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ABSTRACT
Single-linkage hierarchical clustering is one of the prominent
and widely-used data mining techniques for its informative
representation of clustering results. However, the paralleliza-
tion of this algorithm is challenging as it exhibits inherent
data dependency during the hierarchical tree construction.
Moreover, in many modern applications, new data is con-
tinuously added into the already huge datasets. It would be
impractical to reapply the clustering algorithm on the aug-
mented datasets from scratch.

In this paper, we propose a unified algorithm which can not
only cluster the large dataset, but also incorporate the newly
arrived data incrementally. More specifically, we formulate
the single-linkage hierarchical clustering problem as a Mini-
mum Spanning Tree (MST) construction problem on a com-
plete graph. The algorithm decomposes the complete graph
into a set of non-overlapped subgraphs, computes the inter-
mediate sub-MSTs for each subgraph in parallel, and merges
all the sub-MSTs to achieve the final solution. In addition, the
same framework can treat the incremental data insertion as a
separate data subset and integrate it nicely with the existing
solution. We implement the unified algorithm by employing
MapReduce framework.

Using both synthetic and real-world datasets containing up
to millions of high-dimensional points, we show that the pro-
posed algorithm achieves a scalable speedup up to 200 on 300
computer cores for the base dataset and a speedup up to 120
for the dataset with maximum 5% random insertion.

INTRODUCTION
Hierarchical clustering is one of the prominent and widely-
used data mining techniques for its informative representa-
tion of clustering results. It organizes the relationships of
clusters using a tree diagram (dendrogram), giving the idea
of how each data point is positioned related to the overall
cluster structure. Compared to non-parameter free clustering
algorithms like partitioning clustering, hierarchical clustering
does not require the number of clusters in advance, and can
deterministically assign the cluster label to each data point.
Moreover, it offers insight into the complete hierarchy of
clusters. As a representative implementation of hierarchical
clustering algorithm, single-linkage method has been used in
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numerous applications such as document classification, com-
putational biology, and image segmentation [19, 22, 23, 28].
For example, [5] uses dendrogram to visualize hierarchical
clustering of tissues and genes; [28] employs hierarchical in-
formation to help visitors navigate the articles on the web-
sites.

In the face of the ever-growing datasets, the single-machine
performance of hierarchical clustering algorithm can no
longer keep up the game, which creates an urgent demand
for a parallel solution. However, the parallelization of hier-
archical clustering algorithm is a non-trivial task. First, hier-
archical clustering algorithm itself is highly computationally
expensive. And, during the hierarchical tree construction pro-
cedure, it exhibits inherent data dependency. Second, in many
recent applications, data are often received incrementally and
merged to already huge datasets, it would be impractical to
reapply the clustering algorithm on the updated dataset from
the scratch whenever new data arrives. For instance, the data
warehouses collect new data and apply updates periodically
in a batch mode at the off-peak time; Facebook has more than
100 million photos uploaded per day and 90 billion photos
in total currently [1]. It is impractical or even infeasible to
apply the clustering algorithm on the entire dataset. Thus,
efficiently updating the clustering solution incrementally on
the explosive size of the original dataset without applying the
algorithm from scratch is challenging but critical.

To cope with these two challenges gracefully without design-
ing two different frameworks, a unified algorithm is required
to not only cluster the large datasets efficiently, but also in-
corporate the newly added data incrementally. In this pa-
per, we propose IncDiSC, an Incremental, Distributed Single-
linkage hierarchical Clustering algorithm using MapReduce
framework. The idea of our algorithm is to formulate the
single-linkage hierarchical clustering algorithm using graph
algorithmic concepts, which is equivalent to solve a Mini-
mum Spanning Tree of the complete graph induced by the
dataset [17]. The algorithm initially divides the base dataset
into a number of non-overlapped subsets. Therefore, the com-
plete graph induced by the base dataset can be decomposed
into a set of complete subgraphs induced by data subset re-
spectively as well a number of complete bipartite subgraphs
by pairs of data subsets. In this way, any edge in the origi-
nal complete graph is assigned to only one subgraph and all
subgraphs are independent from one another. Such a divide-
and-conquer strategy allows us to solve sub-MSTs in parallel
and merge them to achieve the final MST.

When there is a new dataset come in, IncDiSC forms the com-
plete bipartite subgraphs between the new dataset and each
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initial data subset, as well as the complete subgraph induced
solely by the new dataset. In the same vein, the algorithm
calculates sub-MSTs for all the subgraphs and merge them
with the existing MST to find the MST for the augmented
dataset. This algorithm can be applied periodically at the
data warehouse with relatively low cost. The algorithm pro-
vides both incremental and scalable solution to handle large-
scale dynamic datasets. It is memory-efficient and can be
scaled out linearly. In the experiment section, we present a
data-dependent characterization of hardness and evaluate al-
gorithm’s scalability with up to 1 million data points. The k-
way merge process of intermediate solutions is configurable
by setting user-defined partitioning function in MapReduce
framework. The empirical results show our algorithm can
achieve an estimated speedup up to 200 on 300 computer
cores for the base dataset and a speedup up to 120 for the
dataset with maximum 5% random insertion.

The main contributions of this paper are summarized as fol-
lows:

• We propose a scalable algorithm for single-linkage hierar-
chical clustering using MapReduce framework which also
support an incremental update on the original solution;

• We introduce a configurable merge process achieving
reasonable trade-off between the number of MapReduce
rounds and the degree of parallelism;

• And empirical evaluation demonstrates the linear scalabil-
ity and speedup on both synthetic and real-world data.

The remainder of paper is organized as follows. We brief
the related work in Section II. In Section III, we describe our
proposed incremental, distributed single-linkage hierarchical
clustering algorithm, and we detail the system design using
MapReduce framework. In Section IV, the algorithm’s scal-
ability is evaluated on both synthetic datasets and real-world
datasets. Finally, we draw the conclusions in Section V.

RELATED WORK
The goal of this paper is to develop a new parallel, incremen-
tal hierarchical clustering algorithm using MapReduce. Thus,
our work is related to parallelization of hierarchical cluster-
ing. Since our approach essentially reformulates the hierar-
chical clustering problem as finding a Minimum Spanning
Tree in the complete connected graph induced by the dataset,
we have investigated literature on solving MST problems us-
ing MapReduce. On the other hand, some researchers have
proposed incremental variations for hierarchical clustering al-
gorithms in the context of sequential implementation. In the
following, we discuss most recent research results from these
perspectives.

PARALLELIZATION OF HIERARCHICAL ALGORITHM: In
order to overcome the inefficiency of the sequential hierar-
chical clustering algorithm on large-scale, high dimensional
dataset, Hendrix et al. present SHRINK [17], a paral-
lel single-linkage hierarchical clustering algorithm based on
SLINK [3]. SHRINK exhibits good scaling and communi-
cation behavior, and only keeps space complexity in O(n)
with n being the number of data points. The algorithm trades

duplicated computation for the independence of the subprob-
lem, and leads to a good speedup. However, this work only
evaluates SHRINK on up to 36 shared memory cores, achiev-
ing a speedup of roughly 19.

As a powerful data processing tool, MapReduce is gain-
ing significant momentum from both industry and academia.
Some researchers have started to explore the possibility of im-
plementing hierarchical clustering algorithm using MapRe-
duce framework. For example, Wang and Dutta present
PARABLE [29], a parallel hierarchical clustering algorithm
using MapReduce. The algorithm is decomposed into two
stages. In the first stage, the mappers randomly split the entire
dataset into smaller partitions, on each of which the reducers
perform the sequential hierarchical clustering algorithm. The
intermediate dendrograms from all the small partitions are
aligned and merged into a single dendrogram to suggest a fi-
nal solution. However, this work does not provide the formal
theoretical proof on the correctness of the dendrogram align-
ment algorithm. And the experiments only use 30 mappers
and 30 reducers for the local clustering and a single reducer
for the final global clustering. Hierarchical clustering has also
been parallelized using other frameworks such as MPI [9]and
GPU [10]. However, most of these methods explicitly com-
pute and store the entire distance matrix containing all the
pair-wise distance of the dataset.

SOLVING MST USING MAPREDUCE: Recently, Rastogi et
al. [26] propose an efficient algorithm to find all the con-
nected components in logarithmic number of MapReduce it-
erations for large-scale graphs. They present four different
hashing schemes, among which Hash-to-Min proved to finish
in O(log n) iterations for path graphs and O(k(|V | + |E|))
communication cost at round k. In the same paper, the al-
gorithm is applied to single-linkage hierarchical clustering.
It starts with each vertex and its neighbors as a starting con-
nected component, all the components hashed to the same
reducer are merged to a bigger component; a MST algorithm
is then applied. However, a separate MapReduce job is re-
quired to determine the stop condition at each iteration, which
might be acient. Besides, different from this work on general
graphs, our work focuses on on complete connected graphs.

Lattanzi et al. [21] present Filtering, a novel method for solv-
ing large-scale dense graph problem in MapReduce. The au-
thors present algorithms for MSTs as well as other fundamen-
tal graph problems with a constant number of MapReduce
rounds even with machines having substantially sub-linear
memory. However, the algorithms are mainly focused on
meeting memory constraints rather than improving the scala-
bility, and they only provide theoretical results.

SEQUENTIAL INCREMENTAL HIERARCHICAL CLUSTER-
ING: Chen et al. [11] propose the incremental hierarchical
clustering algorithm GRIN for numerical datasets. The algo-
rithm is conducted in two phases in order to build the updated
dendrogram. In the first phase, GRACE, a gravity-based ag-
glomerative hierarchical clustering algorithm is applied to
build a clustering dendrogram for the sets. Then the clus-
tering dendrogram is reconstructed by flattering and pruning
its bottom levels to generate a tentative dendrogram before
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Figure 1: Illustration of parallel strategy on base dataset D.
We divide dataset D into two smaller parts, D1 and D2,
calculate MSTs for D1, D2, and the complete bipartite

bipartite graph between them, then merge the MSTs to find
the MST for D.
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Figure 2: Illustration of parallel strategy on incremental data
from Da. We divide dataset D into 2 smaller splits, D1 and
D2, calculate the MSTs for Da and the complete bipartite

graphs between Da and each split, then merge these
intermediate MSTs along with the initial solution TD to find

the final MST for D ∪Da.

adding new data points. In the second phase, GRIN exam-
ine each new data point to determine whether it belongs to
leaf nodes of the tentative dendrogram. If it falls into exactly
one leaf cluster, then it is labeled as that leaf cluster. Oth-
erwise, the gravity theory is applied to determine which leaf
cluster that the point belongs to. Some other techniques on
incremental hierarchical clustering include [15, 27, 30].

INCREMENTAL, DISTRIBUTED SINGLE-LINKAGE HIER-
ARCHICAL CLUSTERING USING MAPREDUCE
In this section, we describe our incremental, distributed al-
gorithm for calculating single-linkage hierarchical clustering
(SHC) dendrogram.

Hierarchical Clustering

First, we remind the reader about what the hierarchical clus-
tering is. As an often used data mining technique, hierarchi-
cal clustering generally falls into two types: agglomerative
and divisive. In the first type, each data point starts in its
own singleton cluster, two closest clusters are merged at each
iteration until all the data points belong to the same cluster.
The divisive approach, however, works the process from top
to bottom by performing splits recursively. As a typical ex-
ample of agglomerative approach, Single-linkage hierarchi-
cal clustering merges the two clusters with the shortest dis-
tance, i.e. the link between the closest data pair (one in each
cluster) at each step. Despite the fact that SHC can produce
“chaining” effect where a sequence of close observations in
different groups cause early merges of these groups, it is still
a widely-used analysis tool to conduct early-stage knowledge
discovery for its simplicity and quadratic time complexity.

Problem Decomposition
Our goal is to design a scalable and incremental algorithm
such that it can not only scale to the large dataset but also ac-
commodate the newly added data incrementally without car-
rying out clustering from scratch.

Based on the theoretical finding [17] that calculating the SHC
dendrogram of a dataset is equivalent to finding the Minimum
Spanning Tree (MST) of a complete weighted graph, where
the vertices are the data points and the edge weight are the
distance between any two points, the incremental SHC clus-
tering problem with a base dataset D and newly added dataset
Da can be formulated as follows:

Given a complete weighted graph G(D ∪Da) induced by the
distances between points in D ∪ Da, design a parallel algo-
rithm to find the MST in the complete weighted graph G(D)
and incrementally solve the MST in G(D ∪Da).

In this section, we describe how the clustering problem can
be decomposed in these two settings. Intuitively, we pro-
pose to employ the multi-level paradigm via divide-and-
conquer parallelization strategy. The multilevel paradigm is
known for its effectiveness when solving very large-scale sci-
entific problems including the top-down divisive clustering
(e.g., PDDP [16]) or spectral graph partitioning techniques
(e.g., [18]). The main idea of our algorithm is to divide the
original problem into a set of non-overlapped subproblems,
solve each subproblem and then merge the sub-solutions into
an overall solution.

To show the process of problem decomposition, a toy exam-
ple is illustrated in Figure 1. Given an original dataset D,
we first divided it into two disjoint subsets: D1 and D2, thus
the complete graph G(D) is decomposed into to three sub-
graphs: G(D1), G(D2) and GB(D1,D2), where GB(D1,D2)
is the complete bipartite graph on datasets D1 and D2. In this
way, any possible edge is assigned to some subgraph, and
taking the union of these subgraphs would return us the orig-
inal graph. This approach can be easily extended to s splits,
and leads to multiple subproblems of two different types: s
complete subgraph on each split and C2

s complete bipartite
subgraphs on each pair of splits. Once we complete the di-
viding procedure and form a set of subproblems, we distribute
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these subproblems among multiple processes and apply a lo-
cal MST algorithm on each of them, the calculated sub-MSTs
are then combined to obtain the final solution for the original
problem.

One of the main challenges in the design of modern cluster-
ing algorithms is that, in many applications, new datasets are
continuously added into an already large dataset. As a result,
it is impractical to reapply the clustering algorithm on the up-
dated datasets. One way to tackle this challenge is to design
a new parallel clustering algorithm that accommodate the up-
date incrementally. Let’s denote the newly arrived batch of as
Da and the original dataset as D. By adding Da into D, new
edges are formed for the complete bipartite on pair (Da, D),
and the complete subgraph within Da, therefore the complete
graph on the updated dataset G(D ∪ Da) composes of three
subgraphs: GB(D,Da), G(Da) and G(D). Since we already
have the MST result on G(D), only MSTs on GB(D,Da) and
G(Da) need to be calculated. However, the newly arrived data
is usually much smaller than the original dataset, it is aciently
to only use one process to calculate the MST on GB(D,Da).
As shown in Figure 2, one approach is to divide the the orig-
inal dataset into multiple splits and calculated the sub-MSTs
on the complete bipartite subgraphs on each pair of Da and
the split and the complete subgraph induced on Da.

In Figure 1 and 2, we observe that except for the problem de-
composition, both cases can be solved by the same local MST
algorithm followed by a merge procedure, which leads to the
final solution. Therefore, a generalized framework can be de-
signed to handle large datasets with incremental updates.

IncDiSC Algorithm Design
In this section, we present IncDiSC, an incremental, dis-
tributed single-linkage hierarchical clustering algorithm.

Algorithm Design
Following the dividing steps described in step 1-8 of Algo-
rithm 1, we break the original problem into multiple much
smaller subproblems, a serial MST algorithm can be applied
locally on each of them. For a weighted graph, there are
three frequently used MST algorithms, namely Boru̇vka’s,
Kruskal’s and Prim’s [7, 20, 25]. Boru̇vka’s algorithm was
published back in 1920s. At each iteration, it identifies the
cheapest edge incident to each vertex, and then forms the
contracted graph which reduces the number of vertices by at
least half. Thus, the algorithm takes O(E log V ) time, where
E is the number of edges and V is the number of vertices.
Kruskal’s algorithm initially creates a forest with each vertex
as a separate tree, and iteratively selects the cheapest edge that
doesn’t create a cycle from the unused edge set to merge two
trees at a time until all vertices belongs to a single tree. Both
of these two algorithms require all the edge weights available
in order to select the cheapest edge either for every vertex in
the entire graph at each iteration. By contrast, Prim’s algo-
rithm starts with an arbitrary vertex as a MST root and then
grows one vertex at a time until it spans all the vertices in the
graph. At each iteration, it only needs one vertex’s local in-
formation to proceed. Moreover, given a complete weighted
graph, Prim’s algorithm only takes O(V 2) time and O(V )

Algorithm 1 IncDiSC, an incremental, distributed SHC algo-
rithm
INPUT: a base dataset D, a newly added dataset Da, a mini-
mum spanning Tree T induced on D, a merging parameter K
OUTPUT: a MST T ′ for D ∪Da

1: if T == ∅ then
2: Divide D into s roughly equal-sized splits,

D1,D1, . . . ,Ds

3: Form C2
s complete bipartite subgraphs and s complete

subgraphs
4: else
5: Divide D into t roughly equal-sized splits,

D1,D1, . . . ,Dt

6: Form t complete bipartite subgraphs and a complete
subgraph

7: end if
8: Use Prim’s algorithm to compute the sub-MST on

each subgraph
9: repeat

10: Taking the sub-MSTs and T , merge every K of
them using the idea of Kruskal’s algorithm

11: until one MST remains
12: return the final MST T ′

space complexity, lending itself a good choice for the local
MST algorithm.

As mentioned earlier, we have two types of subproblems:
complete weighted graph and complete bipartite graph. For
the first type of subproblem, we start with the first vertex v0
in the vertex list just for convenience. While we populate
all its edge weights by calculating distance from v0 to every
other vertex, we track the cheapest edge and emit the corre-
sponding edge to the reducer in MapReduce framework (in
this way, we don’t need to store the MST explicitly). v0 is
then removed from the vertex list and the other endpoint of
the emitted edge is selected to be the next starting vertex. This
process is repeated until all the vertices are added to the tree.
Thus, our algorithm maintains quadratic time complexity and
linear space complexity.

The other type of subproblem is the complete bipartite sub-
graph between two disjoint data splits, denoted as the left and
right split. Different from the complete subgraph case, we
need to maintain an edge weight array for each split respec-
tively. To start, we select the first vertex v0 in the left split,
populates an edge weight array from v0 to every vertex in the
right split, record the cheapest edge (v0, vt). In the next itera-
tion, we populate another edge weight array from vt to every
vertex in the left split except for v0. Then the cheapest edge
is selected from both edge weight arrays. The endpoint of the
cheapest edge (which is neither v0 nor vt) is selected as the
next starting vertex, and the same process can be iterated un-
til the tree spans all the vertices. The procedure takes O(mn)
time complexity and O(m+n) space complexity, where m,n
are the sizes of the two disjoint sets.

Step 10 in Algorithm 1 then iteratively merges all the interme-
diate sub-MSTs and the precalculated T to obtain the over-
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Figure 3: IncDiSC framework using MapReduce.

all solution. In extreme case, all the sub-MSTs and T can
be combined all at once using one process, however, this in-
curs huge communication contention and computational load;
rather, we extend the merge procedure into multiple iterations
by introducing configurable parameter K such that every K
intermediate MSTs are merged at each iteration and it termi-
nates when only one MST remains.

In order to efficiently combine these partial MSTs, we use
union-find (disjoint set) data structure to keep track of the
component to which each vertex belongs [12]. Recall the way
we form subgraphs, most neighboring subgraphs share half of
the data points. Every K consecutive subgraphs more likely
have a fairly large portion of overlapping vertices. Thus, by
combining every K sub-MSTs, we can detect and eliminate
incorrect edges at an early stage, and reduce the overall com-
munication cost for the algorithm. The communication cost
can be further optimized by choosing the right K value with
respect to the size of dataset, which we will discuss in the
next section.

IncDiSC bcpReduce
MapReduce has emerged as one of the most frequently
used parallel programming model for processing large-scale
datasets since it was first proposed in 2004 by Dean and Ghe-
mawat [14]. Its open source implementation, Hadoop, has
become the de facto standard for both industry and academia.
In the following, we describe in details the implementation of
our proposed algorithm using Hadoop’s MapReduce Frame-
work.

A MapReduce job comprises three consecutive phases: map,
shuffle and reduce. The input, output as well as intermedi-
ate data, is formated in (key, value) pairs. In the map phase
the input is processed one tuple at a time. All (key, value)
pairs emitted by the map phase which have the same key are
then aggregated by the MapReduce system during the shuffle
phase and sent to the reducer. At the reduce phase, each key,
along with all the values associated with it, are processed to-
gether. In order for all the values with the same key end up
on the same reducer, a partitioning or hash function need to
be provided for the shuffle phase. The system then makes
sure that all of the (key, value) pairs with the same key are
collected on the same reducer.

Figure 3 provides an overall MapReduce diagram for Algo-
rithm 1. The algorithm can be implemented by two types
of MapReduce jobs: Prim-MR and Kruskal-MR. The Prim-
MR job is executed only once while the Kruskal-MR job can

Figure 4: Prim-MR Diagram: Prim-MR is the first
MapReduce job in IncDiSC algorithm. For incremental data
insertion case, it consists of t+ 1 Prim maps and n Kruskal

reducers, where n = �(t+ 1)/K�.

be repeated for multiple rounds until the final MST is com-
pleted. The aggregated results after a MR job is stored on the
distributed file system, e.g. Hadoop distributed file system,
as the input for the next available MR job. Prim-MR consists
of PrimMap and KruskalReduce. Its detailed implementation
is illustrated in Figure 4. The setup in the diagram also can
handle the incremental case where the new arrived data split
Da is inserted. The original dataset is divided into t smaller
splits. Each split is stored in the built-in SequenceFile format
provided by Hadoop. SequenceFile is a flat binary record file
with each record being a key-value pair. It is extensively used
as Hadoop’s input/output formats. In our case, the input data
splits are keyed on the data point’s id and valued on the cor-
responding feature vector.

In order for a mapper to know which two splits to be read,
we initially produce t + 1 input files, each of which con-
tains a single integer value gid between 0 and t to repre-
sent the subgraph id. Without loss of generality, the subgraph
(t+ 1) is a complete subgraph while the others are complete
bipartite subgraphs. Given a certain graph type, we apply
the corresponding Prim’s algorithm accordingly. For the case
where there is no precalculated MST available for the origi-
nal dataset, the decomposition in Figure 1 is adopted in the
Prim-MR framework.

Each complete bipartite subgraph is assigned to a mapper.
However, the complete subgraph only has half as many ver-
tices as the complete bipartite subgraph. In order to keep the
load balance, we assign two complete subgraphs to one map-
per. On each mapper, a local sequential MST algorithm is
implemented to calculate the MST on subgraph gid. As de-
scribed in Algorithm 2, PrimMap’s input is keyed on gid and
valued on data point. The algorithm first populate two arrays
S1 and S2. S2 may be empty if the number of complete sub-
graphs is odd. Once both arrays get populated, we start to
calculate the MST. As described previously, given a complete
graph, the local MST algorithm starts with a single-node tree,
and then augments the tree one vertex at a time by greedily
selecting the cheapest edge among all the edges we have cal-
culated so far. Instead of releasing all the edges after the MST
is complete, the edges can be emitted one by one as they are
generated, reducing I/O and network contention.
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Algorithm 2 PrimMap: calculate the MST for a complete
bipartite subgraph or a complete subgraph

1: map(Int gid, Point value)
2: Point[] S1, S2;
3: cnts = 0;
4: if (cnts < |S1|) do
5: S1.append(value)
6: cnt++; return;
7: else if (cnts < (|S1|+ |S2|)) do
8: S2.append(value)
9: cnt++; return;

10: end
11: if (isBiPartite) do
12: PrimBipartite mst = new PrimBipartite(S1, S2)
13: mst.emitMST()
14: else do
15: PrimComplete mst = new PrimComplete(S1)
16: mst.emitMST()
17: if (S2 is not NULL) do
18: mst = new PrimComplete(S2)
19: mst.emitMST()
20: end
21: end

As PrimMap emits the edge one at a time, the output is spilled
into multiple temporary files on the local machine in a sorted
order, and transferred to the designated reducer based on the
partitioner. Before passing to the reducer, the files are con-
catenated in the sorted order and merged into a single in-
put file. This is called data shuffle or sort-and-merge stage.
Hadoop sorts keys by default and provides a secondary sort-
ing mechanism, with which we can design a composite key
containing graph id and the edge weight. In this way, K-
way can be implicitly implemented in Hadoop under the hood
without actual realization in the KruskalReduce.

In Kruskal-MR job, the map function is essentially an identity
map which just passes through (key, value) pairs as they are.
The reduce function reuses KruskalReduce to combine any
intermediate MSTs and precalculate T . The Kruskal-MR job
is iterated until one MST remains.

EXPERIMENTAL RESULTS
Here, we discuss the experimental results on the implementa-
tion of IncDiSC algorithm using both synthetic and real-word
datasets. We evaluate the scalability of the algorithm on the
dataset with various size and dimensions as well as the data
shuffle and I/O patterns in each MapReduce round.

We conduct the experiments on Jesup [2], a Hadoop clus-
ter at NERSC. Jesup has 80 compute nodes each of which
is quad-core Intel Xeon X5550 “Nehalem” 2.67 GHz proces-
sors (eight cores per node) with 24 GB of memory per node.
All the nodes are interconnected by 4X QDR InfiniBand tech-
nology that provides 32 Gb/s of point-to-point bandwidth for
data communication and I/O. However, computer nodes in Je-
sup have no local disks, which implies no data locality can be
leveraged from Hadoop distributed file system. Despite this
downside caused by the system specifics, our experiments

Table 1: Structural properties of the synthetic-cluster,
synthetic-random, and millennium-run-simulation testbed.
The data size is measured in SequenceFile format which is

compressed by GZIP.

Name Points Dimensions Size (MByte)

clust20k 20k 5, 10 1.3, 2.1
clust100k 100k 5, 10 6.6, 10
clust500k 500k 5, 10 32, 49

rand20k 20k 5, 10 1.3, 2.1
rand100k 100k 5, 10 6.6, 10
rand500k 500k 5, 10 32, 49

DGalaxiesBower2006a (db) 1m 3 51
MPAHaloTreesMhalo (mm) 1m 3 51
MPAGalaxiesBertone2007 (mb) 1m 3 51
MPAGalaxiesDeLucia2006a (md) 1m 3 51

still show the real computation and communication behaviors
as in many other clusters.

Datasets
We evaluate IncDiSC using sixteen datasets, which are
divided into three categories: synthetic-cluster, synthetic-
random and millennium-run-simulation. The first two cate-
gories are synthesized by using the IBM synthetic data gen-
erator [4,24]. With three different numbers of data points and
two different dimensions, we generate six synthetic-cluster
datasets, in which a random number of centroids are selected
first and data points are added randomly to these centroids.
And in six synthetic-random datasets, points in each dataset
are uniformly distributed.

The third category millennium-run-simulation consists of
four real-world datasets, MPAGalaxiesBertone2007 (mb)
[6], MPAGalaxiesDeLucia2006a (md) [13], DGalaxies-
Bower2006a (db) [8], and MPAHaloTreesMhalo (mm) [6]
which are taken from the Galaxy and Halo databases (as the
name specified). Because we only take the first 3 dimensions
(particle coordinates) from each dataset, we have randomly
selected 1 million points from these datasets. Our testbed
contains up to 1 million data points and each data point is a
vector of up to 10 dimensions. Table 1 shows structural prop-
erties of the dataset.

Performance
Scalability
We first evaluate how well our algorithm scales from 10 to
300 computer cores on twelve synthetic datasets with differ-
ent K values, where K is the number of subgraphs that can
be merged at one reducer.

The speedup on p cores is defined as S = p0
tp0
tp

, with p0
being the minimum computer cores that we conduct our ex-
periments with, and tp being the DiSC’s execution time on p
cores. Figure 5 (a) presents the speedup result for clust20k
with 10 dimensions. “Total” measures the algorithm’s entire
execution time. It comprises “Prim” measuring the runtime
for Prim-MR job, and “Kruskal” measuring the runtime for a
series of Kruskal-MR jobs until the algorithm completes.

The performance has no improvement or even turns worse as
we scale out for clust20k 10. This makes sense since small
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(a) clust20k with 10 dimensions (small) (b) clust100k with 5 dimensions (medium) (c) clust100k with 10 dimensions (medium)

(d) clust500k with 5 dimensions (large) (e) clust500k with 10 dimensions (large) (f) synthetic and real-world datasets

Figure 5: Speedup on the synthetic datasets using 10-300 computer cores.

(a) Around 10 mappers (b) Around 20 mappers (c) Around 100 mappers

Figure 6: Runtime of DiSC vs. runtime of IncDiSC.

datasets can fit in one or a few machines’ memory, the over-
head introduced by unnecessary multiple MapReduce itera-
tions would offset the computational gain from data paral-
lelism.

For both medium and large datasets, Figure 5 (b) – (e) demon-
strates a nice linear speedup until the number of compute
cores increases beyond a certain number. For the medium-
sized dataset, Figure 5 (c) shows that even with high dimen-
sionality, the speedup starts to drop regardless of the num-
ber of dimensions, when the number of processes is beyond
190, which corresponds to 20 splits on the original data, each

with 5k data points. However, with K = 2, we approxi-
mately need 7 MR iterations for the entire algorithm, thus the
communication cost is no longer negligible. As illustrated in
Figure 5 (e) the linear speedup sustains up to 300 compute
cores for large datasets with high dimensionality. Among all
four plots, K = 4 consistently outperforms K = 2 or 8.
This is because K not only affects the number of MapReduce
rounds, but also the number of reducers at the merge phase
at each round. Increasing K value leads to a smaller number
of iterations and smaller degree of parallelism. The value of
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(a) Data shuffle (b) File read

Figure 7: Data Pattern for IncDiSC algorithm: the amount of data bytes in the stages of data shuffle and file read.
(File write is omitted here and it exhibits the same trend as file read.)

4 seems to be a sweet spot achieving a reasonable trade-off
between these two effects.

Figure 5 (f) summarizes the speedup results on both synthetic
and real-world datasets. As expected, the number of objects
in the dataset significantly influences the speedups (bigger
datasets show better scalability), and the dimensionality is an-
other factor that affects the performance. The type of dataset
hardly makes any difference in our algorithm as we use Eu-
clidean distance as the edge weight measure, and the distribu-
tion of data points has no impact on the computational com-
plexity in calculating distances.

Incremental Insertion
We evaluate the efficiency of IncDISC using synthetic-
cluster’s three datasets with 10 dimensions. On each syn-
thetic dataset, we perform 0.5%, 0.1%, 5%, and 10% random
insertions and compare the runtime of IncDiSC algorithm on
the entire updated dataset from the scratch with the average
runtime of IncDiSC solely on the random updates. The re-
sults with different granularity of problem decomposition are
depicted in Figure 6. We first divide the original dataset into
10 splits, each pairing with the insertion split to form 10 com-
plete bipartite subgraphs in addition to a complete subgraph
on the insertion alone. To be consistent with the case in which
we reapply IncDiSC on the entire updated dataset, we accord-
ingly partition the accumulated dataset into 5 splits which
leads to 10 complete bipartite subgraphs and 5 complete sub-
graphs. Given this setup, we conduct experiments with 10
mappers as shown in Figure 6, and observe the speedup fac-
tors of about 1, 5, 120 on datasets of 20k, 100k, 500k data
points respectively for small insertions up to 5%, and the
speedup degrades to 5 when the insertion is 10% of the orig-
inal data. Such a large percentage of addition usually would
not appear in the real-world because the base dataset is al-
ready very large while the incremental update is batched and
processed over small time interval. A similar speedup ob-

servation can be made when evaluating performance on finer
decomposition on 20 and 100 mappers with about 45X and
27X speedup for 5% insertion respectively. The speedup fac-
tor doesn’t increase as the number of mappers increases. A
possible reason is that each complete bipartite subgraph is
already fairly small when we split the original dataset into
5 partitions. Making finer decomposition would not buy us
more data parallelism, it leads to more Kruskal-MR iterations
which comes with MapReduce framework overhead, such as
job setup, tear-down, data shuffle, etc. For large-scale and
high-dimensional datasets, IncDiSC saves the runtime by two
orders of magnitude over the naive implementation that works
on the entire updated dataset without incorporating the priori
clustering results.

I/O and Data Shuffle
In this section, we evaluate the data patterns with respect to
MapReduce metrics, including file read, file write and data
shuffle from mapper to reducer per iteration. Recall when
we form the complete bipartite subgraphs, each split need be
paired with every other split. Therefore, the amount of data
read from the disk is linear to the number of splits, which
is approximate the square root of the number of mappers. In
Figure 7, each bar represents a MapReduce round, and bars in
the same color represent a series of MR rounds that IncDiSC
algorithm requires to find the MST given a certain number of
computer cores. For example, the first bar represents Prim-
MR job in IncDiSC algorithm. Figure 7 (a) illustrates the
increasing trend of the amount of data shuffle from mapper
to reducer. Notably, as we scale up the number of processes,
the number of MapReduce rounds increases. However, the
data is dramatically reduced after the first Prim-MR job by
almost 2 orders of magnitude, which verifies our claim that
incorrect edges are pruned at a very early stage. The same
trend is observed for file read at mapper’s input and file write
at reducer’s output. After the first iteration, the amount of
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data shuffle and I/O is proportional to the number of vertices
residing in the merged subgraphs, and the amount of vertices
decreases by approximately K times due to the deduplica-
tion effect at the KruskalReduce’s merging process. Figure
7 reveals that the number of iterations decreases with large
K, so does the amount of the data. This finding also cor-
responds with speedup chart that 4-way merge outperforms
2- and 8-way merges because it provides a good trade-off be-
tween the number of MR rounds and the degree of parallelism
per round.

CONCLUSION
In this paper, we present IncDiSC, an incremental, distributed
algorithm for single-linkage hierarchical clustering algorithm
to overcome the data dependency and algorithm complexity
challenges in a unified framework. IncDiSC can not only
scale to the large dataset, but also incorporate the incremental
accumulation of the new data. We evaluated IncDiSC em-
pirically using both synthetic and real-world datasets, and
observed that it achieves a speedup up to 200 on 300 com-
puter cores and two orders of magnitude speedup for up to
5% the insertion update. Experimental results have shown
that IncDiSC reduces the amount of data shuttle dramatically
at early iterations. Future work on IncDiSC may involve ef-
forts to tackle the deletion update such that the algorithm can
be adapted to much wide modern applications.
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