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Abstract. Large-scale information systems, such as knowledge graphs
(KGs), enterprise system networks, often exhibit dynamic and complex
activities. Recent research has shown that formalizing these information
systems as graphs can effectively characterize the entities (nodes) and
their relationships (edges). Transferring knowledge from existing well-
curated source graphs can help construct the target graph of newly-
deployed systems faster and better which no doubt will benefit down-
stream tasks such as link prediction and anomaly detection for new sys-
tems. However, current graph transferring methods are either based on
a single source, which does not sufficiently consider multiple available
sources, or not selectively learns from these sources. In this paper, we
propose MSGT-GNN, a graph knowledge transfer model for efficient graph
link prediction from multiple source graphs. MSGT-GNN consists of two
components: the Intra-Graph Encoder, which embeds latent graph fea-
tures of system entities into vectors; and the graph transferor, which uti-
lizes graph attention mechanism to learn and optimize the embeddings
of corresponding entities from multiple source graphs, in both node level
and graph level. Experimental results on multiple real-world datasets
from various domains show that MSGT-GNN outperforms other baseline
approaches in the link prediction and demonstrate the merit of attentive
graph knowledge transfer and the effectiveness of MSGT-GNN.
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1 Introduction

Various large-scale information systems, such as knowledge bases (KBs), enter-
prise security systems, IoT computing systems and social networks [4], exhibit
comprehensive interactions and complex relationships among entities from mul-
tiple different and interrelated domains. For example, knowledge bases, such as
DBpedia [1], contain rich information of real-world entities (people, geographic
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locations, etc), normally from multiple domains and languages; and IoT sys-
tems contain thousands of mobile interrelated computing devices, mechanical
and digital machines with various functions that constantly record surround-
ing physical environments and interact with each other. These systems can be
formulated as heterogeneous graphs with nodes as system entities and edges as
activities. Considering an enterprise security system as one example shown in
Figure 1 (right), processes, internet sockets, and files can be treated as different
types of nodes. Activities between entities, such as a process accessing a des-
tination port or importing system libraries, are treated as edges in the graph.
They can be utilized for many downstream tasks including identifying active en-
tities or groups in social networks, inferring new knowledge in KBs and detecting
abnormal behaviors [3].
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Fig. 1: Two examples of multi-source graph transfer in knowledge bases (left) and
enterprise systems (right). By leveraging the entities and relations from sources
GS(1) and GS(2) , we can estimate the target graph ĜT based on the current
observation GT . Grey nodes/links in ĜT denote new predictions from graph
knowledge transfer. (Best viewed in color)

Due to the complex nature of real-world systems, it normally takes a long
time, sometimes even months for newly-deployed information systems to con-
struct a reliable graph “profile” to identify featured entities and activities. There-
fore, there is a need to transfer and migrate knowledge (potential entities with
corresponding high-confidence interactions) from other available sources pro-
vided by existing multiple well-developed systems. However, directly transferring
existing nodes and links by copying is not reasonable and reliable enough since
the source and target systems are not necessary for the exact same domains (e.g.,
transferring knowledge from existing departments to a new department in a cor-
poration). It may transfer irrelevant or even incorrect entities and activities to
the target graph. Existing research work [15] mostly focuses on design learning
frameworks for effective graph knowledge transfer between one source system
and one target system and shows promising results on graph knowledge trans-
fer. But in reality, it is quite common that multiple system sources are available.
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Simply using single-source graph knowledge transfer has its own limits: (1) the
information from a single source is not sufficient in most cases; and (2) using
only one source may lack generalization ability especially when the source and
target are largely different, which leads to potential transfer failure. Learning
graphs for newly-deployed systems through multi-source graphs will no doubt
provide more comprehensive coverage of system entities and activities in multi-
ple domains, and it will be more robust for downstream applications relying on
learned target graph after selectively adapting knowledge from source graphs5.
Two application scenarios are shown in Fig. 1. In the case of multi-lingual KBs,
low-resource KB (such as Japanese) can be enriched and improved with other
KBs, and especially in the case of Pablo Alboran (Spanish pop singer), Spanish
KBs can provide better and more accurate knowledge facts than others. Simi-
larly in the example of enterprise systems, after the observation that the system
has similar patterns of .dll connections of SVCHOST.EXE, a reasonable interpre-
tation is that the target graph GT will more likely grow more closely related
patterns shown in source graphs.

However, the aforementioned selective multi-source transfer faces several
challenges: (i) How to represent multiple source graphs and target graphs ef-
fectively i.e. set up connections to leverage the graph knowledge in source graphs
to the target graphs. Not all sources are equally related to the target and it is
required to differentiate multiple input source graphs in the transferring process,
which is a difficult but important task to handle and will significantly affect the
transfer performance. (ii) How to handle potential conflicts on entities and in-
teractions observed in multiple graphs. The same interactions may be observed
in some sources, but are not in others. In other words, there are potentially con-
flicting observations that cannot be easily tackled by simple transfer. In other
words, if all sources are credited equally (for example, using one combined graph
to include all the nodes and edges) and other methods that concatenate multiple
graphs, one inductive bias is incorrectly assumed that nodes and/or edges are
transferred and learned without selectivity and the approaches are subject to
noise and misinformation on part of the sources.

To address the aforementioned tasks and corresponding challenges, we pro-
posed a novel type of graph neural network designed for Multi-Source Graph
Knowledge Transfer named MSGT-GNN which contains two model components:
Intra-Graph Encoder and Attention-based Cross-graph Transfer. The high-level
idea is that the knowledge transfer between the source and target graphs is done
in a controllable manner where they are selectively learned. We employ self graph
encoder model to a variety of state-of-the-art graph neural networks (GNNs) to
obtain the node representations, that is, node embeddings learned from the node
features itself and neighborhood in the context of the same source/target graph.
On top of the encoder model, the Cross-graph Transfer module adopts a novel

5 In this paper, we use the source graph as the graph profiles for existing well-observed
systems and target graph as the graph profile for new systems, which is relatively
smaller than source graphs in graph size (e.g. number of nodes/edges). We assume
that the number of source graphs is at least 2 and that of the target graph is 1.
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attention mechanism based on both node level and graph level. This module can
better learn the representations by attentively aggregating nodes in the broader
context, which later applies in the graph decoder for link prediction. As a result,
not only can we accelerate the process of graph enlargement to fast characterize
the target graph, but we can also selectively and effectively leverage multiple
sources in the information systems to estimate more reliable and accurate target
graphs. Experimental results on target graph link prediction confirm that the ef-
fectiveness of MSGT-GNN and the performance of knowledge transfer significantly
outperforms other state-of-the-art models including TINET.

2 Problem Statement

Given n multiple source domains D(i)
S (i = 1, 2, . . . ,m) and one target domain

DT as input graphs have been on source domain for and these source graphs G(i)
S

are stable already. Meanwhile, the system in DT is possibly newly deployed and
therefore the target graph GT incomplete and of relatively small size. Our goal
is to transfer the graph knowledge (entity and edges) from G

(i)
S (i = 1, 2, . . . , n)

to GT , and then help quickly enlarge and estimate an estimated complete graph
ĜT to fit the domain of DT , which should be as close to the ground truth ḠT as
possible. Note that in this paper, we assume that alignments of the same entity
among source and target graphs are well established, though such alignments are
not fully feasible especially in knowledge bases. Under such formulation, we also
point out that our proposed problem focuses on the graph enhancement from
its incomplete status, different from temporal graph modeling where graphs are
dynamically changed with multiple timestamps. Notations of all symbols used in
this paper are summarized in Table 1. Scalars, vectors and matrices are denoted
with lowercase unbolded letters, lowercase bolded letters and uppercase bolded
letters, if not explicitly specified.

We acknowledge that entity alignment may not be flawlessly given in many
real-world applications and there are many existing research works lying on the
direction of entity disambiguation, etc. As mentioned in Section 2, we point out
that in this paper we do not cover the scope of the entity alignments [24,22]
(or entity resolution, entity conflation), which essentially predicts the corre-
spondences of the same entity among different graphs. For example, in enter-
prise graphs, entities are generally identifiable with their IDs; in encyclopedic
KGs, some labeled-property graphs are equipped with UID (universal identi-
fier), which significantly reduces the alignment challenge. However, we believe
such assumption can be relaxed, that is, MSGT-GNN can be further adapted
to partially-given alignment or cross-graph alignment can be jointly learned,
corrected, and/or enhanced, which is left as one direction of our future work.

3 Methodology

In this section, we formally propose MSGT-GNN to tackle multi-source graph
knowledge transfer problem inspired by multi-task learning. As the model ar-
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Table 1: Summary of important notations.
Notation Description

D(i)
S i-th source domain
DT Target domain
G

(i)
S The graph of the i-th source from D(i)

S

ḠT , GT , ĜT The ground-truth complete / incomplete / estimated complete
graph of the target system from DT

A
(i)
S , AT The adjacency matrix of the i-th source graph G

(i)
S / the target

graph GT

Z, Z(i)
S Embedding table for all N entities, or for N

(i)
S entities from the

i-th source graph (as output of graph encoders)
hl
S(m)

i
,hl

Ti
Embedding of the i-th node in the m-th source graph (or target
graph) at the l-th layer of GNN (node embeddings, with node
index)

hl
S(m) ,h

l
T Embedding of the m-th source graph (or target graph), at the

l-th layer of GNN (graph embeddings, without node index)

chitecture of MSGT-GNN shown in Figure 2, it breaks down into two components:
Intra-graph encoder and Cross-Graph transfer, which are explained in Section
3.1 and Section 3.2 respectively.

3.1 Intra-Graph Encoder

Generally, a graph encoder serves a function to represent nodes by their embed-
dings, from the original node features (categorical attributes, textual descrip-
tions, etc), based on the graph features. Our proposed Intra-Graph Encoder, as
the first component in MSGT-GNN, aims to learn the node features in the context
of its own graph (source or target), i.e. the graph to which it originally belongs.
As discussed in Section 5, graph neural networks (GNNs), deep learning based
approaches that operate on graph-structured data, have recently shown effective
for various applications such as node classification, link prediction and com-
munity detection. A generalized framework of GNNs consists of such a graph
encoder, taking as input an adjacency matrix A, as well as original (optional)
node features X = {XN}. A typical graph encoder parameterized by Θenc com-
bines the graph structure with node features to produce node embeddings as,
Z = ENC (A,X,Θenc), where Z is the learned comprehensive representation
from GNNs and is used for downstream tasks with designated graph decoders.

More specifically, in MSGT-GNN, for homogeneous graphs, we choose the Intra-
Graph Encoder as standard GCN [12], which can be described as,

H
(l+1)
i = σ

(
D̂−

1
2 ÂGD̂

− 1
2 H

(l)
i W

(l)
)
, (1)

where H
(l)
i ∈ Rn×d are embedding of after l-th GCN layers and ÂG = AG + I

where I is the identity matrix, AG is adjacency matrix of given graph G, D̂ is the
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Fig. 2: Model architecture overview for MSGT-GNN (two source graphs are shown).
Node embeddings across multiple graphs are learned through two-module frame-
work, i.e. Intra-graph encoder, which learns node embeddings of its own graph
context from initial node features; and Cross-Graph transfer, which enables
learning through mulitple graphs and node embeddings are updated by its cor-
responding nodes in other source as well as the graph-level information.

diagonal node degree matrix of Â, as defined in [12].Note that G can be either
any source graph GS(i) or target graph GT . For multi-relational heterogeneous
graphs such as knowledge graphs and enterprise systems, we adopt R-GCN [18],
which utilizes relation-wise weight matrix,

h
(l+1)
i = σ

Wl
0h

(l)
i +

∑
r∈R

∑
j∈N r

i

1

ci,r
Wl

rh
(l)
j

 , (2)

where Wl
0 is the weight matrix for the node itself and Wl

r is used specifically
for the neighbors having relation r, i.e., N r

i , R is the relation set and ci,r is
for normalization. Similarly, R-GCN applies both in the source graphs and the
target graph. In both cases, the number of GNN layers L is one hyperparameter6.

3.2 Attention-based Cross-graph Transfer

The goal of our proposed Cross-graph Transfer is to provide a valid transfer
mechanism in the entity embedding space for multi-source graphs. It is built
on top of the Intra-Graph Encoder to enable the node embeddings selectively
updated by the cross-graph “neighborhood” in both node level and graph level
attention mechanism. Details of Cross-graph Transfer are shown in Figure 3.

To prepare for cross-graph transfer, one necessary module is Graph-level
Aggregator, which takes the set of node representations and compute graph level
representation, as hG = fG({hGi }) where hG ∈ Rd, for both source and target

6 In this work, the performance is relatively insensitive to L where we fix L = 2 for
GNN modules including baselines
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Fig. 3: Details about Cross-Graph Transfer Layer operating on the Node Ti, up-
dated by itself and its corresponding cross-graph neighbors (node-level embed-
dings), attentively learned from graph-level embeddings (Best viewed in color)

graphs7. We use the MLP aggregator following the implementation in [13]. The
aggregation function operating on a node i of the target graph is defined as,

hl+1
Ti

= σ

(
Wl

0h
l
Ti

+
∑
m

αmWl
nhlS(m)

i

)
, (3)

where Wl
0 is the weight matrix for the node itself and W l

n is used specifically for
the cross-graph neighbors (from the given alignments), of the l-th layer. hl

S(m)i
denotes the l-th layer’s hidden representation of node i in GS(m) . αm is attention
weight computed over all m cross-graph neighbors. as,

αm = softmax

([
h
S(m)

i ; hGS(m)

]T
·Watt · hlTi

)
, (4)

where Watt ∈ R2d×d and
[
h
S(m)

i ; hG
S(m)

]
is the concatenation of node-level

cross-graph neighbor embedding and the graph-level embedding. By such cross-
graph transfer, the node in one graph will be consequently updated and opti-
mized attentively by nodes from other associated graphs. It is noteworthy to
point out that our proposed MSGT-GNN does not explicitly differentiate source
graphs and target graphs, which means the learned embeddings are not limited
to make predictions over the target graph.

7 Theoretically the embedding dimension of graph-level representation can be different
from that of the node-level. For simplicity, we choose both dimensions are the same,
that is, dim (hG) = dim

(
hl
Gi

)
, where G refers to either source or target graph.
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3.3 Graph Decoder

Graph Decoder and training objective The graph decoder use the learned
representation from MSGT-GNN for link prediction during the inference stage. For
homogeneous graph, we apply inner product to represent the edge plausibility,
which is DEC(Z) = hTi hj where hi,hj ∈ Z (h is the learned embedding table
for all nodes). For multi-relational graph, we apply DistMult score function [32]
to represent the edge plausibility, which is DEC(Z) = hTi Dhj where hi,hj ∈ Z
and Dr is a diagonal matrix for relation r. Therefore, the training objective is,

LG(ZG) =
(
ZGDrZG

T −AG
)θ

+Ω(ZG), (5)

where θ = 2 in practice andΩ (ZG,w) = λ ||ZG||F is regularization term. Dr = I
for homogeneous graph.

3.4 Training, Inference and Complexity

Joint training on source and target graphs Considering all the source
and target graphs, MSGT-GNN minimizes the joint loss with meta-path similarity
matrices for multiple graphs, L = µ

∑
i LS(i) + (1 − µ)LT , where µ ∈ (0, 1) is

a hyperparameter that explicitly balances the importance of source and target
graphs. We use the Adam [11] to optimize the joint loss.
Inference During the inference stage, similar to other graph neural networks
with downstream link prediction task, two steps of graph encoders (intra-graph
and cross-graph) encodes pairs of nodes (from the target graph only for valid
testing) into their representations through the trained GNN with the neighbor
nodes (both inside its own graph and other sources) weighted by the graph-level
representations. Later such embeddings are forwarded to graph decoder for link
prediction which outputs plausibility scores of the given potential edges, as link
prediction results.
Complexity Analysis For MSGT-GNN with the direct encoder, the overall run-
time complexity is O(tnd|E|), which is linear to the size of total edges in mul-
tiple source graphs (|E| is the total number of links in source/target graph).
As for model parameter complexity, including all embeddings and transforma-
tion functions, the result is O(|V |d + nd2) (|V | is the total number of nodes in
source/target graphs).

4 Experiments

4.1 Datasets

Three datasets on the knowledge bases, enterprise security and academic scholar
community are used in the experiments. Data from a real-world enterprise system
are collected from 145 machines from 4 departments (3 used as sources and 1
used as a target) in a period of 30 days, with a size of 3.45GB after integration
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Table 2: Dataset statistics.

Dataset Scholar Enterprise DBpediaWindows Linux

# Graphs 3 5 5 5
# Rel. Types 1 3 3 96

# Nodes 2.1k 10.7k 8.9k 12.5k
# Edges 9.0k 87.9k 62.5k 278.1k

and filtering. The entire enterprise security system contains both Windows and
Linux machines and we consider they are disjoint graphs as datasets (named
as Windows and Linux Dataset). Similar to the example in Figure 1, the
entities (nodes) in all graphs are processes, internet sockets and libraries (mostly
.dll files) and interactions (edges) between the process to file, process to process
and process to internet sockets are observed as links in the dataset.

We also consider alternative datasets that are publicly available and from
diverse domains are, (i) encyclopedia knowledge bases i.e. DBpedia [1] 8, ex-
tracted from five languages (en, es, de, fr, ja) of variant graph sizes and com-
pleteness; and (ii) Aminer, as one academic scholar community dataset [23]9
from Aminer on five data mining/machine learning related research communities
in the past years. The nodes are authors and links are simply co-author rela-
tionships, which is essentially a homogeneous graph. More specifically dataset,
we consider different languages as different domains in the context of MSGT-GNN,
and given the graph size of these languages, we adopt two disjoint settings:
{en,fr,de}→ja10 and {en,fr,de}→es. This results in a total of 5 datasets from 3
domains in our experiments. More details are listed in Table 2.

4.2 Baseline Methods

We compare our proposed model MSGT-GNN with the following baseline methods:
No Transfer (NT) directly uses the original observed incomplete target graph
without any knowledge transfer, that is, ĜT = GT .
Direct Union Transfer (DUT) directly combines all source graphs and the
incomplete target graph, as prediction (“union” graph). That is, DUT outputs a
union set on entities and links from all observed graphs without any selection,
which means, ĜT = GT +

(⋃
iG

(i)
S

)
.

TINET applies the single graph knowledge transfer framework [15]. To fit the
multi-source setting, we choose three variations about TINET models: (i) to

8 Processed DBpedia dataset are downloadable at: Link.
9 We use a subset of the co-author networks, which is available at https://aminer.
org/data#Topic-coauthor.

10 {en,fr,de}→es means the source graphs are from DBpedia English, French and Ger-
man KBs and the target is Spanish KB.

https://www.dropbox.com/sh/0mg1255453ddg6a/AAB61AEv3npDS6h3RSdxzBPxa?dl=0
https://aminer.org/data#Topic-coauthor
https://aminer.org/data#Topic-coauthor
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Table 3: Results of target graph completion task on 5 different transfer settings
from 3 different domains (scholar, enterprise and encyclopedia). The best scores
are bolded.

Dataset Scholar Enterprise Encyclopedia
Windows Linux {en, fr, de}→ja {en, fr, de}→es

NT 0.526 ± 0.000 0.664 ± 0.000 0.656 ± 0.000 0.475 ± 0.000 0.545 ± 0.000
DT 0.398 ± 0.000 0.480 ± 0.000 0.578 ± 0.000 0.299 ± 0.000 0.408 ± 0.000

C-TINET 0.635 ± 0.009 0.727 ± 0.008 0.759 ± 0.009 0.596 ± 0.010 0.764 ± 0.013
U-TINET 0.618 ± 0.015 0.718 ± 0.012 0.733 ± 0.008 0.617 ± 0.014 0.750 ± 0.012
W-TINET 0.644 ± 0.017 0.739 ± 0.011 0.772 ± 0.017 0.645 ± 0.022 0.779 ± 0.018
O-TINET 0.622 ± 0.014 0.715 ± 0.012 0.740 ± 0.010 0.620 ± 0.009 0.766 ± 0.011

UT-GCN/RGCN 0.606 ± 0.025 0.700 ± 0.030 0.722 ± 0.019 0.576 ± 0.022 0.756 ± 0.026
UT-GAT/KGAT 0.635 ± 0.018 0.744 ± 0.023 0.750 ± 0.015 0.559 ± 0.012 0.710 ± 0.014

Insta-Only GCN/RGCN 0.597 ± 0.014 0.745 ± 0.012 0.734 ± 0.014 0.661 ± 0.015 0.739 ± 0.021
Insta-Only GAT/KGAT 0.624 ± 0.020 0.742 ± 0.018 0.738 ± 0.021 0.656 ± 0.016 0.724 ± 0.016

UDA-GCN 0.652 ± 0.017 0.735 ± 0.013 0.727 ± 0.016 0.610 ± 0.024 0.688 ± 0.022
MSGT-GNN 0.668 ± 0.016 0.776 ± 0.021 0.768 ± 0.018 0.685 ± 0.018 0.801 ± 0.028

use the closest11 source graph as the transfer source, named C-TINET; (ii) to
use the union graph as defined in DUT, as the single transfer source, named
U-TINET; iii to use TINET iteratively on multiple sources, i.e. transferring
one source once in an order, named O-TINET. Best performance is reported
among all transfer orders.
W-TINET This method uses the weighted version of TINET for source and
target graphs. Extending the single-source graph knowledge transfer model to
multi-source, we adopt the same sub-model components (EEM, DCM) but adjust
the objective function to be the sum of all source graphs.
Intra-Only GNN only uses Intra-Graph Encoder component in MSGT-GNN and
discards the Cross-Graph Transfer. That is, standard GCN [12] is applied for
homogeneous graphs and R-GCN [18] is applied for multi-relational graphs which
preceded the graph decoder. Alternatively, we also consider existing attention-
based graph neural networks (applied on a single graph) i.e. GAT [26]/KGAT [28]
as replacement of GCN/R-GCN. (Denoted as “Intra-Only GCN/RGCN” and
“Intra-Only GAT/KGAT” respectively).
UT-GNN Similar to Intra-Only GNN, this method applies Intra-Graph En-
coder component only on the “union graph” from the DUT method which forms
one combined graph instead of multiple sources and target graphs. Two options
(GCN/RGCN, GAT/KGAT) are still considered except the different graph in-
puts. (Denoted as “UT-GCN/RGCN” and “UT-GAT/KGAT” respectively)
UDA-GCN It develops a dual attention-based graph convolutional network
component and domain adaptive learning module, which jointly exploits local
and global consistency for feature aggregation to produce unified representation
11 Default similarity between the source and target graph is based on the Jaccard index.
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for nodes. We replace the decoder module12 for link prediction instead of node
classification in the original paper [30].

4.3 Experiment Setup

Evaluation Protocol Similar to [15] , we adopt F1 score to evaluate the ac-
curacy of the graph completion task on the target system instead of Hit@K or
MRR score in knowledge graph completion 13. In our experiment for multi-graph
knowledge transfer, the main result is reported as the average and standard de-
viation of link prediction (edge) F1 score. As F1 score generally is the harmonic
mean of precision and recall, we hereby define the precision and recall by com-
paring the estimated links between entities with the ground truth. The precision
and recall are defined as: Precision = NC/NE and Recall = NC/NT , where NC
is the number of correctly estimated links, NE is the number of estimated links
in total, and NT is the number of the ground-truth links. For training, as men-
tioned in Section 2, we choose one incomplete target graph as the “new” system
and complete source graphs from the rest as “old” systems and for training. In
addition, e use m = l/lfull as an index of “graph maturity”, which is defined as
the observed number of edges (in training set) l of the target graph and the total
number of edges lfull recorded in the ground truth target graph.
Hyperparameters In the experiment, we set m = 0.4 and d = 128 if not speci-
fied. The number of GCN/R-GCN layers in Intra-Graph Encoder is set as 2 and
The number of Cross-Graph Transfer layers is set as 1. Default node embed-
dings are initialized by either node categorical features (scholar and enterprise
dataset) or BERT sentence embeddings from entity descriptions (KB datasets).
Hyperparameters are discussed in Section 4.5 and the supplementary material.

4.4 Results

In this section, we investigate the sensitivity of target graph input maturity
m, embedding dimension d and balance weight µ between the source and tar-
get graphs, as three key hyperparameters of MSGT-GNN, compared with some
of the strongest baseline methods. Results on the target graph completion task
are shown in Table 3. We observe that MSGT-GNN outperforms other baselines
in terms of average F-1 score. Especially compared with non-transfer, MSGT-GNN
achieves an average increase of 0.05 on F1 score among all datasets, which proves
that MSGT-GNN transfers useful graph knowledge to the target. Also, MSGT-GNN

12 Original code implementation: https://github.com/GRAND-Lab/UDAGCN
13 We point out the thread of KG embedding in Section 5, including TransE and recent

variants [27]. The limitation of such methods is that they are transductive methods.
This is generally not applicable to our inductive learning and its downstream link
prediction. However, as for evaluation metrics, we follow the metrics adopted in
previous work [15] for target-adapted edge prediction instead of MRR or Hit score
for a different triple completion task.

https://github.com/GRAND-Lab/UDAGCN
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outperforms all the TINET variants in the average F1 score especially on U-
TINET and W-TINET which indicates that MSGT-GNN adopts a more effec-
tive strategy to use multiple sources and learn better latent feature represen-
tations of entities with the process graph encoding and domain transferring.
Since TINET follows a two-stage (entity selection and edge prediction), the per-
formances significantly decrease when wrong or incomplete entity set is selected
for subsequent link prediction. Unlike TINET and its variants, MSGT-GNN adopt
end-to-end model architecture without explicit steps of entity/node selection.
Comparing MSGT-GNN and standard GCN/R-GCN or GAT/KGAT, we also ob-
serve that MSGT-GNN achieves better link prediction performance with a relative
gain of 4.9%, which shows the benefit of Cross-Graph Attention Transfer, which
can better characterize node latent representations from actively and selectively
aggregating useful information from the cross-graph neighborhood. It is note-
worthy that NT directly uses the currently observed target graph (incomplete)
as output; DT means the union set of all GS and GT without any selection.
Typically DT includes much more noise and unwanted information into the tar-
get graph compared “beneficial section of transfer”, i.e., lots of links/edges are
falsely predicted as positive. A similar observation is also reported in one of our
baselines, TINET. Furthermore, we observe that GAT/KGAT variants almost
have similar performance on the task (sometimes even worse). We hypothesize
that the attention mechanism adopted by the original GAT/KGAT cannot best
selectively learn the knowledge transfer in the cross-graph setting, although re-
cent research shows that they outperform GCN/RGCN on the intra-graph node
classification task. It is also noticed that UT-GNN generally performs worse than
the Insta-Only setting which indicates that the union graph which equally com-
bines the source graphs without selection has inductive biases which compromise
the knowledge transfer in link prediction on the target graph.

4.5 Hyperparameters

In this section, we primarily investigate the sensitivity of target graph input ma-
turity m. Other hyperparameters such as embedding dimension d and balance
weight µ between the source and target graphs are discussed in the supplemen-
tary material.
Graph maturity m We vary the target graph input by controlling the graph
maturity m (let m = {0.2, 0.4, 0.6, 0.8, 1.0}). From Figure 4, we observe that, for
both Windows and DBpedia: {en,fr,en}→es graph, the performance of all models
increases when the graph maturity m increases. As other approaches achieve F1
score of 1 when m gets close to 1, direct transfer only achieves around 0.60 as
F-1 score, which seems not effective because all the irrelevant entities and links
are adopted in the output target graph prediction. On the other hand, given the
same level of graph maturity, MSGT-GNN achieves the best performance among
all other methods on all datasets.
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Fig. 4: Performances with graph maturity. Most models achieve average F1 score
close to 1 as the maturity of input observed target graph grows, while MSGT-GNN
outperforms other baselines.

5 Related Work

Transfer Learning, Graph Transfer and Multi-source Adaption Transfer
learning, domain adaption, and translation [29] have been widely studied in the
past decade and played an important role in real-life applications [19] especially
on deep transfer learning [14]. Existing transfer learning research is mostly done
on the numeric, grid and sequential data, especially image (specific domain classi-
fication, style transfer) and text (translation), but research on graphs, networks,
or structured data, whose format are relatively less ordered. Some representative
work includes TrGraph [5], which leverages information via common signature
subgraphs. [15] is state-of-the-art and most related research aligned with this di-
rection with two-step learning on entity estimation and dependency reconstruc-
tion. The aforementioned methods are mostly based on single-graph knowledge
transfer. Note that there is some related work on multi-source adaption that has
the same goal of reliable knowledge transfer from multiple sources [16]. However,
they are still limited within the domain of images and text rather than graphs.
Thus their frameworks cannot be directly applied on graph knowledge transfer.
Despite the usage of an attention-based model in transfer, one related work [30]
focuses on the node classification task and substantial changes are necessary to
make for link prediction in target graphs. We clarify the term of “graph transfer”
in Section 2 and distinguish it from other research on the concept of “knowledge
transfer” to avoid confusion.
Representation Learning on Knowledge Graphs Graph link prediction
is a basic research topic on network analysis. For transfer purposes, [33] pre-
sented a transfer learning algorithm to address the edge sign prediction problem
using latent topological features from the target and sources. Collective ma-
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trix factorization [20] is another major technique. However, these methods are
not suitable for dynamics among multiple different domains and the target do-
main. Another important branch of research related to graph link prediction is
network embedding (network representation learning) and similarity search. By
representing high-dimensional structured data with embedding vectors, link pre-
diction can be easily performed by node similarity search. These methods can be
categorized as meta-path based [21], random walk based [6], matrix factorization
based [17] and graph neural networks based methods [7,9]. Similar techniques
are applied in multi-relational heterogeneous graphs, i.e. knowledge graphs [25]
and their applications [8,10,9]. These embedding based methods (for example
[25]) provide insights for representing node features by gathering neighborhood
(multi-relational) connections and/or meta-paths and designing graph encoders
and decoders. It is worth noted that the most common task over knowledge
graphs is triple completion, different from link prediction where focuses on the
existence of relations over pairs of nodes in the graph. Another recent research
thread along this direction increasingly focuses more on temporal/dynamic graph
representation learning [31], which specifically models the graph evolving pat-
terns over time. However, we emphasize that in this work, though it is assumed
that the target graphs are relatively incomplete and sparse, we temporarily do
not incorporate the time information, as one of the future directions.
Multitask Learning Multitask learning [34] is one emerging active research
topic with the rise of artificial intelligence. With the goal of “one model for all
tasks”, it is widely applied in the area of computer vision and natural language
processing. One of the most common approaches in multitask learning is parame-
ter sharing [2]. MSGT-GNNis inspired by the similar multi-task learning mechanism
considering each graph as one “task”, however these frameworks themselves in
multitask learning is not applicable for our settings.

6 Conclusion and Future work

In this paper, we formulate a challenging problem on the necessity and benefits
of transferring from multi-source graphs into the target graph and then pro-
pose MSGT-GNN, with the intra-graph Encoder and attention-based cross-graph
transfer as major model components. MSGT-GNN addresses the challenges and ac-
celerates high-quality knowledge transfer and graph enhancement in the target
newly-observed system. Experiments show that MSGT-GNN can successfully trans-
fer useful graph knowledge from multiple sources and enable fast target graph
construction. For future improvements, one important extension is to temporal
graph modeling where we can dive deep into how target graphs grow on newly-
deployed systems can grow with the development from multiple sources, which
significantly improves explainability on the graph knowledge transfer.
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