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Abstract—With the rising concerns over privacy and fairness in
machine learning, privacy-preserving fair machine learning has
received tremendous attention in recent years. However, most ex-
isting fair models still need to collect sensitive demographic data,
which may be impossible given privacy regulations. To address
the dilemma between model fairness and sensitive data collection,
we propose DicPF, a distributed and privacy-preserving fair
learning framework that operates without collecting sensitive
demographic data. In particular, DicPF assumes multiple local
agents and a modeler are distributed, and sensitive demographic
data is separately held by multiple local agents. To assist fair
learning at the modeler, each agent learns a fair local dictionary
and send it to the modeler. The modeler learns a fair model
based on an aggregated dictionary. Under DicPF framework, we
propose a private z-Sparse Fair Learner. Extensive experiments
on three real-world datasets demonstrate the efficiency of the
proposed model. Compared with the state-of-the-art fair learners,
the proposed z-Sparse Fair Learner achieves superior fairness
performance by lowering prediction disparity. We also develop
a privacy inference model to demonstrate the excellent privacy-
preserving performance of DicPF. Finally, we theoretically ana-
lyze z-Sparse Fair Learner and prove upper bounds on its model
fairness and accuracy.

Index Terms—fair machine learning, privacy-preserving, dic-
tionary learning, sparse representation theory, inference attack

I. INTRODUCTION

Machine learning is widely used to make important and

life-changing decisions from helping us decide who to hire

to assessing violence risk in prisons [1], [2]. It is crucial to

ensure that the decisions are not based on prior discriminatory

behaviors toward certain groups or populations. Thus, building

fair models is extremely important and it is part of the latest

national AI R&D strategy plan [3].

Many fair models have been proposed, but most of them

require direct or indirect access to private data. In practice,

many situations arise where it is impossible to collect sensitive

demographic data for decision-making. The main reasons are

from two aspects: On one hand, data privacy protection is

being forced in regulations such as the Europe General Data

Protection Regulation (GDPR) and the latest California Con-

sumer Privacy Act (CCPA) [3]; On the other hand, individuals

are not willing to disclose their private data to the modeler [4].

We thus see fair machine learning and privacy protection are

running into a dilemma.

To address this problem, a few solutions have been proposed

in the literature, which can be categorized into multi-party

computation [4], [5], demographic proxy [6] and demographic

data query with cost [7]. While they have achieved promising

results, each direction has its own limits. One common limit of

most solutions is that they need to collect users’ private data.

In practice, this may be impossible given privacy regulations.

For example, hospitals have a large number of patient cases, a

data analysis of these cases helps the doctors make accurate di-

agnoses. However, each hospital can not share its patient cases

with research institutions as the information about the patients

is extremely private [8]. In this situation, the aforementioned

technical solutions may be impractical.

In this paper, we propose DicPF, a novel privacy-preserving

fair machine learning framework that doesn’t need to collect

sensitive demographic data. DicPF assumes users’ sensitive

demographic data is privately and separately held by multiple

local agents. To avoid disclosing users’ private data to the

modeler, each local agent learns a fair and accurate dictionary

via dictionary learning technique, then sends the learned local

dictionary to the modeler. The modeler firstly aggregates the

dictionaries sent by multiple local agents; then learns a fair

model only with the non-private data and the aggregated

dictionary. Under this framework, we propose a private z-

Sparse Fair Learner, which learns a fair model by sparsely

selecting atoms from the aggregated dictionary. Our insight is

that (i) model fairness is promised by sparse fair atom selection

and (ii) model accuracy is guaranteed by sparse representation

theory [9], [10]. The experimental results show z-Sparse Fair

Learner outperforms most existing non-private and semi-

private fair learners across three real-world datasets. Next,

we examine the privacy-preserving performance of DicPF

framework under an inference attack, the experimental results

show the proposed framework has better privacy-preserving

performance than non-private and semi-private models [5].

Finally, we theoretically analyze z-Sparse Fair Learner and

prove upper bounds on its model fairness and accuracy.

To sum up, the contributions of this work include:

• Propose a privacy-preserving and distributed fair machine

learning framework DicPF, which learns a fair model

without collecting sensitive demographic data;

• Propose a private z-Sparse Fair Learner under DicPF
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framework, which outperforms most state-of-the-art fair

learners in model fairness;

• Develop a privacy inference model to demonstrate the

better privacy-preserving performance of DicPF frame-

work compared with non-private and semi-private mod-

els;

• Provide theoretical analysis on z-Sparse Fair Learner

and prove upper bounds on its model fairness and accu-

racy.

The remainder of this paper is organized as follows: Sec-

tion II introduces the related work; Section III formalizes

the problem statement; Section IV presents the proposed

framework; Section V describes the design of z-sparse fair

learner; Section VI presents an inference attack; Section VII

presents theoretical analysis; Section VIII shows experimental

results; Section IX presents conclusion and future work; And

Appendix contains all proofs.

II. RELATED WORK

A. Fair Learning with Direct Access to Private Data

Many fair models with direct access to sensitive demo-

graphic data have been developed. Feature processing [11]–

[13] assumes a model is fair if it is built on a fair data

representation. They first learn fair features and then learn a

fair model from them. Label processing [14] assumes that there

are unfair labels in training data. They detect and correct these

labels before model learning. Model in-processing [15]–[18]

modifies the learning algorithms during the training process by

incorporating changes into the objective function or imposing

a fairness constraint. Model post-processing [19], [20] learns

a standard model and modifies its predictions to make them

fair. Model ensemble [21] supposes an ensemble of standard

models is fair as unethical biases in these models may be

averaged out through bagging. In [22], the authors present an

interesting framework to mitigate bias via adversarial learning

technique. In this framework, they maximize accuracy of the

predictor on y, and at the same time minimize the ability of

the adversary to predict the sensitive variable. Even though

some fair models have achieved good performance, they need

to use sensitive demographic data directly.

B. Fair Learning with Restricted Access to Private Data

Specific discussions on the restricted use of private data

appears in [23], [24], but there lacks scientific solutions.The

natural solution to protect privacy in fair learning is removing

the demographic feature from the model, but this approach

can not guarantee fairness due to the redlining effect [25].

Some studies do not use demographic data as a feature of

the model, but use it in other ways during learning. For

example, [26] uses k-NN to detect unfair labels. They do not

use demographic data to measure instance similarity, but still

use it to measure label disparity in neighborhoods. Recently,

Kilbertus et al. [4] propose an interesting solution by employ-

ing the cryptographic tool of secure multiparty computation.

This is a promising solution, but encryption comes with extra

cost of time and protocols. Hashimoto et al. [27] propose a

TABLE I: Summary of Notations

Notations Description

Wi The i-th local agent

W The local agent set

M The modeler

f The prediction model

fz z-sparse prediction model

X Non-private data

Xi Local data at i-th local agent

Si Private data at i-th local agent

Y True label vector

Z Sparse matrix

Dia An accurate dictionary related to Xi

Di The local dictionary at the i-th agent

D The aggregated dictionary at modeler

di The i-th atom
~β Coefficient vector

|| · ||1, || · ||2 L1 norm, L2 norm

λ0, λ Hyper-parameters

ρ Fairness threshold

r The number of local agents

fair learner that automatically infers group membership and

minimizes disparity across it. However, this method focuses

on a less common fairness notion called distributive justice

and on-line learning, In contrast, we focus on the common

disparity measure and off-line setting. In [6], the authors use

proxy sensitive features to mitigate model bias, but its fairness

performance is decided by the accuracy of proxy features. H.

Hu et al. [5] propose a distributed fair learning framework,

where sensitive demographic data is collected by a trusted

third party and the modeler communicates with the third party

for fair learning. Nevertheless, this framework is vulnerable to

inference attacks as an attacker can infer sensitive information

with high accuracy [28]. In addition, in reality, it is not always

realistic to find a highly trusted third party to hold private data

and participate in model training. Preethi Lahoti et al. [29]

propose an interesting approach to mitigate bias without de-

mographics, which is adversarially reweighted learning. Their

method hypothesizes that non-sensitive features and task labels

are valuable for identifying fairness issues. Y. Liu et al. [7]

adopt active learning technique to train a fair model, but their

assumption is that sensitive demographic data can be collected.

III. PROBLEM STATEMENT

In this section, we present the preliminaries and problem

definition of our work.

The symbols used in the paper are summarized in Table I.

The bold capital letters denote matrix. The local agent set

is defined as W := {W1, . . . ,Wr}, where Wi (i ∈ [1, r])
denotes the i-th local agent. Let M denote the modeler. A

random instance is described by a triple (x, s, y), where s ∈ R

is a sensitive demographic feature, x ∈ R
p is a vector of p

non-sensitive features, and y ∈ R is the true label. Let X =
{∑r

i=1(xi1, yi1), ..., (xim, yim)} denote the non-private data

of all users, and Xi = {(xi1, si1, yi1), ..., (xim, sim, yim)}
denote the local data set at the i-th agent, which includes pri-

vate data Si = {si1, . . . , sim}. For ease of discussion, we will

write X = [x1, . . . , xn]
T as a sample matrix, Y = [y1, . . . , yn]

T
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Fig. 1: Comparison between DicPF workflow and existing

fair learning workflow. (1) Non-private fair learning requires

direct access to private data and (2) Semi-private fair learning

requires indirect access to private data [5]. (3) Private fair

learning DicPF trains a fair model f without collecting

private data from multiple local agents. (Red color shows

private data; DLT denotes dictionary learning technique.)

as the associated label vector. Let Di ∈ R
p×ki be a learned

local dictionary at the i-th agent. The aggregated dictionary at

modeler M is denoted as D = {D1, . . . ,Dr} = [d1, . . . , dk],
where k = k1+ . . .+kr. Each column in a dictionary is called

an atom, i.e., each di ∈ D is an atom. Let f : {x} → {y} be

a linear prediction model.

With the aforementioned notations, the problem we aim to

study in this work can be formally defined as follows:

Given a local agent set W = {W1, . . . ,Wr}, where each

Wi (i ∈ [1, r]) privately holds users’ private data Si and

the modeler M only holds users’ non-private data X and

true labels Y , then our goal is to learn a fair model f at

the modeler M without collecting users’ private data Si from

each Wi ∈ W .

IV. DICPF FRAMEWORK

In this section, we present the proposed DicPF framework.

As Figure 1 shows: assume there are r local agents and one

modeler M, private data of users is separately and privately

held by multiple local agents, non-private data is distributed

on modeler M and all local agents. DicPF framework has two

advantages:

1© Different from the existing non-private and semi-private

fair learning frameworks (as shown in Figure 1 (1) and (2)),

the modeler M in DicPF only separately obtains r accurate

and fair dictionaries from multiple local agents instead of

collecting users’ private data.

2© The modeler M trains a fair model f with an aggregated

dictionary D and non-private data X, which doesn’t exchange

information with the holders of private data.

Algorithm 1 DicPF Framework

Input: Modeler M, non-private training set X ∈ R
p×n, local agent

set W , and fairness threshold ρ, λ0.
Output: A prediction model f at M.

1: ∀Wi ∈ W separately learns an accurate dictionary Dia ∈
R

p×kic with local data Xi via

min
Dia,Z

||Xi −DiaZ||
2

2 + λ0||Z||1, (1)

where Z ∈ R
kic×m is a sparse matrix and λ0 is a hyperparam-

eter.
2: Wi applies each di ∈ Dia on {xij ∈ Xi} to get a predicted

label set Ŷi = {di(xi1), . . . , di(xim)}.
3: Wi estimates cov(di(x), s) and put di into matrix Di if

|cov(di(x), s)| ≤ ρ.
4: Wi sends Di to M.
5: M receives Di(i = 1, . . . , r) and trains a fair prediction (or

classification) model f on X assuming that

f = β1d1 + β2d2 + . . .+ βkdk, (2)

where k = k1 + . . . + kr , di ∈ D(i ∈ [1, k]) and ~β =
[β1, . . . , βk]

T is unknown coefficients to learn.

Next, we will elaborate the design details of DicPF frame-

work. The strategy design is shown in Algorithm 1. It has two

phases: (1) Steps 1 to 4 construct a fair and accurate dictionary

D aggregated by D1, . . . ,Dr; (2) Step 5 learns a fair model

based on the aggregated dictionary D and non-private data X.

Specifically, Step 1: Each local agent Wi ∈ W separately

learns an accurate dictionary based on local data Xi via

Equation (1) [10]; Step 2: Wi applies all atoms in the accurate

dictionary on the local data Xi to get predictions; Step 3: Wi

estimates correlation between its sensitive demographic data

and each atom’s prediction. If a correlation is small enough,

then the corresponding atom is fair and put it into Di; Step

4: Wi sends Di to the modeler M; Step 5: The modeler M
learns a fair prediction model f with the aggregated dictionary

D and non-private data X.Throughout the process, sensitive

demographic data at each agent is not revealed to the modeler.

V. z-SPARSE FAIR LEARNER

Under DicPF framework, we propose a private z-Sparse

Fair Learner. The motivation for our design is that sparsity

can ensure model fairness and accuracy performance simulta-

neously based on Algorithm 1 (see Section VII for theoretical

analysis). To elaborate the design of z-Sparse Fair Learner,

the following terms need to be defined first.

Definition 1: (z-Sparsity [9]). Let A ∈ RN×N , x ∈ RN×1,

and x = Av, where v ∈ RN×1 is the column vector of

weighting coefficients. If only z(z << N) elements of v are

nonzero and the rest elements in v are zeros, we call x is

z-sparse.

Definition 2: (ρ-Fair Atom). In Algorithm 1, an atom di ∈
R

p is ρ-fair (ρ > 0) if
|cov[di(x), s]| ≤ ρ, (3)

where cov(·) is covariance and | · | denotes absolute value.

Definition 3: (ρ-Fair Dictionary). In Algorithm 1, if ∀di ∈
D satisfies |cov[di(x), s]| ≤ ρ, then D ∈ R

p×k is a ρ-fair
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dictionary, i.e., a ρ-fair dictionary is composed of k ρ-fair

atoms.

Based on Definition 1, we say f is z-sparse linear prediction

model if only z coefficients are non-zeros in vector ~β, which

is denoted as fz .

To obtain an optimal fair model fz in Algorithm 1, the

objective function of z-Sparse Fair Learner is designed as

follows:

J(fz) = min
~β

n∑

i=1

(fz(xi)− yi)
2 + 2λ||~β||1,

= min
~β

n∑

i=1

(

k∑

t=1

βtdt(xi)− yi)
2 + 2λ

k∑

t=1

|βt|,
(4)

where λ is a hyperparameter.

By equation (4), we learn a z-sparse ~β such that the model

loss is minimal based on a ρ-fair dictionary D.

Since L1 norm is not differentiable, we apply coordinate

descent algorithm [30] to solve Equation (4). This numerical

method iteratively updates ~β. In each iteration, it optimizes a

random element βj(j 6= 0) while fixing the rest. We rewrite

J(fz) as

J(fz) = ||XD:jβj +
∑

t 6=j

XD:tβt − Y ||22 + 2λ

k∑

t=1

|βt|

=

n∑

i=1

(xT
i D:jβj +A

(j)
i )2 + 2λ|βj |+B(j)

(5)

where A
(j) =

∑
t 6=j XD:tβt − Y , B(j) = 2λ

∑
t 6=j |βt|.

Because |βj | is not differentiable, we remove the absolute

value by case-studying βj and apply critical point method to

obtain βj .

Case 1: βj > 0.

∂J(fz)

∂βj

=

n∑

i=1

2xT
i D:j(x

T
i D:jβj +A

(j)
i ) + 2λ. (6)

Setting the right-hand-side to zero and solving for βj , we

have

βj =
−2λ−∑n

i=1 2x
T
i D:jA

(j)
i∑n

i=1 2(x
T
i D:j)2

. (7)

Since βj > 0, then −2λ >
∑n

i=1 2x
T
i D:jA

(j)
i .

Case 2: βj < 0. Similar to case 1, we have

βj =
2λ−∑n

i=1 2x
T
i D:jA

(j)
i∑n

i=1 2(x
T
i D:j)2

. (8)

Since βj < 0, then 2λ <
∑n

i=1 2x
T
i D:jA

(j)
i .

Case 3: βj = 0. In this case, 2λ ≥ |∑n
i=1 2x

T
i D:jA

(j)
i |.

Summarizing the three cases, we update βj(j ∈ [1, k]) via

βj =





−2λ−Q
R

if Q < −2λ
2λ−Q

R
if Q > 2λ

0 if |Q| ≤ 2λ

, (9)

where Q =
∑n

i=1 2x
T
i D:jA

(j)
i and R =

∑n
i=1 2(x

T
i D:j)

2.

VI. ATTACK MODEL: PRIVACY INFERENCE

In DicPF framework, we assume the modeler obeys privacy

regulation and has no malicious attempt. However, in reality,

the modeler may be an adversary who attempts to infer users’

private information based on all accessible information. Her

intention may be malicious, e.g., to conduct discriminatory

decisions in some applications. Therefore, it is necessary to

examine the vulnerability of the proposed framework under

privacy inference attack. In this section, we first define privacy

loss, then present an attack model for privacy inference.

Definition 4: (Privacy Loss). Given the original sensitive

feature vector S = {s1, . . . , sn} and the inference vector of an

adversary Ŝ = {ŝ1, · · · , ŝn}, the privacy loss of S is defined

as

PLS(X,D, Y ) = 1− 1

n

n∑

i=1

(si − ŝi)
2, (10)

where si, ŝi ∈ {0, 1} and ŝi is the inferred sensitive feature

value of individual xi.

We see the privacy loss depends on the inference accuracy

of adversary. The inference is more accurate, PLS(X,D, Y )
is bigger.

The adversary’s goal is to obtain an accurate inferred Ŝ
based on all accessible information. In DicPF framework, The

known background knowledge of the adversary includes: (i)

original non-sensitive feature X; (ii) the aggregated dictionary

D and (iii) true labels of all individuals Y . However, the

adversary does not know (i) original sensitive feature values

S; (ii) The fairness strategies to obtain Di at each agent.

Assume sensitive feature is binary, based on the known

knowledge, the inference model can be formulated as

minŜ SP (fz),

s.t. ŝi ∈ {0, 1}, i = 1, . . . , n,
(11)

where SP (fz) denotes the statistical parity of model fz .

By equation (11), the adversary tries to find a binary vector

such that the statistical parity of prediction is minimal.

VII. THEORETICAL ANALYSIS

In this section, we present the theoretical properties of

Algorithm 1.

A. Theoretical Properties on Model Fairness

We evaluate model fairness using a popular measure of

statistical parity (SP) [31]. Let p(f(x) = 1|s(x) = 1),
p(f(x) = 1|s = 0) be the probabilities of positive classifi-

cation in two demographic groups, respectively,

SP(f) = |p(f(x) = 1|s(x) = 1)− p(f(x) = 1|s(x) = 0)|.
(12)

Our first result shows fz is fair if it is spanned by a set of

ρ-fair atoms.

Lemma 5: In Algorithm 1, if fz(x) is spanned by z ρ-fair

atoms, then

cov[fz(x), s] ≤
√
z|| ~βz||ρ, (13)

where ~βz is the vector of non-zero sparse coefficients and z
is the number of non-zero coefficients.
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To prove z-sparsity on ρ-fair dictionary D implies statistical

parity, we employ the arguments in [5, Lemma 2], then we

have

Theorem 6: If a sparse model fz(x) and s are positively

or negatively quadrant dependent, with a ρ-fair dictionary D,

then

SP(fz) ≤ t ∗
√
z|| ~βz||, (14)

where t = ρ/p(s = 0)p(s = 1).
This theorem implies when ρ is fixed, one can obtain a fair

model through two paths: (i) Choose a small z, which means

the model is sparser and will be fairer; (ii) Choose a small

|| ~βz||.
B. Theoretical Properties on Model Loss

To derive a loss bound for Algorithm 1, our backbone

technique is dictionary learning [9], [10]. It is a sparse repre-

sentation learning technique which aims at expressing a given

sample x as a sparse linear combination of atoms. Intuitively,

the classifier result is more reliable when the reconstruction

error of samples is smaller [32].

Given any sample xi, the first result shows the upper bound

of reconstruction error based on an accurate dictionary Dia,

which is learned via Equation (1).

Lemma 7: Assuming ||xi|| ≤ r, ||Diaej || ≤ γ where

{ej |1 ≤ j ≤ kic} is the orthonormal basis of R
kic , let

||zi|| ≤ 1, then we have

||xi −Diazi||2 ≤ r2 + k2icγ
2. (15)

This lemma implies that the reconstruction error of sample xi

has the worst-case upper bound on kic of O(k2ic).
Our second result shows sparsity implies smaller upper

bound of distance between the original sample and the pro-

jected sample.

Lemma 8: Let x be any sample and Dz ⊂ D(z << k) be

the projection matrix. Let x̃ = D
T
z x be the projection of x.

Assume ||x|| ≤ r, we have

|||x||2 − ||x̃||2| ≤ r2 +

z∑

i=1

< di, x >2 . (16)

To prove the prediction loss of fz , we extend the arguments

in [33, Lemma 1] to fz . Assume X̃ = XD, then we have

Theorem 9: Let Y1 = X̃β∗
X̃
+ ǫ1, Y2 = Xβ∗

X
+ ǫ2, If λ1 ≥

2||X̃T ǫ1||∞, λ2 ≥ 2||XT ǫ2||∞, constants v1 and v2 satisfy

the following two conditions:

(1) 0 < v1 ≤
√
s1||X̃η1||2√
n||η1S1||1 for all η1 ∈ R

k such that

||η1Sc
1||1 ≤ 3||η1S1||1,

(2) 0 < v2 ≤
√
s2||Xη2||2√
n||η2S2||1 for all η2 ∈ R

p such that

||η2Sc
2||1 ≤ 3||η2S2||1, then the prediction error of fz satisfies

||X̃β̃
X̃
(λ1)−Xβ∗

X
||22 ≤ 16s1λ

2
1

v21n
+

16s2λ
2
2

v22n
+ d(β∗

X̃
, β̃X(λ2)),

(17)

where d(β∗
X̃
, β̃X(λ2)) := ||X̃β∗

X̃
− Xβ̃X(λ2)||22, S1 :=

supp(β∗
X̃
) is the index set of the non-zero entries of β∗

X̃
, Sc

1

is the complement of S1; S2 := supp(β∗
X
) is the index set of

the non-zero entries of β∗
X

and Sc
2 is the complement of S2.

This theorem implies model loss is related with different

parameters. However, if we fix hyper-parameters λ1, λ2, sam-

ple size n, and sparsity levels s1, s2, then the important factor

in the error bound is X̃, which is decided by dictionary D.

VIII. EXPERIMENT

In this section, we evaluate the performance of z-Sparse

Fair Learner under the proposed DicPF framework on three

benchmark datasets. To encourage reproducibility, we make

our data and code publicly available [34].

A. Datasets

We conduct experiments on three popular datasets, which

are commonly used for evaluating algorithm fairness: the

Community Crime data, the Credit Card data and the COM-

PAS data [34].

The Community Crime data contains 1,993 communities

described by 101 features with community crime rate as its

label. We treat the ‘fraction of African-American residents’

as the sensitive feature. And a community is ’minority’ if the

fraction is above 0.5 and ‘majority’ otherwise. The Credit Card

data contains 20,000 users described by 23 features with de-

fault payment as its label. Similar to [17], we select education

degree as the sensitive feature. The COMPAS data contains

16,000 records described by 15 features after removing the

incomplete data. The class label is the risk of recidivism.

Similar to [35], we treat race as the sensitive feature.

B. Experimental Settings

In the experiment, considering the sizes of the data sets,

we set up three local agents {W1,W2,W3} and one modeler

M. The three agents holds their local data {X1, X2, X3} with

private data {S1, S2, S3}, respectively. M only holds the non-

private data X and true labels. We randomly split each dataset

into three parts and assign to {W1,W2,W3} for learning local

dictionaries; At modeler M, we choose 75% of the instances

for training and use the rest for testing. We evaluate our learner

for 50 random trials and report its averaged performance.

Baselines. We compare the proposed private fair learner

with the following six non-private baselines and four semi-

private fair learners:

(1) Non-private fair learners: Fair Ridge Regression

(FRR) [18], Fair Kernel Regression (FKR) [36], Fair Lo-

gistic Regression (FGR) [37], two Fair PCAs (FPCA1 [17],

FPCA2 [38]), and Fair Representation Learning (LFR) [11].

(2) Semi-private fair learners: Four distributed fair learners

proposed in [5], includes Distributed Fair Ridge Regres-

sion(DFRR), Distributed Fair Kernel Regression (DFKRR),

Distributed Fair Logistic Regression (DFGR), and Distributed

Fair PCA (DFPCA).

Hyper-parameter Settings. For baselines, we use their

default hyper-parameters (or grid-search from the default can-

didate values). For the proposed learner, similar to [5], we set ρ
to 0.01, 0.1, and 0.25 on the three datasets, respectively. The

maximal iteration in coordinate descent algorithm is 1, 500.
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TABLE II: Parameter Settings for Privacy Inference (DL denotes Dictionary Learning)

Data Inference Size
GA Parameters DL Parameters

initial population size
step size is 100

crossover rate
step size is 0.1

mutation
rate

selection iteration
inaccuracy
tolerance

iteration

Crime all samples 200 ∼ 500 0.1 ∼ 0.3 0.01
rank to converge 10−6 1000

Credit all samples 200 ∼ 500 0.1 ∼ 0.3 0.01

For the hyperparameter λ, we grid-search its optimal value in

1 ∼ 103 and the step size is 50.

Evaluation metrics. We use statistical parity (SP) [31] to

measure model fairness, which is defined in Equation (12).

And we use classifier error to measure model error. A smaller

SP implies a fairer model, while a smaller classifier error

implies a more accurate model.

Privacy Loss (PL) is used to measure the model privacy-

preserving performance, which is defined in Equation (10). A

smaller PL value indicates better privacy-preserving capability.

C. Results and Discussions

The experimental results on the three datasets are presented

in Table III, IV, and V, respectively. We will discuss the results

from two aspects: (i) Non-private vs. Private and (ii) Semi-

private vs. Private.

The first observation is that the fairness performance of

z-Sparse Fair Learner outperforms most non-private and

semi-private baselines across all three datasets. Take the non-

private fair learner FGR as an example, the proposed method

achieves much lower SP than FGR (0.0898 vs. 0.0189; 0.0779

vs. 0.0076; and 0.0408 vs. 0.0067). Similar observations can

be found when we compare z-Sparse Fair Learner with the

semi-private learners. Take DFRR as an example, z-Sparse

Fair Learner decreases SP from 0.0466 to 0.0189 on the

Crime data, from 0.0118 to 0.0076 on the Credit data, and from

0.0078 to 0.0067 on the COMPAS data. The two observations

imply that the proposed private learner is very effective for

learning a fair model.

The second observation is that the accuracy of z-Sparse

Fair Learner is also better compared with some baselines. For

example, on the Crime data, compared with FPCA1, FPCA2,

and DFPCA, our algorithm not only achieves a much lower SP,

but also achieves a lower classifier error. On the Credit data,

similar observations can be found for FGR. This implies our

method achieves a more efficient trade-off between fairness

and accuracy than some compared fair learners.

The third observation is that we notice the superior fairness

of z-Sparse Fair Learner is not achieved without any cost.

It has a slightly higher classification error rate than several

baselines. Nevertheless, we argue the loss of model accuracy is

relatively small compared with the increase in fairness. For ex-

ample, on the Credit data, we choose DFRR for comparison. z-

Sparse Fair Learner lowers prediction disparity by 35.59%=

(0.0118-0.0076)/0.0118 but only increases classification error

by 4.60% = (0.2388-0.2283)/0.2283.

D. Privacy Inference Analysis

We examine the model privacy-preserving performance on

the Crime and Credit data sets with different sample sizes.

(a) (b)
Fig. 2: Privacy loss comparison between the proposed and non-

private models / semi-private models in [5] on the (a) Crime

data set and (b) Credit Card data set.

(a) (b)
Fig. 3: Privacy loss comparison on fair dictionary and accurate

dictionary ((a) Crime data set and (b) Credit Card data set).

The inference model is as Equation (11) shows and we solve

it by using Genetic Algorithm (GA). On the two data sets,

we infer the sensitive features (minority/majority; education

degree) respectively. The parameter settings on each data set

are as Table II shows.

We compare the proposed private model with the non-

private and semi-private models [5]. For semi-private method

[5], we set the number of random hypotheses m = 100,

because if m is too big, integer programming (IP) may

not return any feasible solutions in finite iterations. For the

proposed model, because the GA solutions depend on its

search space, we report results averaged over 20 random trials.

As Figure 2 shows, the proposed model decreases privacy

loss significantly compared with non-private and semi-private

models. For non-private model, the sensitive demographic data

is available to the adversary, therefore, the privacy loss is 1.

For semi-private model, the adversary can obtain an optimal

solution via multiple constraints, the privacy loss is also high

(> 0.6) when the sensitive data is binary. However, the privacy

loss of the proposed method is smaller than 0.6 on two data

sets, this observation implies that the adversary can not infer

sensitive demographic data accurately by using equation (11).

The main reason is that the adversary does not know the true

SP value for accurate inference.
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TABLE III: Classification Performance on the Crime Data

Method Statistical Parity Classifier Error

FRR .3062±.0452 .1102±.0128

FKR .0968±.0722 .1208±.0054

FGR .0898±.0971 .1166±.0189

Non-private FPCA1 .0859±.0479 .1731±.0089

FPCA2 .0755±.0293 .1476±.0122

LFR .0738±.0377 .1264±.0068

DFRR .0466±.0117 .1064±.0092

Semi-private DFKRR .0695±.0181 .1216±.0143

DFGR .0650±.0198 .1202±.0690

DFPCA .0289±.0502 .1351±.0111

Private z-Sparse Fair Learner .0189 ± .0151 .1299 ±.0614

TABLE IV: Classification Performance on the Credit Card Data

Method Statistical Parity Classifier Error

FRR .0994±.0016 .2340±.0058

FKR .0079±.0011 .2001±.0054

FGR .0779±.0571 .2412±.0469

Non-private FPCA1 .1716±.0149 .4025±.0382

FPCA2 .0981±.0164 .3224±.0045

LFR .0288±.0132 .2835±.0051

DFRR .0118±.0006 .2283±.0062

Semi-private DFKRR .0085±.0015 .1823±.0092

DFGR .0494±.0601 .2244±.0382

DFPCA .0344±.0061 .2304±.0041

Private z-Sparse Fair Learner .0076± .0063 .2388 ± .0206

TABLE V: Classification Performance on the COMPAS Data

Method Statistical Parity Classifier Error

FRR .0515±.0042 .2276±.0040

FKR .0041±.0013 .2190±.0089

FGR .0408±.0162 .2428±.0917

Non-private FPCA1 .2806±.0182 .3204±.1032

FPCA2 .1719±.0317 .2390±.0278

LFR .0182±.0211 .2496±.0044

DFRR .0078±.0041 .2302±.0045

Semi-private DFKRR .0034±.0015 .2152±.0093

DFGR .0374±.0645 .2617±.0509

DFPCA .0081±.0046 .2279±.0046

Private z-Sparse Fair Learner .0067±.0049 .2337±.0271

To study the privacy loss on a fair dictionary and accurate

dictionary separately, we test two cases: (i) Privacy loss on a

fair dictionary; (ii) Privacy loss on an accurate dictionary. The

size of two dictionaries is k = 200. The results are shown

in Figure 3. We see the privacy loss on the fair dictionary

is slightly higher in most cases. This means the inference of

adversary may be more accurate with a fair dictionary based

on Equation (11).

E. Model Sensitivity Analysis

We examine the performance of z-Sparse Fair Learner on

the Crime data with different configurations and report results

on testing samples averaged over 20 random trials.

First, we examine the model fairness performance with

different numbers of the selected atoms (z). There are three

observations from Figure 4(a): (i) The curve of SP shows the

worst fairness performance is smaller than 0.166, since the

aggregated dictionary D is a fair space. (ii) As z decreases,

SP decreases. This implies the model is fairer with smaller z;

(iii) The decrease rate of SP is slow because the reduction rate

is O(
√
z). These observations are consistent with Theorem 6.

Then, we examine the model accuracy performance with

different numbers of the selected atoms (z). Figure 4(b)

shows if the dictionary is randomly generated, the accuracy

of the sparse model is worse (convergence error ≥ 0.6).

This is because the small size of a random fair space can

not ensure model accuracy. However, the accuracy of the

proposed method can converge to [0.1, 0.2], which means

sparse representation theory guarantees the model accuracy.
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(a) (b)

Fig. 4: (a) SP versus z (b) Classifier error versus z.

Next, we examine the performance of the proposed model

with different sizes of the aggregated dictionary D (k). Fix

λ = 50, we increase k from 40 to 140. The performance

is shown in Figure 5(a). We observe that as k increases, the

SP increases. This means sparse fair atom selection promises

model fairness, which is consistent with the implication of

Theorem 6. However, the classifier error slightly increases,

this observation also implies model accuracy is ensured by

sparse representation theory.

Finally, we examine the PQD/NQD assumption [39], [40]

in Theorem 6. Figure 5(b) shows cov(fz(x), s) of z-Sparse

Fair Learner over 20 random trials on the Crime data. We

observe that the covariance is positive in most cases, which

implies fz(x) and s are PQD/NQD.

IX. CONCLUSION AND FUTURE WORK

In this paper, we addressed an important and challenging

problem of private fair machine learning. We proposed DicPF,

a privacy-preserving fair learning framework that doesn’t need

to collect sensitive demographic data, and demonstrated its su-

perior privacy-preserving performance under inference attack.

We proposed a z-Sparse Fair Learner under this framework,

then theoretically analyzed z-Sparse Fair Learner and proved

upper bounds on its model fairness and accuracy. The exper-

imental results on three real-world data sets demonstrated the

effectiveness of the proposed private learner.

In this study, we introduce sparsity to improve model

fairness, however, model accuracy is slightly lower than some

compared models. Overcoming this limitation is our future

work.

X. APPENDIX

A. Proof of Lemma 5

We will prove that fz is fair with a ρ-fair D. Let ~βz denote

the vector of non-zero coefficients, by the linear property of

covariance,

cov[fz(x), s] = cov

[∑k

t=1
βtdt(x), s

]

= cov[
∑

βt 6=0
βtdt(x) +

∑
βt=0

0 ∗ dt(x), s]

=
∑

βt 6=0

βtcov[dt(x), s]

≤ ||~βz|| · || ~cov[d(s)z , s] ||,
(18)

(a) (b)

Fig. 5: (a) Classifier error and SP versus k (b) cov(fz(x), s)
of 20 random trials on the Crime data.

where ~cov[d
(s)
z , s] = [ cov[d1(x), s], . . . , cov[dz(x), s] ] and the

last inequality is by the Cauchy–Schwarz inequality.

|| ~cov[d(s)z , s]||2 =

z∑

t=1

cov[dt(x), s]
2 ≤

z∑

t=1

ρ2 = zρ2, (19)

Combining (18) and (19), Lemma 5 is proved.

B. Proof of Lemma 7

First, we quantify the reconstruction error of sample xi

based on the accurate dictionary Dia as

gDia
(xi) = ||xi −Diazi||2. (20)

Recall ||xi|| ≤ r, ||Diaei|| ≤ γ and ||zi|| ≤ 1, then

||xi −Diazi||2 ≤ ||xi||2 + ||Diazi||2

≤ r2 +

kic∑

r,j

< zirDiaer, zijDiaej >

≤ r2 +

kic∑

r,j

||zirDiaer||||zijDiaej ||

≤ r2 + k2icγ
2,

(21)

where the third step is by the Cauchy-Schwarz Inequality.

C. Proof of Theorem 9

Let ~a = X̃β̃
X̃
(λ1), ~b = X̃β∗

X̃
, ~c = Xβ̃X(λ2), ~d = Xβ∗

X
,

A =
16s1λ

2

1

v2

1
n

, B =
16s2λ

2

2

v2

2
n

, then we need to show

||~a− ~d||22 ≤ A+B + ||~b− ~c||22, (22)

with the two known conditions: (i) ||~a − ~b||22 ≤ A and (ii)

||~c− ~d||22 ≤ B.

We relax this problem from n dimensions to two dimen-

sions. Define point a := (x1, y1), b := (x2, y2), c := (x3, y3),
d := (x4, y4), then we have

||a− b||22 = (x1 − x2)
2 + (y1 − y2)

2 ≤ A

||c− d||22 = (x3 − x4)
2 + (y3 − y4)

2 ≤ B
(23)

We see formula (23) are two circle areas as the Figure 6 shows,

then we will prove that when a and d are two further points

of intersections with line lbc, the distance between a and d is

maximal.
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Fig. 6: ||a− b||22 ≤ A and ||c− d||22 ≤ B

Let h(x, y) be the distance between point x and point

y. Assuming there is another point d1 on the bottom circle

edge such that h(a, d1) > h(a, d), then we will show such

point d1 does not exist. By triangle inequality, we have

h(a, d1) ≤ h(a, e) + h(d1, e) ( 1©). By Pythagorean Theorem,

we have h2(d1, e)+h2(d1, d) = h2(d, e) ( 2©), then we obtain

h(d1, e) < h(d, e) ( 3©). Plugging ( 3©) back to ( 1©), then

h(a, d1) ≤ h(a, e) + h(d, e) = h(a, d)( 4©). This contradicts

with our assumption. Therefore, there is no another point d1
on the bottom circle edge such that h(a, d1) > h(a, d). Finally,

we extend the dimension into n and replace the a, b, c, d with

X̃β̃
X̃
(λ1),X̃β∗

X̃
,Xβ̃X(λ2), Xβ∗

X
respectively, this theorem is

proved.
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