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ABSTRACT
Active learning is a promising way to efficiently build up
training sets with minimal supervision. Most existing meth-
ods consider the learning problem in a pool-based setting.
However, in a lot of real-world learning tasks, such as crowd-
sourcing, the unlabeled samples, arrive sequentially in the
form of continuous rapid streams. Thus, preparing a pool
of unlabeled data for active learning is impractical. More-
over, performing exhaustive search in a data pool is expen-
sive, and therefore unsuitable for supporting on-the-fly in-
teractive learning in large scale data. In this paper, we
present a systematic framework for stream-based multi-class
active learning. Following the reinforcement learning frame-
work, we propose a feedback-driven active learning approach
by adaptively combining different criteria in a time-varying
manner. Our method is able to balance exploration and ex-
ploitation during the learning process. Extensive evaluation
on various benchmark and real-world datasets demonstrates
the superiority of our framework over existing methods.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Application—data
mining ; I.5.2 [Pattern Recognition]: Design Methodol-
ogy—classifier design and evaluation

General Terms
Algorithms, Experimentation

Keywords
Active Learning, Stream Data Mining, Reinforcement Learn-
ing, Adaptive Criteria

1. INTRODUCTION
With the massive amount of data produced by various sources,
from sensor networks to social network, substantial efforts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full cita-
tion on the f rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specif c permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.

have been devoted to efficiently collecting labeled data. Ac-
tive learning methods [21] provide a way to automatically
pinpoint informative examples for which labels should be
requested, thereby reducing labeling cost without sacrific-
ing accuracy in the model. Recent results have shown that
active selection can benefit object detection, image/video
classification, machine translation systems etc.

Currently, active learning models primarily focus on pool-
based setting, where each query selection is made via ex-
haustively searching in a fixed pool of unlabeled data. Per-
forming exhaustive search in the pool is expensive and time-
consuming for the tasks requiring on-the-fly interactive learn-
ing from unbounded streams or large scale data. Stream-
based setting is preferred in this context as it is capable of
making immediate query decision without the need of ac-
cessing the data pool. On the other hand, there are a lot of
real-world learning tasks with crowdsourcing, and systems
such as Amazon Mechanical Turk (MTurk)1 or LabelMe2

provide access to multiple distributed annotators. For ex-
ample, [23] presented an approach for live learning of ob-
ject detectors, in which the system autonomously refines its
models by actively requesting crowdsourced annotations on
images crawled from the Web. In [1], Vamshi et al. pro-
posed a paradigm where active learning and crowdsourc-
ing come together to enable automatic translation for low-
resource language pairs. [25] developed an online system to
obtain cost-effective labels of images. In such cases, the un-
labeled samples arrive sequentially and the learner cannot
store or re-process all the instances due to constraints such
as memory limitation. Preparing a pool of unlabeled data in
active learning is impractical and a stream-based approach
for data processing is required.

The overall framework of stream-based active learning with
its differences from the pool based active learning scenario
is showed in Figure 1. In stream-based learning, a learner
receives one sample at a time and has to determine whether
or not to select the instance to be labeled by general anno-
tators or crowdsourced labelers. There are lots of strategies
have been proposed for stream-based active learning [14, 11,
27, 11]. Generally, most of these methods consider to choose
the informative instances based on a single criterion. Using a

1https://www.mturk.com/mturk/welcome
2http://labelme.csail.mit.edu/Release3.0/
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single criterion would limit the performance of active learn-
ing, which is known as exploitation-exploration dilemma [16,
18, 13]. The problem is more prominent in the stream-based
scenario in which the subset of data chosen for labeling can
hardly represent the original distribution of data.

Consequently, methods have been proposed to address this
problem. [9] tried to minimize the unbiasedness in the sam-
pling process by designing optimal instrumental distribu-
tions. But this method relies on heuristic weighting and lim-
its to binary classification scenarios. [10] and [17] proposed
different active learning methods for anomaly detection by
combining different criteria. However, the proposed com-
binations are fixed ones. According to [13], fixed weighted
combination of different criteria would not work well across
all the datasets and learning stages. We argue that the com-
bination should be in a time-varying manner.

Unlike the method proposed in [9] that tried to minimize
the variance to control the bias of stream data, we propose
a reinforcement learning framework to learn the optimal
strategy during the labeling process and use the feedback
from the classifier to guide the selecting. Our active learner
updates the weights of exploration and exploiting criteria
in subsequent rounds based on the feedback the model re-
ceived. The premise behind this adaptive weighting scheme
is to favor the criterion that is more likely to return a queried
sample that brings most influence to the current model. In
this fashion, we manage to make a trade-off not only between
exploration and exploitation but also between different cri-
teria in a time-varying manner. Our contributions in this
paper are as follows:

1. We formulate a stream-based multiclass active learning
framework to ensure real-time response, i.e. the model
can make immediate decision on whether to query a la-
bel or not, which would impact work in a number of
data mining subfields, including many crowdsourcing
applications. It can also have impact on many com-
puter vision applications, such as robot vision, video
surveillance;

2. We propose a reinforcement active learning strategy
in a time-varying manner that is capable of discover-
ing new classes (exploration) and refining the decision
boundary (exploitation) simultaneously;

3. We compare the proposed strategy with baselines on
five different datasets and show in our extensive ex-
periments that the proposed method outperforms the
state-of-the-art methods. We also show that the stream-
based active learning framework is far more efficient
than the pool-based schema.

The rest of the article is organized as follows. In Section
2, we discuss several closely related previous research works
and highlight the differences and contributions of our work.
In Section 3, we describe our feedback driven active learn-
ing approach, which adaptively combine exploration and ex-
ploitation criteria. It is essential for on-the-fly interactive
labeling for on-line learning. The evaluated experiments us-
ing several benchmark datasets are detailed in Section 4.

Figure 1: Stream-based active learning vs pool-based active
learning.

Section 5 concludes the article with a summary and some
possible future directions.

2. RELATED WORK
Recently, there is an unprecedented increase in the amount
of publicly available data from various sources such as social
networks and mobile phone users [5, 26]. This surge of data
has not been accompanied by a complementary increase in
annotation [7]. To reduce human supervision in classifier
learning, researchers have begun to explore novel ways to
collect labeled data. One of the promising research direction
is active learning.

While most of existing methods only consider the pool-based
setting [23, 6, 25], in this paper, we focus on active learn-
ing for sequential data. Compared to pool-based learning,
the stream-based learning is more efficient without expen-
sive search in the data pool. Yet it may encounter several
difficulties such as imbalance data distribution and new class
discovering. There are some stream-based approaches have
been developed, most of which are based on a single query
criterion. [14, 11] introduced an uncertainty criterion based
on the QBC algorithm, in which an ensemble of committee
members are maintained. [27] proposed a classifier ensemble
based active learning framework for stream data. They split
the data stream into chunks and used the minimal variance
strategy to select samples.

Active learning with a single criterion would reduce the per-
formance, which is known as exploitation-exploration dilemma
[16, 13]. A pure exploitative criterion only focuses on regions
that are difficult to learn and will lead to sampling bias. In
particular, this problem is more prominent for sequential
data where some rare classes would be overlooked since the
learner lacks complete knowledge on the underlying data
distribution. In contrast, a pure explorative criterion covers
the entire data space but needs too many iterations before
a good decision boundary is found. There are attempts in
combining multi-criteria for active learning. For example,
[24] proposed active learning strategies for streaming data
that explicitly handle concept drift. which are based on un-
certainty, dynamic allocation of labeling efforts over time
and randomization of the search space. In [10], Dan et al.
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proposed an active learning method for anomaly detection
by combining likelihood and uncertainty criterion; [17] also
exploited active learning for anomaly detection with a fixed
combination of different criteria. However, the proposed
combinations are unsatisfactory as they are not adaptive
ones. Non-adaptive methods can not apply the right crite-
rion at different phases of learning, e.g. the active learner
may waste effort refining the boundary before discovering
the right classes, or vice versa. Chu et al. [9] considered the
unbiasedness property in the sampling process, and designed
optimal instrumental distributions to minimize the variance
in the stochastic process. However, their approach requires
a heuristic parameter estimation and limits to binary clas-
sification, which is not easy to be extended to a multiclass
setting.

To balance the exploitation and exploration, researchers have
developed many approaches to reduce the sampling bias.
Generally, they formulated the active learning in a reinforce-
ment learning manner and used the feedback from the clas-
sifier to guide the sampling process. The method proposed
by Baram et al. in [3] took an ensemble containing two ac-
tive learning algorithms by a novel maximum entropy semi-
supervised criterion. [15] presented an online algorithm that
effectively combines an ensemble of active learners based on
the classification entropy maximization (CEM) score. In
[12], Donmes et al. proposed a dynamical method called
DUAL, where the strategy selection parameters are adap-
tively updated based on estimated future residual error re-
duction after each actively sampled point. [19] addressed
this problem by randomly choosing criterion between explo-
ration and exploitation at each round, and then receiving
feedback measured by the change induced in the learned
classifier. [13] modeled active learning as a feedback driven
Markov decision process (MDP) that can change over time,
and found a successful strategy for each individual data set.
However, these methods are limited to the pool-based set-
ting, which are infeasible to be directly applied to stream-
based environments.

Our proposed algorithm also addresses the problem by adap-
tively weighting of difference criteria based on the feedback
from the classifier model. Compared with the pool-based
approaches, our method can work in stream-based environ-
ments, which is computationally more efficient.

3. FEEDBACK DRIVEN ACTIVE LEARN-
ING FOR DATA STREAM

3.1 Problem Statement
In stream-based active learning, we are given a small set
of labeled instances ζ = {(x1, y1), ..., (xl, yl)} and a large
set of unlabeled input stream {xt,xt+1, ...} ∈ U . At each
time step t, an unlabeled instance xt is observed from U .
Active learning process proceeds by iteratively: (1) training
a classifier ft on the labeled pool ζ, (2) using query function
Q(ft, ζ,xt) to determine whether to query the label yt or
discard xt on each iteration, and (3) updating the model
ft and ζ with xt and yt, if xt is not discarded. The goal
of active learning is to choose instances “wisely” to achieve
low classification error of classifier ft using as few labels as
possible.

We want to classify the observed instance x = (x1, ..., xD) of
dimensionality D into one of the C classes c ∈ (1, ..., C). We
assume there are separate multinomial distributions p(xi|y)
on each xi for each class label. The classification task can
be considered as Bayesian classification by assuming that
conditional are independence among the distributions of the
input attributes (x1, ..., xD). The classifier is quantified by
a parameter set θ specifying the conditional probability dis-
tributions. Specifically, we use θxi|y to represent a vec-
tor of parameters for the multinomial p(xi|y). The condi-
tional probability p(x|y = c) can be obtained via the formula

p(x|y = c) =
∏D

i=1 p(xi|y = c) for a class c. Given p(xi|y)
and p(y), posterior conditional distribution p(y|x) can be
computed via Bayes rules. A class y∗ that best explains x

is given as follows:

y∗ = arg max
c∈{1,...,C}

p(y = c|x) = arg max
c∈{1,...,C}

p(y = yi)p(x|y = yi)

(1)

Incremental Learning To make the stream-based active
learning well suited for real-time applications, we use con-
jugate prior to facilitate efficient Bayesian learning. The
conjugate prior of a multinomial distribution with parame-
ters θxi|y is the Dirichlet distribution, which can be obtained
as follows:

Dir(θxi|y|αxi |y) ∝
∏

j

θxij|y
αxij|y

−1
(2)

where αxij|y ∈ R+ is a hyper-parameters of the distribution.

3.2 Query Criteria
We now describe our algorithm for active learning. As men-
tioned in Section 1, active learning framework with a single
criterion can not work well across all the datasets as well as
all the learning stages. Two criteria are important for ac-
tive learning in streams. Exploitation criterion is designed
to select labeled instances that are near the current decision
boundary, and the exploration criterion searches for exam-
ples that are far from the labeled points. We first discuss
different criteria for exploitation and exploration separately.
Then, we will bridge this gap by proposing a query strat-
egy which combines the scores from the exploration and ex-
ploitation criteria. In each step, the query decision is made
based on the combined query score.

3.2.1 Exploitation
The goal of exploiting sampling is to label the instances near
the decision boundary to refine the boundary. Our exploit-
ing criterion is a reformulated from of the existing query by
Committee algorithm [14, 22]. It first generates several com-
mittee members corresponding to hypotheses h = hi of the
hypotheses space Ht, where each hypothesis is trained with
a subset of training data. Then, each committee member is
allowed to vote on the labels of query candidates to find the
most uncertain sample. In this study, we formulate a novel
uncertainty score as follows: at first, a class disagreement
score is computed over all possible class labels:

sy=k = { arg max
hi∈Hi,hj∈Hi

|pi(y = k|x) − pj(y = k|x)|} (3)

where i 6= j. The top two classes that return highest sy=k

are identified as c1 and c2. Following the idea from mar-
gin sampling [20], the uncertainty score can be computed
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by using top two disagreement scores. We define the final
uncertainty score as:

U(xi) =
1

2
|sy=c1 + sy=c2 | (4)

U(xi) ∈ [0, 1]. If U(xi) of an instance is closer to 1, it is
more likely to be queried.

Generating Committees In a Bayesian Naive Bayes set-
ting with multinomial conditional probability distributions,
generating committees can be done by sampling new pa-
rameters from the posterior Dirichlet distribution of classi-
fiers [14]. It has been proven that parameters of a Dirichlet
distribution can be generated from a Gamma distribution.
Assuming we sample θ̃xi|y from its posterior Dirichlet distri-

bution Dir(θ̃xi|y|αxi|y), by drawing new weights α̃xij|y from
the Gamma distribution, α̃xij|y ∝ Gam(αxi|y), the parame-
ter of a committee member can then be estimated as:

θ̃xij|y =
α̃xij|y + γ

∑
j(α̃xij

|y + γ)
(5)

where γ is a weight added to compensate data sparseness,
i.e. to prevent zero probabilities for infrequently occurring
values xij. Based on [2], we empirically set γ to be 0.2.

3.2.2 Exploration
The goal of exploration is to either search the inhabit dense
regions of the input space or find points which are poorly
captured by the current model. In the stream-based set-
ting, previously selected instances are inaccessible, so we
introduce a sampling criterion that compares the likelihood
against current distribution modeled by the classifier. The
intuition behind likelihood sampling is that points of low
likelihood are not well captured by the current model, and
may reflect an as yet unseen space. The likelihood sampling
strategy finds a class y that maximizes the likelihood and
requests the label for the sample

L(xi) = arg max
y∈{1,...,C}

p(xi|y; θ) (6)

The likelihood score L(xi) lies within [0,1]. If L(xi) is closer
to 1, xi is more likely to be queried.

3.3 Adaptive Strategies for Active Learning
A combination of two criteria as well as a time-varying trade-
off between exploration and exploitation is the key ingre-
dient to improve active learning. Our framework aims to
combine exploration and exploitation with a time-varying
parameter β(t), 0 ≤ β(t) ≤ 1, where t ∈ {1, ..., T} with T
the maximum number of queried labels. We integrate β(t)
in the active learning framework so that there is always a
mixture of two criteria. Consequently, the final active learn-
ing framework is of the following form:

Q(xt) = β(t)U(xt) + (1 − β(t))L(xt) (7)

where xt is the sample received at time stamp t.

Following [19], we consider the active learning sequence as
a process that is optimized by learning a strategy from the
feedback. The parameter β(t) is guided by the change of
the classifier feedback and updated according to a reward
function of the classifier update:

β(t) = max(min(β(t − 1)λexp(r(t)), 1 − ǫ), ǫ) (8)

β(t) is used to guide the selection between exploration and

exploitation with reward function r(t) and β(t) ∈ [ǫ, 1 − ǫ].
ǫ is a parameter that upper- and lower-bounds the value of
β(t). Parameter λ is the learning rate that controls the in-
fluence of the reward. We use coarse values in parameters
setting without optimization: λ = 0.5 for a slow learning
rate, and ǫ = 0.1 for the minimal weight. Reward func-
tion r(t) is given by the change of the previous hypothesis.
λexp(r(t)) > 1 corresponds to larger values of β(t), i.e. pos-

itive feedback from the model, while λexp(r(t)) < 1 corre-
sponds to negative feedback.

The first improvement in our work is to measure the distance
between two distributions from the classifier models pt

θ(x)
and pt+1

θ (x). We employ the KL-divergence, which is given

as KL(θ|θ̄) =
∑

x pt
θ(x)ln

pt
θ
(x)

pt+1
θ

(x)
. In particular, given a clas-

sifier ft and an updated classifier ft+1, the KL-divergence
between their distributions can be decomposed as:

KL(θ ‖ θ̄) =
D∑

i=1

(pt
θ(xi|y) ‖ pt+1

θ (xi|y)) (9)

where θ and θ̄ represent sets of parameters of classifier ft and
ft+1, respectively. A symmetric KL-divergence K̄L(θ ‖ θ̄) is
computed as follows:

K̄L(θ ‖ θ̄) =
1

2
[KL(θ ‖ θ̄) + KL(θ̄ ‖ θ) (10)

Second, we proposed a more general rescaling for the reward
function r(t). By setting s(t) = K̄L(θ ‖ θ̄), the function r(t)

can be obtained as follows:

r(t) =
s(t) − minis

(t)

maxis(i) − minis(i)
(11)

where 1 ≤ i ≤ t. This reward function r(t) is rescaled from
Eq. 11 to get feedback according to Eq. 8. Despite the fact
that mathematically, r(t) ∈ [0, 1], from the experiments we

find that r(t) is always in the interval [ 2
5
, 1].

In each iteration, the query decision is typically determined
by a query score Q(xt) derived from the query criterion Q.
The query score will be compared against a threshold Qth.
Specifically, if Q(xt) ≥ Qth, query is made; otherwise xt is
discarded. Algorithm 1 summaries the process of the pro-
posed active learning framework.

The proposed framework has several parameters while the
probability threshold Qth is the most important. We do not
tune our parameters to match the test datasets. Following
the works in [17, 10], we set the Qth to be 0.5. The sensitivity
analysis of Qth is discussed in subsection 4.4.

3.4 Complexity Analysis
The time complexity of our algorithm obviously depends on
the active learners used as subroutines (exploitation and ex-
ploration). For each round of active learning, our algorithm
takes constant time to update the reward function, then we
add the linear time in |S| to update rt (Eq. 8). Specifi-
cally, the expected time complexity of our algorithma֒ŕs in
the current round is O(Tlik + Tqbc + |S|), where Tlik is the
time to run likelihood sampling, and Tqbc is the time to run
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Algorithm 1 Feedback-driven stream-based active learning

1: Input: (i) A set of data stream U = {xt,xt+1, · · · }; (ii) a
small set of training instances ζ = {(x1, y1), ..., (xl, yl)}.

2: Parameters: (i) A probability threshold Qth; (ii) learn-
ing rate parameter λ and the minimal weight ǫ.

3: Init: (i) Set S0 = ζ; (ii) train an initial classifier f0 using
S0.

4: For t = 1, 2, · · ·
5: Receiving xt from U ;
6: Compute the U(xt)(Eq. 4) given instance xt;
7: Compute the L(xt)(Eq. 6) given instance xt;
8: Compute the Q(xt)(Eq. 7)given instance xt;
9: if Q(xt) > Qth then

10: Request yt and update St = St−1 ∪ (xt, yt);
11: Updating classifier ft using St;
12: Updating query criterion weight β(t) based on

Eq. 8;
13: else
14: St = St−1;
15: End

Table 1: The statistics of five experimental datasets.

Dataset N d C S% L%
Thyroid 7200 21 3 2.5 92

Pageblocks 5473 10 5 0.5 90
Ecoli 336 7 8 1.5 42

Camera 1026 8 9 0.9 35
TV 1125 7 10 1.8 33

query by the proposed qbc sampling. The time complex-
ity of qbc is much larger than that of likelihood sampling
due to its heuristic search. Overall, the proposed algorithm
has an upper bound of O(2 × Tqbc). Compared with the
pool-based methods, our proposed stream-based approach
is more computationally efficient since it need not to search
all the candidate data in the pool.

4. EXPERIMENTS
4.1 Datasets and Baselines
We evaluate the proposed method on three benchmark datasets
from UCI repository: Thyroid, Pageblocks, and Ecoli, with
simulated stream-based active learning setting. These datasets
were selected because they contained multiple classes in nat-
urally unbalanced proportions. In addition, we also include
two product review datasets: Camera and TV. The two
datasets were collected using Amazon API from two sub-
categories: camera SLR and HD TV. Each dataset contains
thousands of review sentences describing the product fea-
tures, such as “appearance”, “picture quality” and “service”.
For each sentence, we asked five different annotators from
MTurk to label and we use majority voting to determine
the final label for each sentence. Furthermore, we require
that each data received the same label by a minimum of
three annotators, thereby providing more certainty in the
acquired label. Details of the five datasets are shown in Ta-
ble 1, where N is the number of instances, d is the number
of dimensions; C is the number of classes, S% and L% are
proportions of smallest and largest classes, respectively. We
applied similar preprocessing steps described in [15] on these
five sets.

We compare the proposed method against the following ex-
isting stream-based active learning methods:

low-likelihood: Low-likelihood criterion, which is de-
scribed in Section 3.2.2.

qbc-entropy: Query-by-Committee approach with vote
entropy measure, which was used in [14]. The number of
committee members is set to be three.

minimal-variance: Minimal variance method was pro-
posed in [27] and is modified for our stream-based setting.

low-lik+qbc: A multi-criteria active learning method [17]
that combines Query-by-Committee and low-likelihood. Dif-
ferent criteria are balanced through constant weights. Ac-
cording to [13], the weights are set to be 0.5 to achieve the
best performance.

Each dataset is randomly partitioned into training/test sets
with size ratio 3:7. Before the active selection, some num-
ber of labeled samples are given to initialize the classifiers.
We assume that a learner can not reuse past samples in
a strict stream-based learning setting and can not retrieve
any discarded samples to the data stream. For performance
comparison, we use: (1) accuracy (Acc), the number of sam-
ples correctly classified divided by the total number of test
samples, (2) AUC, the area under the receiver operating
characteristic curve. In this study, all experimental results
are averaged over 25 runs. Cross-validation is useful for error
estimation with low bias [?]. In all the testing experiments,
two-fold and ten-fold cross-validation are used.

4.2 Results
In this section, we show results for all the active learning
methods on five datasets. Overall accuracy and AUC af-
ter max(10C, 100) iterations (C is total number of classes),
are shown in Table 2 and 3, with two-fold and ten-fold
cross-validation respectively. We make the following ob-
servations: (1) the proposed method is always better than
the other baseline methods on different datasets; (2) ex-
ploitation criterion (qbc-entropy) works better than explo-
ration criterion (low-likelihood) on Ecoli and TV datasets
but has similar performance on the other datasets; (3) the
low-lik+qbc sampling method does not achieve better per-
formance on most datasets compared with simple exploita-
tion or exploration criterion, which indicates using the fixed
combination method will not improve the performance; (4)
the minimal-variance does not work well on most of the
datasets. Its performance is even not better than the low-
likelihood or qbc-entropy method; (5) it is notable that in
the two datasets: Camera and TV, the proposed feedback-
driven sampling shows more significant gains compared to
other datasets, which indicates its high effectiveness for the
crowdsourced real data.

We also plot the test results as the various methods learn
each additional sample selected in every active learning step.
Figure 2 shows AUC performances during different learning
stages on the five datasets. As we can see, the proposed
feedback driven sampling maintains the best performance
all the time. The low-likelihood method achieves higher
classification performance than the qbc-entropy method at
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Table 2: Average accuracy and AUC on five datasets with different active learning strategies (two-fold cross-validation).

Thyroid Pageblocks Ecoli Camera TV
Method Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

low-likelihood 0.622 0.613 0.425 0.427 0.623 0.615 0.529 0.525 0.473 0.465
qbc-entropy 0.607 0.611 0.423 0.425 0.625 0.624 0.55 0.541 0.491 0.483

minimal-variance 0.593 0.597 0.411 0.415 0.622 0.635 0.513 0.529 0.508 0.506
low-lik+qbc 0.616 0.623 0.475 0.478 0.625 0.621 0.558 0.562 0.511 0.514

feedback-driven sampling 0.626 0.635 0.513 0.535 0.631 0.649 0.572 0.575 0.571 0.579

Table 3: Average accuracy and AUC on five datasets with different active learning strategies (ten-fold cross-validation).

Thyroid Pageblocks Ecoli Camera TV
Method Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

low-likelihood 0.617 0.611 0.422 0.425 0.624 0.614 0.522 0.523 0.471 0.467
qbc-entropy 0.605 0.613 0.425 0.428 0.623 0.622 0.552 0.543 0.495 0.482

minimal-variance 0.585 0.593 0.409 0.406 0.633 0.627 0.521 0.523 0.495 0.488
low-lik+qbc 0.628 0.619 0.479 0.468 0.612 0.631 0.558 0.552 0.511 0.502

feedback-driven sampling 0.636 0.625 0.525 0.545 0.641 0.646 0.574 0.565 0.578 0.576
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Figure 2: AUC comparison on the Thyroid, Pageblocks, Ecoli, Camera, TV datasets (ten-fold cross-validation).
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Figure 3: The average exploitation and exploration weights
for different number of queried instances on two datasets.

the early stage, due to its ability to rapidly discover new
classes. But after about 50-100 iterations, with no new
classes left to be discovered, the qbc-entropy criterion starts
to outperform the low-likelihood method. Some improve-
ments are observed on the Camera and TV datasets by us-
ing the weighted low-lik+qbc method. Nevertheless, due
to the difficulties tuning the fixed weighted parameters, it
gets poor performance on the other datasets (Thyroid, Page-
blocks and Ecoli). Again, the minimal-variance only works
well on Ecoil.

Figure 3 illustrates the average exploitation and exploration
weights for different number of query instances on Ecoli and
Camera datasets within 100 iterations. The exploration cri-
terion leads to higher weight at the early stage while the
exploitation criterion obtains greater reward and dominates
after a certain number of iterations. The is because the ex-
ploration criterion can help discover new classes at an early
stage while the exploitation criterion can help to refine the
classification boundary later.

4.3 Comparison with Pool-based Approaches
We first measure the efficiency of our implementation on
three experimental datasets: Thyroid, Ecoli and Camera.
Our C++ implementation runs on a dual-core 3.3 GHz ma-
chine with 8G memory. We compare it with the running
times of other three stream-based methods: low-likelihood,
qbc-entropy and minimal-variance. We also compare it with
three pool-based methods: the naive entropy-based method,
the comb algorithm proposed in [3], and the exploration al-
gorithm proposed in [19]. In each iteration, the pool-based
methods search all the data in the pool to select one sample
for labeling. Table 6 summaries the results. On Thyroid,
Ecoli and Camera datasets, the feeback-driven sampling re-
quires 0.28, 0.22 and 0.23 seconds to make a query deci-
sion separately. Although the complexity of our algorithm
is higher than low-likelihood and qbc-entropy, our method
achieves comparable running time with the two basic meth-
ods. Compared with the minimal-variance method, our pro-
posed method is more efficient. The pool-based methods,
on the contrast, take much more time to run a query on
each dataset. In datasets with thousands of instances (such
as Thyroid), comb and exploration algorithms require ap-
proximately 6-7 minutes to make a decision, which shows
the pool-based methods are clearly infeasible given large

Table 6: Running time (seconds) comparison between pool-
based algorithms and stream-based algorithms on three
datasets.

Datasets Thyroid Ecoli Camera
Pool-based

entropy 245.3 53.2 103.2
comb 438.7 82.5 256.4

exploration 386.7 79.1 212.3
Stream-based

qbc-entropy 0.15 0.13 0.16
low-likelihood 0.08 0.06 0.06

minimal-variance 0.49 0.42 0.45
feedback-driven sampling 0.28 0.22 0.23
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Figure 4: Sensitivity analysis of Qth on Pageblocks and TV
datasets.

datasets. We also compare the performances of our feedback-
driven sampling method with the three pool-based approaches:
entropy, comb and exploration. The experiments are con-
ducted on three experimental datasets: Thyroid, Ecoli and
Camera with different ratio of training data labeled. Tables
4 and 5 show the accuracy and AUC with four approaches
after 10% or 30% of the training data are labeled. Our
proposed method can achieve comparable performance with
the three pool-based methods. When 30% of the training
data are labeled, our feedback-driven sampling has a better
performance than the entropy method, and nearly the same
performance as the comb and exploration methods.

4.4 Sensitivity Analysis of Threshold
We mentioned in subsection 3.3 that the choice of Qth is very
important to the framework performance. We now study
how the choice of the threshold score Qth affects the per-
formance. With fixed active learning settings, we vary Qth,
to evaluate the robustness of our method after 20% training
data are labeled. The test is only performed on Pageblocks
and TV datasets, with Qth varying from 0.3 to 0.8. As shown
in Figure 4a, as Qth increases from 0.3 to 0.8, the perfor-
mances of both accuracy and AUC on Pageblocks data have
a peak when Qth is around 0.5 then it starts falling off. It
is also concluded that the accuracy and AUC remain almost
the same with Qth in the range from 0.45 to 0.55. Simi-
lar trends can be observed in Figure 4b, where Qth ranges
from 0.3 to 0.9. These experimental results indicate that the
empirical choice of Qth = 0.5 is reasonable.
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Table 4: Performance comparison between pool-based methods and feedback-driven sampling on three datasets with 10%
labeled data.

Thyroid Ecoli Camera
Method Acc AUC Acc AUC Acc AUC
entropy 0.642 0.653 0.525 0.527 0.603 0.605
comb 0.687 0.671 0.543 0.551 0.625 0.624

exploration 0.693 0.697 0.571 0.559 0.628 0.635
feedback-driven sampling 0.629 0.637 0.513 0.515 0.561 0.579

Table 5: Performance comparison between pool-based methods and feedback-driven sampling on three datasets with 30%
labeled data.

Thyroid Ecoli Camera
Method Acc AUC Acc AUC Acc AUC
entropy 0.632 0.643 0.532 0.539 0.612 0.62
comb 0.707 0.712 0.583 0.575 0.655 0.661

exploration 0.732 0.727 0.601 0.605 0.642 0.655
feedback-driven sampling 0.636 0.645 0.538 0.541 0.607 0.616

5. CONCLUSION
In many active learning applications, it is necessary to make
immediate query decisions without accessing a data pool. In
this work, we presented a general framework for efficiently
learning from stream data, and proposed a reinforcement ac-
tive learning algorithm that can adaptively combine differ-
ent criteria over time based on the KL divergence measured
from classifier change.

In addition, by introducing a conjugate prior distribution
for efficient incremental learning, our approach is well suited
for real-time applications. Experimental results on five real-
world datasets showed the superiority of the proposed method
in both of the classification performance and the computa-
tional efficiency.

Our proposed framework is applicable to address numerous
increasingly common and important contemporary tasks re-
quiring on-the-fly interactive learning from unbounded streams
and large scale data. It is relevant for applications like
robotics where data is incrementally generated [8, 4], or web
applications where processing the entire corpus may be pro-
hibitively expensive.

There are several avenues for future work arising from this
work. First, the proposed framework can be applied to other
types of data (image or video) and a more natural setting of
some practical problems in some data mining and computer
vision sub-fileds. We would like to further investigate the in-
terplay between exploration and exploitation criteria in both
the theoretical and practical sense. Since crowdsourcing is a
fascinating application for active learning, we will elaborate
more on how active learning can deal with the challenges
of this application. Finally we will explore potential exten-
sion such as active learning from multiple noisy oracles or
combining active learning with reinforcement learning in the
stream-based setting.
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