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Abstract

Understanding extreme events, such as hurricanes
or forest fires, is of paramount importance be-
cause of their adverse impacts on human beings.
Such events often propagate in space and time.
Predicting—even a few days in advance—what lo-
cations will get affected by the event tracks could
benefit our society in many ways. Arguably,
simulations from first principles, where underly-
ing physics-based models are described by a sys-
tem of equations, provide least reliable predic-
tions for variables characterizing the dynamics of
these extreme events. Data-driven model build-
ing has been recently emerging as a complemen-
tary approach that could learn the relationships
between historically observed or simulated multi-
ple, spatio-temporal ancillary variables and the dy-
namic behavior of extreme events of interest. While
promising, the methodology for predictive learning
from such complex data is still in its infancy. In
this paper, we propose a dynamic networks-based
methodology for in-advance prediction of the dy-
namic tracks of emerging extreme events. By as-
sociating a network model of the system with the
known tracks, our method is capable of learning
the recurrent network motifs that could be used as
discriminatory signatures for the event’s behavioral
class. When applied to classifying the behavior of
the hurricane tracks at their early formation stages
in Western Africa region, our method is able to pre-
dict whether hurricane tracks will hit the land of
the North Atlantic region at least 10-15 days lead
lag time in advance with more than 90% accuracy
using 10-fold cross-validation. To the best of our
knowledge, no comparable methodology exists for
solving this problem using data-driven models.

1 Introduction

The behavior of a complex physical system, such as the
atmospheric-ocean system, is often characterized by patterns
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or events (e.g., hurricanes) induced or inhibited by fluctua-
tions associated with non-linearly coupled system parame-
ters. These patterns are not static but dynamic, evolving both
in space and time. For example, the fronts of plasma tur-
bulence can propagate toward the edge of the fusion reactor
and lead to fusion energy loss. Likewise, in climate, hur-
ricanes might ultimately hit land, potentially causing detri-
mental side effects, or dissipate in the ocean. Even if the data
about such systems is available, either through simulations or
through observations, the problem of detecting and tracking
such events in both space and time is often a non-trivial task
due to inherent complexity of the system’s dynamics.

From a statistical learning perspective, the problem has
been studied from two main perspectives. One approach
is the real-time, dynamic detection and tracking of events.
For example, detection of turbulent fronts has been enabled
via sliding window linear approximation of spatio-temporal
time series data followed by signal-to-noise ratio amplifica-
tion through the product of the line’s anti-correlated slope
and intercept [Shah ez al., 2010]. Alternatively, tracks may be
analyzed during post-processing. For instance, unsupervised
learning has revealed physically meaningful clusters of hur-
ricane tracks with similar signatures [Gaffney ez al., 2007].

While both approaches deserve their own merits, in this
paper, we draw readers’ attention to a slightly different, yet
complementary, supervised learning problem. Namely, given
a historic record about the spatio-temporal propagation of the
event tracks, can an algorithm learn the complex non-linear
relationships between system parameters so that the track’s
sink location can be predicted from the knowledge about the
track’s source and the system’s state at or before the event’s
formation? Slightly more formally, if during the event e at
time to, the system’s state S(tg,e, F, L) and the source of
the event track are described by some spatio-temporal mul-
tivariate feature set F' over space L and time t < tg, then
the algorithm A should predict the sink of the event track at
time tg + At, where the temporal resolution, At, is domain-
specific (e.g., 515 days for hurricane tracks). For the sake of
simplicity, we assume that the number of distinct modes for
the track sinks is finite; for example, land-hitting and ocean-
bound hurricane tracks. We call this problem a supervised
forecasting of source-sink track dynamics.

To address this problem, we propose a network-based
methodology for identifying statistically significant, sink-
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biased network motifs by comparing more than a hundred
system-scale networks associated with the event tracks. We
then utilize a multivariate, iterative feature selection method
that detects combinations of these motifs that collectively
contribute to the decision on the particular mode of the track’s
sink. We successfully apply this methodology to a suggested
problem of forecasting whether hurricanes at their genesis re-
gion would ultimately landfall or remain offshore. The fore-
cast skill is 15%—-20% higher than any other competative ma-
chine learning methodologies could offer.

2 Motivating Example and Related Work

Hurricanes lead to major natural disasters in the regions of
landfall. To better understand and predict regional hurricanes,
it is important to consider the factors influencing the dynam-
ics of their tracks. Data on hurricane locations from the “best-
track” (HURDAT) data or from a simple tracking algorithm
applied to 6-hourly mean sea-level pressure (SLP) fields from
either a general circulation model (GCM) or an observed data
set [Gaffney et al., 2007] provide opportunities for data min-
ing to contribute to understanding these factors.

Hurricane track research [Harr and Elsberry, 1991; El-
sner et al., 2000; Elsner, 2003] provided direct links of the
sea surface temperature (SST) or vertical wind shear (VWS)
to hurricane steering mechanisms and regional factors re-
lated to hurricane tracks. Recent cluster analysis of hurri-
cane tracks [Gaffney er al., 2007, Nakamura et al., 2009;
Kossin et al., 2010] revealed distinct and physically inter-
pretable clusters in the main development region of the cen-
tral tropical Atlantic, including the following [Elsner, 2003]
(see Figure 1, A): (a) “Recurving” hurricanes that threaten
North America north of about 35°N but remain offshore and
(b) “Straight Moving” (SM) hurricanes that make landfall in
the Caribbean and North America south of this latitude.

Likewise, Poisson regression models [Kossin et al., 2010]
provided quantitative insights on the frequency trends for
landfalling hurricanes, thus giving an estimation of annual
rates for landfalling hurricanes given our knowledge about
SST anomalies and other climate factors, such as the vari-
ability of the AMM, ENSO, NAO, and MJO indices.

In contrast, in this paper, we address an important and com-
plementary problem—forecasting whether the hurricane in
its genesis region will eventually strike land or remain off-
shore. Existing real time hurricane track prediction studies,
such as CLIPPER [Neumann, 1972] and GFDL [Tuleya and
Ross, 1995], focus on short-term (2-5 days) predictions. To
complement these methods, we aim to make mid-term (5—
10 days) predictions after hurricane formation and reveal im-
portant factors for possibly improving climate models o sea-
sonal tropical cyclone activity projections. To the best of our
knowledge, no literature has addressed this problem.

3 Method

3.1 Overview

In this section, we describe our methodology for classify-
ing the dynamics of source-sink event tracks for emerging
extreme events, with the goal of predicting the mode of the
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Figure 2: Sink-biased motif groups enumeration.

track’s sink with lead lag time in advance of the track’s for-
mation at its source. Figure 1 and Figure 2 summarize the
two main components of the proposed methodology. The first
primarily deals with formation of system-scale networks and
discovery of sink-biased network motifs. The second iden-
tifies the groups of these motifs that collectively provide the
ability to predict different sink modes.

3.2 Sink mode-driven network formation

Physical systems, such as climate, have been recently studied
from dynamic, structural, and functional properties of their
complex networks. For example, the nodes of climate net-
works, or graphs, are identified with the spatial grid points
and the edges between pairs of nodes exist depending on the
degree of statistical interdependence between the correspond-
ing pairs of anomaly time series taken from the climate data
set [Tsonis and Roebber, 2004; Donges er al., 2009].

Unlike traditional unsupervised methods for network for-
mation, our supervised network construction distinguishes
the mode of the track’s sink at time t.,,4 for the track at its
source location at time t4:,,+. Basically, our methodology is
driven by the sink mode (Fig. 1(A), 1(E), and 1(F)). Given a



set of networks for each sink mode, our hypothesis is that the
sink mode networks will exhibit distinctive network motifs,
or subgraphs, that can be used to identify the target mode. For
example, if the sink belongs to the Land or Offshore mode for
the hurricane track, we call such biased network motifs Land-
specific or Offshore-specific, depending on the bias type.

Because network topology affects our detection of
such sink-specific network motifs, we will next discuss
an important step underlying our network construction
methodology—the assessment of statistical significance of
network edges, namely, whether the edge is unlikely to be
observed in random networks. Since the system state is de-
scribed by multi-variate spatio-temporal data, we first com-
pare univariate time series associated with pairs of spatial grid
points for a time period of (¢start — AW, tstart), Where the
time window AW is problem-specific (e.g., 90 days for hur-
ricane tracks) (see Figure 1, Part C). We then adjoin the points
with a weighted or unweighted edge, if these series are suffi-
ciently correlated.

To determine whether the time series associated with two
grid points are correlated, we randomly permute the time se-
ries associated with each data point and compare the distri-
butions of the pairwise Pearson correlation between the per-
muted and original data across all pairs of points (see Figure
1(B)). In this figure, the black histogram represents the dis-
tribution of the pairwise Pearson correlation coefficients for
the original data, and the gray histogram represents the cor-
relation distribution for the permuted data. The edge weight
threshold « is selected based on the desirable False Discov-
ery Rate (FDR) defined from the overlap between the distri-
butions. We connect pairs of data points with an edge if the
Pearson correlation between their time series is greater than
the threshold (see Figure 1(D)). (Note that the permutation
mechanism is domain- and task-specific.)

3.3 Sink-biased network motifs detection

In a brute-force way, the enumeration of all sink-biased net-
work motifs might first enumerate all frequent subgraphs
[Inokuch er al., 2000; Kuramochi and Karypis, 2001; Yan
and Han, 2002] and then assess their statistical bias toward
a particular sink mode. However, this approach quickly be-
comes impractical as there may be exponentially many such
subgraphs. To deal with this computational complexity, we
employ a much more efficient bottom-up approach that first
identifies sink-biased edges as seed sets and then expands
those sets via seed expansion algorithm. The seed expansion
algorithm is outside of the scope of this paper, so we also
show results only for the network motifs (edges) identified as
part of the seed selection process. In this paper, we use edges
in the climate networks as motifs and identify those edges
that are biased towards a particular class of hurricanes.

We specifically distinguish between treating the networks
as unweighted graphs (or using binary edge weight values)
or weighted graphs (using continuous edge weights). For the
binary case, we calculate a cumulative hypergeometric prob-
ability to assess whether a given edge is biased towards a par-
ticular sink mode or another. We utilize the Fisher’s exact
test that estimates the cumulative hypergeometric probability,
used to measure the likelihood of randomly selecting events

with the same (or less balanced) class distribution:
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where z ¢ represents the number of events of class C' that ex-
hibit the edge, IV represents the total number of events, n¢
represents the total number of events of class C, and k rep-
resents the number of events that exhibit the edge. We apply
a cutoff p-value of 0.05 in order to eliminate motifs with low
sink mode bias. Note that the test is used as a filtering method
but with the conservative p-value of 0.05 used to increase the
sensitivity of putative discriminatory features that while being
weak individually could provide a strong signal collectively.

For the continuous case, we apply the Student’s ¢-test over
the sets of edge weights from two network classes (e.g., Land
and Offshore) to assess the edges whose average weights are
significantly different between two network classes (modes).

3.4 Feature selection and ensemble classification

Once we have a set of sink-biased network motifs, we use
them as features to build a feature selection—based ensemble
of classifiers in order to forecast the track’s sink mode at time
tstart + At for the track whose formation stage is defined by
its source location at time ts.4,¢. For our target application,
described in Section 2, At may range between 10 to 15 days.

The intuition behind building the ensemble is that the out-
come of the track is likely dependent on a combination of the
sink-biased network motifs. Moreover, it is likely not the only
combination that is important for track source—sync dynam-
ics. Therefore, an ensemble of well-performing predictors
could be effectively used as a mechanism to enumerate all
or most of such combinations of sink-biased network motifs
(see, Figure 4 for an example of two combinations, one for
SST and the other for SLP climate factors). Moreover, un-
derstanding the physical interpretation of such multi-variate
groups of sink-biased motifs and their possible cross-talks
may provide additional insights about the factors influencing
the dynamics of extreme event tracks.

To provide this enumerative capability, we propose an iter-
ative feature selection technique based on decision trees. We
use the iterative decision tree method for feature selection for
a number of reasons: (1) to enumerate the sets of possible
discriminatory features for future insights about their physi-
cal relevance and (2) to effectively deal with underdetermined
problem with a much larger number of features than events
by identifying significantly fewer features in each set for the
events available for model building.

Our strategy iteratively selects the set of network motif fea-
tures that correspond to the internal nodes of a decision tree
constructed using the C4.5 [Quinlan, 1993] algorithm. The
resulting feature sets and data are then used with the tradi-
tional machine learning classification algorithm like C4.5 or
generic SVM. The resulting classification models are then fil-
tered based on their performance so that only the “best” AIC
[Akaike, 1973] performing models could vote on the com-
bined value for the sink mode. For simplicity, we utilize ma-
jority voting to combine the predictions of models in the en-
semble.
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Table 1: Performance on binary Sea Level Pressure (SLP) and Sea Surface Temperature (SST) data (unweighted graph), using Leave-One-

Out (LOO) and 10-Fold cross-validation

LOO:Binary 10-Fold:Binary
SLP | SST | SLP+SST SLP SST
Accuracy 0.88 | 0.90 0.92 0.90 £ 0.004 | 0.90 £ 0.005
Sensitivity 0.91 | 0.96 0.97 0.95 £ 0.005 | 0.97 £ 0.003
Specificity 0.77 | 0.76 0.81 0.80 £0.025 | 0.74 +£0.030
Precision 0.90 | 0.90 0.92 0.92 £0.003 | 0.90 &+ 0.005
Fi-measure || 0.90 | 0.93 0.94 0.93 £0.002 | 0.93 &+ 0.003

Table 2: Performance on continuous Sea Le
Out (LOO) and 10-Fold cross-validation

vel Pressure (SLP) and Sea Surface Temperature (SST) data (weighted graph), using Leave-One-

LOO:Continuous

10-Fold:Continuous

SLP | SST | SLP+SST SLP SST
Accuracy 0.90 | 0.86 0.92 0.88 £0.004 | 0.82 4 0.004
Sensitivity 0.96 | 0.97 0.97 0.93 £0.006 | 0.94 £ 0.005
Specificity 0.78 | 0.61 0.81 0.75+£0.040 | 0.54 £0.027
Precision 0.91 | 0.85 0.92 0.91+0.005 | 0.83 +0.003
Fi-measure || 0.93 | 0.91 0.94 0.92+0.002 | 0.88 +0.002

4 Results and Discussion

Data

The North Atlantic hurricane data from 1950 to 2009 is ob-
tained from the best track database (HURDAT) at the NCDC
(National Climatic Data Center), covering the genesis region
between 10-17.5°N and 345-300°E. We distinguish those
hurricanes that strike land using the “Hit” feature of the HUR-
DAT. We also include the HURDAT hurricanes that made
landfall in Mexico in our analysis.

We use daily sea level pressure (SLP) and monthly sea
surface temperature (SST) reanalysis data over the North
Atlantic (10-37.5°N and 255-357.5°E) from NCEP/NCAR
[Kalnay et al., 1996; Kistler ef al., 2001]. The data is avail-
able at a horizontal and vertical resolution of 2.5° x 2.5° for
SLP and 2° x 2° for SST. For each hurricane, we base our
analysis on the preceding AW = 90 days’ worth of data for
SLP (daily averages) and 7 months’ data for SST (monthly
averages).

Univariate vs. Multivariate, Weighted vs. Unweighted

Table 1 and Table 2 summarize the skill of the forecasting
models to predict whether hurricane tracks forming at their
genesis region in Western Africa will strike the land of North
America or remain offshore. For model validation we em-
ploy both the leave-one-out (LOO) and 10-fold cross valida-
tion methodologies. For the latter, the mean of 10 models and
their variance are reported. The tables show five skill metrics:
accuracy, sensitivity, specificity, precision, and F}-measure.
Note that the values of the four metrics reported in these ta-
bles are all based on the weighted majority voting result of
the ensemble classifiers.

We build an ensemble of univariate classifiers to test the
predictability of a specific variable, while we use an ensem-
ble of multivariate classifiers to achieve the best overall per-
formance. For univariate data, SST and SLP both perform
well in both cases, with nearly 90% accuracy. SST performs
slightly better on the unweighted graph data, while SLP per-
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forms slightly better on the weigted graph data. Combining
data for both variables and applying the multivariate classifi-
cation, we achieve an accuracy of 92%, improving the accu-
racy over the single variate cases.

Besides accuracy, sensitivity, precision, and F}-measture
of both univariate and multivariate cases are relatively high
for both weighted and unweighted climate system networks.
However, the specificity is slightly lower than the other four
skill metrics. Specifically, in the case of univariate SST,
there is a 15 to 20% difference in the specificity between the
weighted and unweighted networks. This observation may be
the indication that SST alone may not be as reliable as SLP or
the two combined to predict the hurricane tracks if we employ
the weighted data.

It is important to note that for the univariant case, the
skill metrics, such as accuracy, sensitivity, precision, and F}-
measture of both SLP and SST are relatively high (more than
85%) for both weighted and unweighted climate system net-
works. However, the specificity for both variables is rela-
tively low (less than 80%). For binary classification, the ac-
curacy of the classifier alone may not be sufficient to eval-
uate the predictability of a particular class. The specificity
and sensitivity metrics in Tables 1 and 2 provide additional
insights on the performance of the algorithm with respect to
each class. The specificity is the fraction of the hurricanes
that actually hit the land that the model is able to predict cor-
rectly. The sensitivity is the fraction of the curving hurricanes
that the model is able to predict corectly. Higher specificity
over sensitivity means better recognition of landfalling hurri-
cane tracks.

In addition, in the case of SST, there is a 15% difference
in the specificity between the weighted and unweighted net-
works in the leave-one-out experiments. This observation
may be the indication that SST may not be as reliable as
SLP in predicting the hurricane tracks. Therefore, for vari-
able SST, the unweighted classifiers have advantage of being
more accurate about predicting whether a hurricane will hit
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Figure 3: Correlations between the nodes with p-value in-
creases in the order of black/dotted (0 < p <= 0.005), red/(-
x-) (0.005 < p <= 0.01), green/dashed (0.01 < p <=
0.015), and blue/solid (0.015 < p <= 0.02)

the land over the weighted graph. The difference in perfor-
mance between SST- and SLP-based classifiers could also be
attributed to a number of other factors, including differences
in time resolution. Future sensitivity analysis would aim to
explain the reliability of such factors.

In the case of the unweighted graph data, applying the hy-
pergeometric test to the data provides the most significantly
biased motifs between two networks associated with each
sink mode, so choosing a very small p-value may seem to
be an appropriate choice for feature selection. However, fea-
tures with similar p-values frequently come from the same
spatial region, as seen in Figure 3. Figure 3 shows the biased
network motifs (edges) for the SLP networks, color-coded by
p-value. The highlighted edges in the figure have p-value less
than 0.02, and the p-value increases in the order of black, red,
green, and blue.

As geographic data often exhibits strong spatial correla-
tion, though, choosing a very small p-value mainly captures
redundant signals and reduces classification accuracy. Thus,
we choose a standard p-value threshold of 0.05, selecting 150
biased edges from the SLP networks constructed. The net-
works were initially complete graphs consisting of O(n?)
edges, where n is the number of nodes in the geographic
region network (i.e., n = 300), and 85 to 90 percent of
the edges were removed through the correlation analysis de-
scribed in Section 3.2. This feature set is broad enough to
capture biased network motifs across several geographic re-
gions, while still representing a strong bias towards a par-
ticular sink mode. As a result, the supervised decision tree
based feature selection chooses the features from geographi-
cally distinct locations, as can be seen in Figure 4.

Comparison with Alternative Classifiers

Due to inherently ensemble-driven methodology for building
the forecasting model, as rationalized in Section 3.4, in this
study, we compare two ensemble classification techniques to
our iterative decision tree construction procedure on the bi-
ased network motifs for the SLP data. The results, which
appear in Figure 5, show that the the ensemble based on our
decision tree feature selection algorithm has the best accuracy
among these three.

Since the number of hurricane tracks may be signifi-
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Figure 4: Features that emerge in a model; SLP (yel-
low/dashed) and SST (red/solid) positively correlated
teleconnections; L—biased toward landhitting tracks and
O—Dbiased toward offshore remaining hurricane tracks.

cantly smaller than the number of features (biased network
motifs), we have a problem of building a classifier for a
high-dimensional dataset. A support vector machine (SVM)
[Cortes and Vapnik, 1995] is a classification learning tech-
nique that has been successfully used for high-dimensional
datasets [Li et al., 2000]. For this experiment, we employ an
SVM feature selection method [Guyon er al., 2002] to select a
subset of features and then build an ensemble of SVM classi-
fiers. An alternative technique for building a classifier ensem-
ble for high-dimensional datasets is random forest [Breiman,
2001] [Ho, 1998]. In random forest, the ensemble consists of
a set of “base” classifiers, each one constructed from all data
points and a small subset of features sampled with replace-
ment from the entire feature set. For purposes of comparison,
we use decision tree as the base classifier for random forest.

Figure 5 shows our results comparing the performance of
SVM feature selection, random forests, and decision tree fea-
ture selection. The SVM feature selection technique produces
7 “base” classifiers, while our decision tree feature selection
technique produces 8 “base” classifiers. Since the decision
tree feature selection chooses 5-16 features for unweighted
dataset and 11-15 features for weighted datasets, we perform
the experiments for random forest by selecting 8 sets of 5—
16 features for unweighted and 8 sets of 11-15 features for
weighted datasets. The number of features selected by SVM
is about 25 for each “base” classifier. The accuracy reported
for random forest is the highest accuracy obtained by vary-
ing the number of features in these ranges. The results show
that the decision tree feature selection yields higher accura-
cies than SVM feature selection and random forest for both
leave-one-out (LOO) and 10-fold cross-validation for both
weighted and unweighted datasets by 10-25%.

Physical Interpretation

In Figure 4, we highlight the biased network features from
one of the classifiers, built by applying our decision tree fea-
ture selection technique to the biased network motifs from
the unweighted SLP and SST networks. In this set, a pattern
can be clearly seen within the given feature set: both of the
classifiers highlight the positively correlated teleconnections
between the genesis and landfall regions of the hurricanes.
We also observe this pattern in several of the other classifiers.



Our analysis of the nearly east-oriented SLP edges sug-
gests horizontal pressure gradient configuration in the same
direction. Although wind flow anomaly is not directly in-
corporated into our model, based on Buys Ballot’s law, this
pressure gradient would be associated with wind flow in the
perpendicular direction, i.e., in the north-south direction. The
actual sign of the anomaly flow would be dictated by the sign
of the pressure gradient along the SLP edge. Onshore wind
anomaly flow would promote favorable conditions for land-
fall, while opposite flow anomaly conditions would be more
favorable for hurricanes trajectories that result in no-landfall.
A similar argument may be considered for interpreting the
significance of the orientation of the SST edges since there is
a strong but non-trivial relationship between SLP and SST.
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Figure 5: Comparison of different classification algorithms.

5 Conclusion

Performing analysis and prediction on dynamically changing
complex systems is a challenging problem for statistical ma-
chine learning. For such systems, using a network may be a
natural choice to condense and summarize the relationships
inherent in the data. In this paper, we propose a technique to
analyze the underlying dynamics of complex systems in order
to predict the sink mode of extreme events like hurricanes or
forest fires. By identifying the spatio-temporal relationships
that characterize the sink modes of past events, we are able
to construct classifiers capable of predicting the future track
of an emerging extreme event from current data. Our results
demonstrate that our technique is able to predict the landfall
of North Atlantic hurricanes with up to 92% classification ac-
curacy, demonstrating the practical value of our findings.

In the future, we plan to generalize edge-based features to
subgraph-based features in climate networks. Inspired by the
value of such network motifs in other application domains,
such as biology, we envision that such biased subgraph-based
features could not only improve the skill of our models but
also improve our understanding of complex physical systems,
such as climate. The current study primarily focuses on the
North Atlantic region, however, the proposed methodology is
not specific to a particular region and could be viewed as a
general methodology. As future work, the scope of the study
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will be extended to other regions subject to similar hurricane
development. Finally, since we deal with a highly underde-
termined problem, additional performance metrics more suit-
able for small sample size evaluation (see [Braga-Neto and
Dougherty, 2004]) will be considered as part of our future
work.
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