze relation between categorical sym-
bols and to group them into clusters. The basic idea is
to iteratively apply a pre-defined operation f(·) on the
weights associated with each symbol, until a stationary
state of the system is reached. It can be shown that
under certain conditions, the iteration simulates com-
puting the eigenvectors of the similarity matrix among
symbols. The idea of enforcing interactions among sym-
bols through iterative updates is very interesting, and
our approach achieves similar goal through the use of
the shortest path distances. However, an important d-
ifference is that instead of grouping the symbols, we are
aimed at learning an embedding of symbols that will
also be aligned with the class labels.

There are also a large number of algorithms that
are specifically devoted to clustering categorical data
[7, 9]. For example, in [7], a novel concept of “links”
is proposed to measure the similarity between two data
points in the form of transaction data. The number
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Figure 1: Embedding of the categorical symbols in two-dimensional space for data set Tic-tac-toe, Balance, and
Splice, respectively. Each color represents symbols from the same attributes.

of links between two points is the number of common
neighbors. Therefore, this criterion incorporates global
information in computing the sample distances, which
is more robust. However, it still requires an initial
distance measure between data points to determine the
neighbors of each data point, which again relies on
some pre-defined distance between symbols and is an
open problem itself. Note that these types of work
focus on clustering while our goal is to find a numerical
representation of the categorical data, which can be used
for many different tasks besides clustering.

More algorithms on handling the categorical data
can be found in [15]. Note that the difference of
our approach and these algorithms is that instead of
designing a specific algorithm to analyze the categorical
data, we instead seek a transform from categorical
to the numerical domain such that a wide variety of
existing numerical algorithms can be better applied in
categorical data analysis. A byproduct of our approach
is the visualization of the symbolic attributes, which
naturally captures the statistical properties of the data
and can provide more insight on the sematic level.
This can be quite useful in improving the quantitative
analysis in areas of psychology, behaviourial analysis,
and marketing analysis.

6 Experiments

In this section, we compare the following algorithms
for categorical data classification: (1)Dummy variable
coding; (2)Density-based coding [17]; (3)Decision tree
algorithm [4]; and (4)Our approach. Here methods
(1), (2) and (4) are coding schemes that transform
categorical variables into numerical values, and method

(3) is an algorithm that is specifically designed (and
particularly suited) for categorical data mining and has
been extremely popular in the literature. The classifier
used to evaluate the quality of classification is logistic
regression. The logistic regression and decision tree
classifier are adapted from open source project Scikit-
Learn2. The QP solver used in our approach is the cvx
package. Our codes are written in Python and run on
a Intel(R) Core(TM) i5 CPU @2.60GHZ 2.60GHZ PC
with 8 GB RAM.

Table 2: The statistics of the benchmark data sets.

Data # inst. #dim. #symbols
Balance 525 4 20

Mushroom 8,124 22 117
Tic-Tac-Toe 958 9 27

Splice 3,190 60 240
Cancer 296 9 89

Hayes-Roth 160 4 15
Monk 432 6 17

We use the following benchmark data sets from
UCI Machine Learning Repository3, which are briefly
summarized as follows:

• Balance Scale: This data set was generated to
model psychological experimental results. Each
example is classified as having the balance scale tip

2http://scikit-learn.org/stable/
3https://archive.ics.uci.edu/ml/datasets.html
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Table 3: The mean and standard deviation of the classification accuracies (in %) for different algorithms.

Balance Mushroom Tic-Tac-Toe Splice Cancer Hayes-Roth MONK

Dummy 98.50 99.04 95.25 91.18 95.81 77.42 96.24
0.75 0.73 0.42 0.94 1.23 6.82 1.13

Density 96.59 98.43 70.60 91.29 96.76 57.72 96.37
1.58 0.57 2.34 0.98 0.76 8.94 0.85

Decision 88.49 99.40 87.48 88.68 94.25 73.93 97.13
Tree 1.63 0.54 2.18 1.73 1.38 7.74 0.72
Ours 99.42 99.54 98.25 91.51 95.94 83.91 97.81

0.58 0.46 0.44 1.20 0.93 3.64 1.23

to the right, tip to the left, or be balanced. There
are 525 instances, 4 attributes, and 20 symbols.

• Mushroom: This data set includes descriptions of
hypothetical samples corresponding to 23 species
of gilled mushrooms. There are 8,124 instances, 22
attributes, and 117 symbols.

• Tic-Tac-Toe: This database encodes the complete
set of possible board configurations at the end
of tic-tac-toe games. There are 958 instances, 9
attributes, and 27 symbols.

• Splice: The data is used to recognize two types
of splice junctions in DNA sequences: exon/intron
(EI) or intron/exon (IE) sites. There are 3,190
instances, 60 attributes, and 240 symbols.

• Breast Cancer: This is the one of three domains
provided by the Oncology Institute on lymphogra-
phy and primary-tumor. This data set includes 296
instances, 9 attributes, and 89 symbols.

• Hayes-Roth: This data is on human subjects classi-
fication. There are 160 instances, 4 attributes, and
15 symbols.

• Monk: This is the basis of a first international
comparison of learning algorithms. There are 432
instances, 6 attributes, and 17 symbols.

The statistics of these data sets are listed in Table 2.
Before reporting the classification performance, we

first plot the embedding results of the categorical sym-
bols in three data sets, namely Tic-Tac-Toe, Balance,
and Splice, in Figure 1. An interesting observation is
that for Tic-Tac-Toe and Balance, the number of sym-
bols is relatively small, and symbols used to describe
the same attribute (marked with the same color) tend
to be close to each other. In particular, note that in
the Tic-Tac-Toe game, each attribute (corresponding to

one configuration) have three symbols/moves, and these
symbols from the same attributes tend to be close and
form a line, forming a globally (approximately) symmet-
ric embedding. For the Splice data set, since the number
of symbols is large, the grouping is insignificant.

The setup of different algorithms are as follows.
For logistic regression, we tried both L1-norm and L2-
norm regularizations; and the regularization parameter
is chosen in the gird {0.1, 1, 10, 100, 1000}. For decision
tree, the function used to measure the quality of a
split is the Gini criterion, the minimum number of
samples required to split an internal node is chosen
from the candidate values {2, 4, 6, 8}, and the minimum
number of samples required to be at a leaf node is
chosen in the values {1, 2, 3, 4}. For our method, we
have adopted three types of base distance measures, i.e.,
the cosine distance, the normalized co-occurrence, and
the mutual information4, to learn an optimal symbol
distance matrix. The objective function is chosen as

J
(θ,2)
S /J

(θ,2)
D as specified in Eq. 4.12 with θ = 2. In

building the initial graph among the symbols, we only
connect one symbol with top l symbols that have closest
distances, where l = min( c2 , d), with c being the total
number of symbols. The shortest path distances are
then calculated on this graph.

For all the algorithms, we use 5-fold cross valida-
tion to select the best parameters if there are any. The
reported results are based on the average of 30 repeats.
In each repeat, 50% of the data is randomly selected for
training, and the rest is used for testing. The classifi-
cation accuracies are reported in Table 3. Algorithms
whose performance is significantly better than others vi-
a the paired student-t test with a confidence level that
is at least 95% is highlighted. As can be observed, on
most (6 out of 7) data sets, our approach gives the best
results. Next comes the density-based coding method.

4The two similarity measures are transformed to distances
using the log(−x) function.
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The dummy coding and decision tree algorithms per-
form relatively worse compared with other algorithm-
s. This clearly demonstrates the effectiveness of our
method in finding a reliable, numerical representation
for categorical data analysis.

7 Conclusion and Future Work

In this paper, we propose a novel method to obtain nu-
merical representation/embedding for categorical data.
The basic idea is to learn a pairwise distance among
symbols, which captures both important global proxim-
ity relations, as well as the class label information such
that the resultant embedding would lead to a good gen-
eralization performance. With this transform, popular
learning algorithms for numerical data can be readily
applied in categorical data analysis. In the future, we
will study the more challenging problem of mixed nu-
merical and categorical data, as well as extending our
method to regression tasks.
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