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a b s t r a c t

Currently, a large family of kernel design methods for semi-supervised learning (SSL) problems builds

the kernel by weighted averaging of predefined base kernels (i.e., those spanned by kernel eigenvectors).

Optimization of the base kernel weights has been studied extensively in the literature. However, little

attention was devoted to designing high-quality base kernels. The eigenvectors of the kernel matrix,

which are computed irrespective of class labels, may not always reveal useful structures of the target. As

a result, the generalization performance can be poor however hard the base kernel weighting is tuned.

On the other hand, there are many SSL algorithms whose focus are not on kernel design but on the

estimation of the class labels directly. Motivated by the label propagation approach, in this paper we

propose to construct novel kernel eigenvectors by injecting the class label information under the

framework of eigenfunction extrapolation. A set of “label-aware” base kernels can be obtained with

greatly improved quality, which leads to higher target alignment and henceforth better performance.

Our approach is computationally efficient, and demonstrates encouraging performance in semi-

supervised classification and regression tasks.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Semi-supervised learning (SSL) is a useful learning paradigm

that can make use of unlabeled samples to boost the learning

performance with only limited supervision. Among various direc-

tions that have been pursued, for example, graph based algorithms

[1,2], low-density separation [3], transductive SVM [4–6], Semi-

Definite Programming (SDP) [7], ensemble method [8], high order

[9], semi-supervised kernel design turns to be a promising one

because it allows the abundant theories and algorithms in kernel

methods to be adopted directly in solving SSL problems. In

particular, a large family of algorithms for semi-supervised kernel

relies on spectral transformation, where the eigenvectors of the

kernel matrix (or the graph Laplacian) are used together with the

rectified eigenvalues to build the new kernel.

Lots of empirical successes have been observed with the family

of semi-supervised kernels based on spectral transforms. However,

there are still some concerns with them. First, building a kernel

solely based on rectifying the kernel eigen-spectrum may be

restrictive in terms of acquiring desired kernel. Note that eigen-

vectors of the empirical kernel matrix (or graph Laplacian) are

computed in an unsupervised manner, entirely irrespective of the

class labels. They can be inaccurate due to various practical factors

such as noise, kernel types or parameters, or class separability.

Therefore, these eigenvectors may not reveal useful structures for

classification, and the base kernels they span can have low

alignment with the target, while the alignment of the mixed

kernel depends crucially on the alignment of the individual base

kernels. Second, the optimization procedure involved can be quite

expensive. For example, computing the eigenvalue decomposition

of the Laplacian already takes Oðn3Þ time and Oðn2Þ memory. The

time complexity of Quadratically constrained quadratic program

(QCQP) (Oðn4Þ) [10] and SDP (Oðn4:5Þ) [7] is also quite demanding.

To solve these problems, we propose a new way for designing

base kernels used in semi-supervised kernel learning. Besides

using the eigenvectors from the original kernel matrix or graph

Laplacian, we also compute a new set of more “accurate” eigen-

vectors that are expected to be better aligned to the target. Our key

observation is that the kernel eigenvectors and class labels have

some intrinsic connections. In particular, the ideal kernel eigen-

vectors are deemed equivalent as the class labels. Inspired by this,

we compute a set of desired kernel eigenvectors by extrapolating

the ideal kernel eigenfunction. Such extrapolation builds upon

important proximity structures encoded in the input patterns.
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More importantly, it directly incorporates class labels in the

computation. Therefore, the label-aware eigenvectors are empiri-

cally more aligned to the target compared with the unsupervised

kernel eigenvectors. This directly leads to a set of base kernels

with higher quality, and the overall alignment of the mixed kernel

will also be improved with better generalization performance. In

addition, we use low-rank approximation to compute useful

eigenvectors from the original kernel matrix, therefore our

approach is computationally very efficient and only requires linear

time and space complexities.

It is worthwhile to note that the main contribution of this

paper is to explore new ways of constructing base kernels, instead

of how to combine the base kernels, in semi-supervised kernel

learning. The latter has been studied extensively in the literature

as has been discussed [7,11–14], and therefore will not be the

focus of this paper. Of course, in order to evaluate the usefulness of

the newly proposed base kernels against traditional base kernels,

we will still resort to existing methods of kernel combination so as

to finally obtain a mixed kernel and its testing accuracy. The main

contribution of this paper is as follows. First, we propose to use

class labels to improve the quality of base kernels, via the frame-

work of eigenfunction extrapolation and the link between class

labels and ideal kernel eigenfunctions; second, we extend this

scheme to the multiple kernel setting to improve the modeling

power of the proposed method; third, we compare our approach

with state-of-the-art semi-supervised learning methods under

both the single kernel and multiple kernel settings and demon-

strate the superiority of our approach in terms of both speed and

accuracy; fourth, we apply our approach in the indoor WiFi

localization problem which is shown to beat the currently best

results in the same data set.

The rest of the paper is organized as follows. Section 2

introduces the background and related work. Section 3 presents

the proposed label-aware base kernel design method. Section 4

compares the performance of our approach with a number of

algorithms based on spectral transformations. And the last section

concludes the paper.

2. Background and related work

Given an n� n kernel matrix K, the graph Laplacian is computed as

L¼D�K , where DARn�n is a (diagonal) degree matrix such that

Dii ¼
Pn

j ¼ 1 K ij. The normalized graph Laplacian is defined as
~L ¼ I�D�1=2KD�1=2, where I is the identity matrix. The (normalized)

graph Laplacian matrix imposes important smoothness constraints

over the graph, which has been widely used in spectral clustering [15],

image segmentation [16], and feature selection [17]. In particular, its

smaller eigenvalues correspond to smoother eigenvectors over the

graph, i.e., the entries of the eigenvector corresponding to neighboring

samples are close to each other. Such smoothness is very useful for

predicting the actual class labels. Based on this property, a general

principle is applied in spectral transformation to build semi-supervised

kernel [18]:

~K ¼
Xn

i ¼ 1

rðλiÞϕiϕ
>

i :

Here, λi's (i¼ 1;2;…;n) are eigenvalues of the (normalized) graph

Laplacian LARn�n sorted in an ascending order, ϕi's are the corre-

sponding eigenvectors, and rð�Þ is a non-increasing function which

enforces larger penalty for less smooth eigenvectors. Various choice of

the transform rð�Þ has been proposed in the literature. For example,

the diffusion kernel [19] corresponds to rðλÞ ¼ expð�ðσ2=2ÞλÞ; the

cluster kernel [20], the eigenvectors ϕi's are based on the degree-

normalized kernel matrix S ¼D�1=2KD�1=2.

The empirical kernel alignment [13] is a promising tool to

evaluate the degree of agreement between a kernel and the

learning target, via the use of “ideal kernel” Knðx; zÞ ¼ yðxÞyðzÞ,

where yðxÞ is the target concept (such as the class label chosen

from f71g or f0;1g [21]). Given a set of l training examples,

corresponding label vector yARl�1, and kernel matrix KARl�l, the

alignment is computed as

AK;y ¼
K ; yy>
� �

l
ffiffiffiffiffiffiffiffiffiffiffiffi

〈K;K〉
p ;

where 〈K1;K2〉¼
P

ijK1ðxi; xjÞK2ðxi; xjÞ is the inner product betw-

een matrices. It has been shown that the alignment between

kernels is sharply concentrated, i.e., a good alignment on the

training set will indicate a good alignment on the test set [13]. On

the other hand, AK ;y is favorably associated with the generalization

performance of a classifier (such as the Parzen window estimator)

[13]. Therefore, maximizing the alignment of the kernel with the

ideal one provides a general and effective way for kernel design. In

this paper, we adopt a different alignment criterion between two

kernels K and K 0 from [11]

ρðK ;K 0Þ ¼
〈Kc;K

0
c〉F

JKc JF JK
0
c JF

;

where Kc is the centralized version of K. This criterion provides a

novel concentration bound, and shows the existence of good

predictors for kernels with high alignment, in both classification

and regression tasks.

The concept of ideal kernel and its implications have led to

several successful methods for kernel learning. The common

theme of these methods is to use eigenvectors of the kernel

matrix to span a set of base kernels, and then optimize the

weighting in the combined kernel via maximizing its alignment

with the target (or ideal kernel). For example, Christianini et al.

proposed to compute the weighting of each base kernel propor-

tional to the inner product of the corresponding eigenvector with

the target [13]. Sinha et al. presented a framework for computing

sparse combination of the base kernels [14]. Cortes et al. showed

that the weighting in the maximal alignment kernel can be solved

via quadratic programming [11]. In [7], a semi-definite program-

ming formulation was adopted to learn a kernel matrix ~K that is

maximally aligned with the ideal kernel:

max
~K

〈 ~K tr ; yy
> 〉;

subject toJ ~K JF ¼ 1; ~K≽0 traceð ~K Þ ¼ 1:

Here, ~KARn�n; ~K trARm�m is the sub-block of ~K corresponding to

m labeled samples, and yARm�1 is the vector of training labels. In

particular, if the kernel matrix ~K is spanned by the eigenvectors of

the Laplacian, i.e., ~K ¼
Pn

i ¼ 1 μiϕiϕ
>

i , then the formulation will be

reduced to a quadratically constrained quadratic programming

(QCQP) [7,10]. This avoids the need to choose the parameters in

rð�Þ, and the nonparametric transform will make the kernel design

more flexible. In [10], an order constraint on the transformed

eigenvalue is further considered. which leads to the following

optimization problem:

maxμ vecðyy> Þ>Mμ

subject to‖Mμ‖r1; μiZμiþ1Z0; i¼ 1;2;…;n�1:

Here μ¼ ½μ1μ2…μn�
> ;μi's are the eigenvalues to be learned, vecð�Þ is

the column vectorization operator of a matrix, M¼ ½vecðK1;trÞ;

…; vecðKn;trÞ� where K i;tr is the sub-block of K i ¼ϕiϕ
>

i corresponding

to the labeled samples, and ϕi's are the eigenvectors of the graph

Laplacian sorted in ascending order based on the eigenvalues. The

order constraint reflects important prior belief that smoother eigen-

vectors should be given higher priority in building the kernel, and

empirically it has shown improved behavior over parametric and

Q. Wang et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: Q. Wang, et al., Enhancing semi-supervised learning through label-aware base kernels, Neurocomputing

(2015), http://dx.doi.org/10.1016/j.neucom.2015.07.072i

http://dx.doi.org/10.1016/j.neucom.2015.07.072
http://dx.doi.org/10.1016/j.neucom.2015.07.072
http://dx.doi.org/10.1016/j.neucom.2015.07.072


purely nonparametric spectral transforms [10]. Recently Cortes et al.

[12] proposed the algorithm based on the concept of local Radema-

cher complexity, which is upper-bounded by tailsum of the eigenva-

lues of kernels. The authors proposed a regularization formulation for

controlling the tailsum instead of the traditional way on restricting

trace norm of kernels. Note that the base kernels are not necessarily

orthogonal eigenvectors computed from one empirical kernel matrix

(or its Laplacian matrix). In many cases the base kernels themselves

can be different empirical kernel matrices that are either from

different domains/views of the data, or simply computed by varying

the kernel parameters, such as [7,11,12]. Most of the algorithms we

have reviewed here apply to both cases.

The biggest difference between our approach and existing SSL

kernel design methods is that our approach utilizes the given

labels to compute a set of more “accurate” eigenvectors to span the

base kernels. On the other hand, there are many SSL algorithms

whose focus is not on kernel design but instead the estimation of

the class labels directly. For example, the local and global con-

sistency method [22] iteratively propagates the labels of Xl to the

whole data set by

Fðtþ1Þ ¼ αSFðtÞþð1�αÞY ;

where F is the class label to be estimated, S is the degree

normalized kernel matrix S¼D�1=2KD�1=2, and Y is the class label

(entries of Y, corresponding to unlabeled data, are filled with 0's).

This method requires iterative propagation, which is equivalent to

performing a matrix inverse; in comparison, we only need one

step in extrapolating the ideal kernel eigenvectors. In addition, the

local and global consistency method is motivated by explicit

“propagation” of labels on a connected graph; in comparison, we

base our method on theories of integral operators and eigenfunc-

tion extrapolation [23]. In [24], the authors utilized the harmonic

property

f ¼D�1Kf ;

where f is the estimated label, K and D are the kernel matrix and

the degree matrix, respectively. It states that the label of one

sample should be consistent with a linear combination of the

labels from its nearby samples. This is very closely related to Eq.

(5) (see Section 3.3). However, Zhu et al. used this property as a

global constraint, and computed the class labels by solving a linear

system. In comparison, in our approach, Eq. (5) can be deemed as

utilizing this property only on labeled samples as a way to

extrapolate the ideal kernel eigenvector to the whole data set.

Considering this interesting connection, we will empirically com-

pare our approach with the local and global consistency method in

one task of wireless sensor localization.

3. Methodology

Kernel target alignment is an important criterion widely used

in semi-supervised kernel design [13]. A higher alignment with

the ideal kernel indicates the existence of a good classifier with a

higher probability [13,11]. It can be easily observed that the overall

alignment of the mixed kernel depends directly on the individual

base kernel alignment scores. For example, it has been shown that

the optimized alignment between a kernel ~K ¼
Pk

i ¼ 1 βiviv
>
i and

the ideal kernel yy> is ~AðyÞ ¼ 1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk

i ¼ 1 〈vi; y〉
4
F

q

, where 〈vi; y〉 is the

alignment for the ith eigenvector. However, in practice, the base

kernels spanned by the eigenvectors of the kernel matrix might

deviate a lot from the target due to various practical factors, such

as noise, choice of kernel types/parameters, or the difficulty of the

classification problem.

In the following, we consider building more “accurate” eigen-

vectors to span better base kernels. Note that one reason of the

low quality of the base kernels spanned by kernel eigenvectors is

that they are computed regardless of the label. Therefore, we may

not expect that the kernel eigen-structures faithfully reflect the

target variable. To alleviate this problem, we propose to compute a

set of desired “eigenvectors” via extrapolation of the ideal kernel

eigenfunction. We first discuss the connection between kernel

eigenvectors and class labels, and then introduce the concept of

kernel eigenfunction extrapolation to build label-aware kernel

eigenvectors.

3.1. Kernel eigenvectors and class labels

Proposition 1. Given l labeled examples ordered from c classes, with

ideal kernel in the form of

Kn ¼

110
l1

0 … 0

0 110
l2

⋯ 0

⋮ … ⋱ ⋮

0 … 0 110
lc

2

6
6
6
6
4

3

7
7
7
7
5

ð1Þ

where li is the size of the ith class. Let YARl�c be the class label, i.e.,

Y ij ¼ 1 if xi is in class j; and Y ij ¼ 0 otherwise. Then the i th non-zero

eigenvector of Kn is ð1=
ffiffiffi

li
p

ÞY i, where Y i is the ith column of Y.

Proof. Let the eigenvalue decomposition of Kn be Knvn ¼ λ
n

vn.

Since Kn only has c different rows (orthogonal to each other), it

has rank c with n�c zero eigenvalues. Note that the ith entry of vn

equals ð1=λ
n

ÞKnði; :Þvn, and Kn has a block-wise constant structure.

Therefore vn is piecewise constant. Write vn as

½v1;…; v1
|fflfflfflfflffl{zfflfflfflfflffl}

l1

v2;…; v2
|fflfflfflfflffl{zfflfflfflfflffl}

l2

;…; vc;…; vc
|fflfflfflfflffl{zfflfflfflfflffl}

lc

�0:

Then the eigensystem can be written as an equation group

mkvk ¼ λ
n

vk for k¼ 1;2;…; c. Each equation in it leads to two

conditions: λ
n

¼ lk, or vk ¼ 0. However, it is impossible to set

λ
n

¼ lk for k¼ 1;2;…;C, since the size of different classes can be

different. The only feasible way is to set λ
n

equal to one of the

mlk's, i.e., λ
n

¼ lk0 , and at the same time set vk ¼ 0 for all the kak0.

There are c different ways to choose k0, i.e., k0 ¼ 1;2;…; c. For each

choice of k0, the eigenvalue is λ
n

¼ lk0 ; as to the eigenvector, all its

entries corresponding to class k (kak0) will be zero, and the

entries corresponding to class k0 will be 1=
ffiffiffiffiffi

lk0

q

(since they are

equal and should normalize to 1). This completes the proof.□

Proposition 1 shows that non-zero eigenvectors of the ideal

kernel correspond exactly to the classes labels (up to a scaling). For

example, [16] shows that the eigenvectors corresponding to the

second smallest eigenvalue of the normalized graph Laplacian

provide a relaxed solution for a two-class clustering problem.1

Therefore, eigenvectors and class labels have intrinsic connections.

The main difference is that eigenvectors of the kernel matrix can

be noisy and may fail to reveal underlying cluster structures due to

their unsupervised nature; in comparison, class label represents

prior knowledge and is always a clean, piecewise constant vector.

The connection indicates that if we can expand “ideal” kernel

eigenvectors from labeled samples to the whole data set and

obtain a set of high-quality eigenvectors that align better to class

labels, then the resultant base kernels will also have a higher

target alignment. To achieve this goal, we need notions of

eigenfunction and its extrapolation via the Nyström extension.

1 Positive entries in this eigenvector will be deemed as positive class and

negative entries will be indicative of the negative class.

Q. Wang et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: Q. Wang, et al., Enhancing semi-supervised learning through label-aware base kernels, Neurocomputing

(2015), http://dx.doi.org/10.1016/j.neucom.2015.07.072i

http://dx.doi.org/10.1016/j.neucom.2015.07.072
http://dx.doi.org/10.1016/j.neucom.2015.07.072
http://dx.doi.org/10.1016/j.neucom.2015.07.072


3.2. Eigenfunction expansion

Let A be a linear operator on a function space. The eigenfunc-

tion f of A is any non-zero function that returns itself from the

operator, i.e., Af ¼ λf , where λ is the eigenvalue. In this paper, we

are interested in the case where A is a symmetric, positive semi-

definite kernel Kðx; zÞ. The corresponding eigenfunction ϕð�Þ, given
the underlying sample distribution pðxÞ, is defined as [25]

Z

Kðx; zÞϕðxÞpðxÞ dx¼ λϕðzÞ: ð2Þ

The standard numerical method to approximate the eigenfunc-

tions and eigenvalues in Eq. (2) is to replace the integral with the

empirical average [26,25]

Z

Kðx; zÞpðxÞϕðxÞ dx�
1

q

Xq

i ¼ 1

Kðxi; zÞϕðxiÞ; ð3Þ

where xi;i ¼ 1;2;…;q is drawn from the distribution f ð�Þ. By choosing z

as z¼ xi; i¼ 1;2;…; q, Eq. (3) extends to a matrix eigenvalue

decomposition Kv¼ λv, where K is the kernel matrix defined as

K ij ¼ Kðxi; xjÞ for 1r i; jrq, and v is the discrete counterpart of ϕ
in that ϕðxiÞ � vðiÞ. Then the eigenfunction can be extended by

ϕðzÞ �
1

qλ

Xq

i ¼ 1

Kðz; xiÞvðiÞ: ð4Þ

This is known as the Nyström extension [23], which means that

the eigenvectors of the empirical kernel matrix evaluated on a

finite sample set can be used as approximators to the whole

eigenfunction of the linear operator. Interestingly, Eq. (4) is

proportional to the projection of a test point computed in kernel

PCA [27]. The approximation can be justified by examining the

convergence of eigenvalues and eigenvectors as the number of

examples increases [28,27].

3.3. Extrapolating ideal kernel eigenfunctions

Motivated by the eigenfunction extension, we propose to

extrapolate the ideal kernel eigenvectors as follows. Suppose we

are given the labeled set Xl ¼ fxig
l
i ¼ 1 with labels YARl�c, where c

is the number of classes, and the unlabeled set Xu ¼ fxig
n
i ¼ lþ1.

Then, in order to expand the ideal kernel eigenfunction from Xl to

the whole data set Xl [ Xu, we can choose fxig
q
i ¼ 1 in (4) as Xl,

choose z in (4) as Xl [ Xu, and choose vðiÞ as the labels of Xl.

Suppose the estimated kernel eigenvectors are denoted as

ukARn�1fork¼ 1;2;…; c, corresponding to the c classes, then we

have

ukðiÞ ¼
1

lλk

X

xj AXl

Kðxi; xjÞY jk: ð5Þ

Here, λk is the eigenvalue corresponding to the kth class, which

according to Proposition 1 is proportional to the size of the kth

class. To guarantee that the estimated labels/eigenvector entries

are in a reasonable range, one can also normalize the weighting

coefficients Kðxi;xjÞ by
P

jKðxi; xjÞ. The advantage of extrapolating

the ideal kernel eigenfunction is that the resultant eigenvector

incorporates label information directly. Therefore, empirically they

typically have higher alignment with the target compared with the

eigenvectors of the kernel matrix, the computation of the latter

being totally irrespective of available class labels. With such label-

aware eigenvectors, we will then have better base kernels for

semi-supervised learning.

3.4. Combining base kernels

Having obtained a set of extrapolated ideal kernel eigenvectors,

we can use them to span base kernels for semi-supervised kernel

design. In case the number of labeled sample is very limited, using

label-aware eigenvectors alone may not be sufficient. Therefore, it

is safer to incorporate the kernel eigenvectors as well. Suppose we

have obtained a set of c extrapolated eigenvectors u1;u2;…;uc , as

well as a set of k eigenvectors v1; v2;…; vk, from the kernel matrix

(or graph Laplacian). Then we want to learn the following kernel:

~K ¼
Xc

i ¼ 1

αiuiu
>
i þ

Xk

j ¼ 1

βjvjv
>
j : ð6Þ

The mixing coefficients can be determined by maximizing the

alignment to the target. In other words, it will be automatically

determined which parts take higher weights. If the problem is

easy and kernel eigenvectors already are accurate enough, then

they will play a major role in shaping the new kernel; on the other

hand, if the kernel eigenvectors turn out to be noisy and poorly

aligned to the target, then the label-aware eigenvectors will

probably assume higher weights. In the literature, there are

various ways to compute the weights such as uniform weighting,

independent alignment-based weighting, or the quadratic pro-

gramming approach. In this paper, we adopt a well-known

method alignf [11] and a very recent method local rademacher

complexity [12] that determines the mixture weights jointly by

seeking to maximize the alignment between the convex combina-

tion kernel and the target kernel.

With the learned kernel ~K , one can use ~K as the similarity

matrix and plug it in Support Vector Machine (SVM) for training

and testing.

The whole algorithm is summarized in Algorithm 1.

Algorithm 1. Input: labeled samples Xl ¼ fxig
l
i ¼ 1, unlabeled sam-

ple set Xu ¼ fxig
n
i ¼ lþ1; Gaussian Kernel kð�; �Þ, label Y ¼ ½y1; y2;

…; yc�ARl�c.

1. Compute the kernel matrix defined among Xl [ Xu and Xl, as

KnlARn�l; compute the degree matrix Dn ¼ diagðKnl � 1l�1Þ;

2. Perform eigenfunction extrapolation as

½u1;u2;…;uc� ¼D�1
n KnlY;

3. Use the Nyström method [26] to compute eigenvectors

corresponding to dominant k eigenvalues of kernel matrix

or diminishing k eigenvalues of the (normalized) graph

Laplacian, as ½v1; v2;…; vk�;

4. Compute the weights of the base eigenvectors

½u1;u2;…;uc; v1; v2;…; vk�;

5. Compute the new kernel ~K ¼
Pc

i ¼ 1 αiuiu
>
i þ

Pk
j ¼ 1 βjvjv

>
j ;

6. Apply kernel ~K for training and testing.

3.5. Multiple kernel setting

In the previous section, we only consider the use of a single

(empirical) kernel matrix K to construct base kernels in semi-

supervised kernel learning. Recently, researchers have emphasized

the need to consider multiple kernels that may correspond to

heterogeneous data sources (or views) and can improve the model

flexibility [11,12,7]. In case no physically meaningful multiple

domains exist, one can always artificially create them. For exam-

ple, by changing the kernel width parameter, multiple RBF kernel

matrices can be constructed [11,12,7]. Then these different empiri-

cal kernel matrices can all be used to construct base kernels (or

themselves can be directly used as base kernels) for ultimate

kernel learning.
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In this section, we incorporate this idea in our method. Suppose

we have a number of p different kernel matrices (or graph

Laplacians), corresponding to p different sources. Then, we will

compute both the unsupervised kernel eigenvectors (ui's,

i¼ 1;2;…; c) and the label-aware kernel eigenvectors (vj's,

j¼ 1;2;…; k) for each kernel. Ultimately, all these eigenvectors

are fed together into a multiple kernel learning procedure. More

specifically, we can write the final kernel as

~K ¼
Xp

t ¼ 1

Xc

i ¼ 1

αtiutiu
>
ti þ

Xk

j ¼ 1

βtjvtjv
>
tj

0

@

1

A ð7Þ

Next, altogether pðkþcÞ base kernels can be fed into a kernel

learning procedure such as alignf procedure [11] or local radema-

cher complexity [12] to determine the mixing weights.

3.6. Complexity

In Algorithm 1, steps 1 and 2 take OðncÞ time and space, where

n is the sample size and c the number of classes; step 3 takes

Oðnp2Þ time and OðnpÞ space; step 4 takes OðlcÞ time and space; in

applying the learned kernel ~K in SVM, we only need the l� l block

of ~K corresponding to labeled samples, and the u� l block

corresponding to the block between unlabeled and labeled sam-

ples. Therefore, the space needed is OðnlÞ. Step 5 takes OðclÞ time.

In step 6, the training takes empirically Oðl
2:3

Þ time using the

libsvm package, and testing takes Oðpnþ lnÞ, and the time com-

plexity is Oðnlþnp2þ l
2:3

Þ. In practice, we have l; p⪡n. Therefore,

overall our algorithm has a linear time and space complexities.

4. Experiments

This section compares our method with a number of state-of-

the-art kernel design algorithms for semi-supervised learning

tasks including classification (Section 4.1) and regression (Section

4.2). Furthermore, we examine alignment scores of base kernels

obtained via different methods, and compare the classification

performance of traditional unsupervised base kernels with our

method side by side in the settings of single kernel and multiple

kernels (Section 4.3). Our codes are written in Matlab and run on a

Intel (R) Core (TM) i5 CPU @2.60 GHZ 2.60 GHZ PC with 8 GB RAM.

4.1. Comparison with other semi-supervised kernel learning methods

in classification

In this section, we compare the following semi-supervised

kernel design methods: (1) cluster kernel [20], where rð�Þ is chosen

as linear function rðλÞ ¼ λ; (2) diffusion kernel rðλÞ ¼ expð�λ=δÞ
[19]; (3) maximal alignment kernel [13] using the top 0.1n

eigenvectors from the kernel matrix; (4) our approach; and (5)

non-parametric graph kernel [10] using the first p¼ 0:1n eigen-

vectors from the normalized Laplacian ~L. Evaluation is based on

the alignment on the unlabeled data, and classification error of

SVM using the learned kernel. Here, for a fair comparison, our

method only uses one empirical kernel matrix instead of multiple

empirical kernel matrix altogether.

We used the Gaussian kernel Kðx1; x2Þ ¼ expð� Jx1�x2 J
2 � bÞ

in all our experiments. In semi-supervised learning parameter

selection is an open problem. In this work, the parameters are

chosen as follows. For the kernel width, we first compute b0 as the

inverse of the average squared pairwise distances, and then choose

b among b0 � f
1
50;

1
25;

1
10;

1
5;1;5;10g that gives the best performance.

The parameters δ and ϵ are chosen from f10�5;10�3;10�1;1g.

Each algorithm is repeated 30 times with 50 labeled samples

randomly chosen for each class. Cluster kernel method and non-

parametric graph kernel method use 10%n diminishing eigenvec-

tors from the normalized graph Laplacian; other methods use the

top 10% eigenvectors of the kernel matrix. Results are reported in

Table 1. As can be seen, our algorithm gives competitive perfor-

mance and at the same time very efficient.

4.2. Comparison with other semi-supervised kernel learning

methods in regression

In this section, we report empirical results of our algorithm in

kernel based regression problems. The task is indoor location

Table 1

Classification performance using different semi-supervised kernel design schemes. For each cell, the top row is the mean/std of the kernel alignment score (in [0,1]) on the

test set, and in bracket is the averaged time consumption (in seconds); the bottom row is the mean/std of classification error (%).

Data Spectral graph kernel Ours Cluster kernel linear Diffusion kernel Max-alignment kernel

size/dim

Digit1 0.2970.07 (84.9) 0.8270.02 (1.2) 0.1370.005 (2.4) 0.1070.001 (13.0) 0.1470.001 (12.6)

1500�241 4.3171.93 4.897 0.85 5.3771.23 6.1371.63 3.8271.23

USPS 0.2370.08 (74.9) 0.6670.04 (1.2) 0.4370.001 (2.5) 0.0670.001 (16.0) 0.0670.01 (12.7)

1500�241 7.477 4.41 6.6471.27 6.5671.02 7.2770.59 9.8170.49

COIL2 0.1170.005 (73.4) 0.5570.07 (1.2) 0.1070.001 (2.4) 0.0570.003 (8.4) 0.0770.00 (5.3)

1500�241 18.4972.47 13.4472.41 18.5174.66 19.0872.05 19.3271.89

BCI 0.0770.003 (9.9) 0.1470.04 (0.4) 0.0470.001 (0.2) 0.0770.003 (0.4) 0.0770.002 (0.5)

400� 241 32.9573.38 32.9973.10 42.0272.89 33.5872.83 34.8572.75

COIL 0.0170.001 (199.5) 0.1170.05 (0.4) 0.0870.002 (2.58) 0.0670.001 (8.3) 0.0770.001 (5.5)

1500�241 21.9073.24 9.1470.96 10.8971.12 11.6771.43 11.7571.49

g241n 0.4070.003 (108.2) 0.3370.03 (1.4) 0.0370.007 (2.5) 0.0470.00 (20.3) 0.0470.00 (6.7)

1500�241 13.6471.28 24.1171.73 26.5973.96 19.6871.52 18.6171.75

Text 0.1370.01 (181.0) 0.3070.02 (20.1) 0.0370.001 (68.1) 0.0370.00 (208.0) 0.0370.004 (130.7)

1500�11960 25.5571.65 23.4271.46 32.9076.64 24.8971.81 26.7874.88

usps38 0.4870.004 (77.3) 0.8470.02 (1.2) 0.1270.001 (1.6) 0.1170.001 (6.8) 0.1170.001 (4.5)

1200�256 4.8271.33 2.8270.83 5.1070.89 6.0671.01 6.0670.85

usps49 0.4070.13 (82.1) 0.8670.01 (1.2) 0.0970.001 (1.9) 0.0870.001 (9.3) 0.0770.001 (8.9)

1296�256 2.8370.92 1.9870.52 6.2972.11 8.2670.83 10.6771.24

usps56 0.4870.06 (80.0) 0.8670.01 (1.2) 0.1270.001 (1.7) 0.0970.003 (18.2) 0.1170.001 (5.0)

1220�256 2.8770.92 2.4470.59 3.8971.57 3.8570.97 5.7971.06

usps27 0.5870.004 (101.8) 0.9170.06 (1.2) 0.3770.001 (2.3) 0.1070.001 (11.8) 0.1370.001 (6.9)

1376�256 1.7970.42 1.2170.25 1.8070.25 2.2870.56 4.8071.29

odd/even 0.2170.008 (419.0) 0.6570.03 (1.6) 0.1270.001 (8.8) 0.0370.004 (38.5) 0.0870.00 (22.3)

2007�256 10.1472.11 9.5871.56 14.5971.49 14.0872.04 15.6472.91
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Fig. 1. Localization results by different methods. For each test point, a line is connected between the true and the estimated location/coordinates. (a) standard SVR.

(b) Gaussian Fields. (c) our method. (For interpretation of the references to color in the text, the reader is referred to the web version of this paper.)
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Fig. 2. Properties of the Gaussian Fields based method and our approach. (a) Time versus sample size. (b) Error versus kernel width.
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Fig. 3. The individual target alignment score of label-aware base eigenvectors and the traditional kernel eigenvectors on the unlabeled data. For simplicity of visualization,

here the reported score is the average alignment between one eigenvector and all the c target variables/classes. (a) Text (2 classes). (b) USPS (2 classes). (c) Coil (6 classes).

(d) BCI (2 classes). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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estimation using received signal strength (RSS) that a client device

received from Wi-Fi access points [29]. We compare our result

with Gaussian Fields based method [24]. In particular, we adopt

the support vector regression (SVR) [30] that works on the learned

kernel in Algorithm 1. We normalize the labels yi's such that they

scale in the range ½0;1�. We use the Gaussian kernel in the

experiments. The kernel width is selected in a similar way as the

classification tasks. For our method, we set ϵ¼ 0:05 in the support

vector regression setting. The regularization parameter C is chosen

as f0:1;1;10;100;1000;10 000g, similar to settings in [31].

In Fig. 1, we plot the regression results on the 2-D plane. Here,

red circles are the true coordinates, and blue dots are estimated

ones. A line is connected between every pair of true and estimated

points. As can be seen, our approach provides better localization

results compared with Gaussian Fields based method. We use the

square root of the mean squared error to measure the regression

quality The error of standard SVR is 2:5� 10�3; that of Gaussian

Fields based method is 1:61� 10�3; while ours is only around

1:19� 10�3. Our regression error is reduced by about 25% com-

pared with Gaussian Fields based method, and more than 50%

compared with the standard supervised SVR. In Fig. 2(a), we

gradually increase the number of unlabeled samples from 200 to

2000, and examine the time consumption. As can be seen, our

approach is orders of magnitudes faster compared with Gaussian

Fields based method. In Fig. 2(b), we plot the regression error of

the two methods with regard to the Gaussian kernel width. As can

Table 2

Side-by-side comparison of the learning performance using single empirical kernel matrix.

Data alignf (baseline) alignf (ours) local rademacher complexity (baseline) local rademacher complexity (ours)

size/dim

Digit1 0.2770.02 (0.8) 0.8270.02 (1.2) 0.4970.02(16.9) 0.8270.02(17.1)

1500�241 10.7370.54 4.8970.85 6.4570.63 5.1870.56

USPS 0.0270.01 (0.5) 0.6670.04 (1.2) 0.0370.01 (6.5) 0.7270.01(5.7)

1500�241 14.1571.92 6.6471.27 10.0971.49 8.1871.26

COIL2 0.1570.07 (0.6) 0.5570.07 (1.2) 0.1870.01(13.2) 0.5170.03 (11.3)

1500�241 19.9272.14 13.4472.41 18.5473.43 14.2272.12

BCI 0.0170.04 (0.6) 0.1470.04 (0.4) 0.0670.01(17.2) 0.1870.04(14.3)

400�241 51.3673.50 32.9973.10 39.3673.35 33.0972.59

COIL 0.0970.01 (0.3) 0.1170.05 (0.4) 0.0870.01 (20.3) 0.1270.05 (20.4)

1500�241 15.9272.31 9.1470.96 19.9474.32 10.6574.33

g241n 0.3170.01 (0.6) 0.3370.03 (1.4) 0.2070.02(14.5) 0.3370.01(17.8)

1500�241 29.0370.67 24.1171.73 26.3571.16 23.9071.16

Text 0.1370.02 (18.8) 0.3070.02 (20.1) 0.1470.03(25.6) 0.3470.02(22.1)

1500�11960 30.1872.28 23.4271.46 27.3472.87 23.0972.21

usps38 0.5370.01 (0.9) 0.8470.02 (1.2) 0.5670.02(25.6) 0.8570.03(23.6)

1200�256 6.2570.80 2.8270.83 4.6370.41 2.5470.32

usps49 0.5270.02 (0.7) 0.8670.01 (1.2) 0.3770.01(25.0) 0.8770.02(20.9)

1296�256 5.7070.77 1.9870.52 4.6370.24 2.0970.39

usps56 0.5270.02(0.7) 0.8670.01 (1.2) 0.5570.03(39.4) 0.8670.05(22.5)

1220�256 4.0970.72 2.4470.59 5.5470.52 2.3670.53

usps27 0.5670.01 (0.8) 0.9170.06 (1.2) 0.7870.02(5.1) 0.8870.01(19.1)

1376�256 1.9870.16 1.2170.25 2.0970.31 1.1870.27

odd/even 0.2270.01 (0.8) 0.6570.03 (1.6) 0.3170.02(27.0) 0.7070.02(14.1)

2007�256 13.9171.52 9.5871.56 10.2770.64 8.8270.84

Table 3

Side-by-side comparison of the learning performance using multiple empirical kernel matrix.

Data alignf (baseline) alignf (ours) local rademacher complexity (baseline) local rademacher complexity (ours)

size/dim

Digit1 0.8270.02 (1.2) 0.8670.02(2.8) 0.8270.02(17.1) 0.7970.01(30.8)

1500�241 4.8970.85 4.7070.92 5.1870.56 4.5470.61

USPS 0.6670.04 (1.2) 0.7270.04(2.7) 0.7270.01(5.7) 0.7370.01(15.1)

1500�241 6.6471.27 6.0971.02 8.1871.26 7.0471.04

COIL2 0.5570.07 (1.2) 0.5870.02 (3.2) 0.5170.03 (11.3) 0.5370.04 (34.1)

1500�241 13.4472.41 13.1472.66 14.2272.12 14.0272.66

BCI 0.1470.04 (0.4) 0.2270.04(1.4) 0.1870.04(14.3) 0.2270.04(25.7)

400�241 32.9973.10 30.2772.02 33.0972.59 30.4571.88

COIL 0.1170.05 (0.4) 0.1370.01 (2.1) 0.1270.05 (20.4) 0.1570.03 (42.3)

1500�241 9.1470.96 9.0470.98 10.6574.33 10.6174.81

g241n 0.3370.03 (1.4) 0.3770.03(5.6) 0.3370.01(17.8) 0.3470.01(24.5)

1500�241 24.1171.73 22.3671.93 23.9071.16 23.0971.01

Text 0.3070.02 (20.1) 0.3370.02(23.8) 0.3470.02(22.1) 0.3470.01(46.3)

1500�11960 23.4271.46 23.3670.96 23.0972.21 23.0071.13

usps38 0.8470.02 (1.2) 0.8170.02(2.7) 0.8570.03(23.6) 0.8470.02(54.7)

1200�256 2.8270.83 2.6370.33 2.5470.32 2.2770.45

usps49 0.8670.01 (1.2) 0.8670.01(2.9) 0.8770.02(20.9) 0.8770.01(23.7)

1296�256 1.9870.52 1.8170.22 2.0970.39 1.9070.45

usps56 0.8670.01 (1.2) 0.8770.01(1.6) 0.8670.05(22.5) 0.8570.01(44.7)

1220�256 2.4470.59 2.3570.59 2.3670.53 2.2770.32

usps27 0.9170.06 (1.2) 0.9070.01(1.9) 0.8870.01(19.1) 0.9070.01(35.6)

1376�256 1.2170.25 0.7270.21 1.1870.27 1.0070.19

odd/even 0.6570.03 (1.6) 0.6770.02(3.1) 0.6070.02(14.1) 0.6770.02(21.9)

2007�256 9.5871.56 8.9071.43 10.3670.84 9.3670.84
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be seen, our approach is less sensitive to the choice of the kernel

parameters. This makes it a practical in real-world applications.

From this example, we can see that semi-supervised kernel design

can give competitive performance compared with state-of-the-art

SSL algorithms that focus on estimating the labels (but not

learning a kernel). This validates the importance of a good kernel

in semi-supervised learning tasks. Of course, there are many SSL

algorithms whose focus is not on learning kernel. We choose the

Gaussian Fields based method as an example for comparison

because it has shown to provide state-of-the-art results in this

localization task [29].

4.3. Evaluation of superiority of label-aware base kernels

In previous sections, we have demonstrated that the proposed

method outperforms existing methods in semi-supervised kernel

learning tasks including classification and regression. To further

verify that this superiority is attributed to the newly proposed

label-aware base kernels, in this section, we examine in more

detail the usefulness of the proposed label-aware base kernels in

two different ways. First, we examine the individual alignment

score of the base kernels as an index of their quality. Second, we

apply state-of-the-art kernel combination schemes [11,12] on two

sets of base kernels, one is the traditional (unsupervised) base

kernels, and the other includes the label-aware base kernel, and

compare their learning performance. We call this side-by-side

comparison. This comparison clearly shows that by adding the

newly proposed base kernels, the learning performance of the

mixed kernel improves.

4.3.1. Alignment score comparison

In Fig. 3, we examine alignment score of the label-aware

eigenvectors (blue circles) and those from the normalized Graph

Laplacian.2 Here, the reported score is the average alignment

between one eigenvector and all the c target variables. As can be

seen, the label-aware eigenvectors almost always have higher or at

least very similar alignment scores compared with the eigenvec-

tors of the graph Laplacian.

4.3.2. Side-by-side learning performance comparison

In this section, we perform a side-by-side comparison among two

sets of base kernels to examine their performance in kernel learning.

The first set only contains unsupervised kernel eigenvectors; the

second set further adds label-aware base kernels. For both settings,

we use Gaussian kernels Kðx1; x2Þ ¼ expð� Jx1�x2 J
2 � bÞ as base

kernels. For each base kernel, we extract p eigenvectors from its graph

Laplacian, where p is chosen among 0:01n;0:05n;0:1n;0:15n;0:2n.

Here, algnf [11]and local rademacher [12] are chosen as the baseline

kernel combination schemes.

The kernel parameter and regularization parameter C in SVM are

the same as Section 4. In the local rademacher complexity method,

parameters θ and C are chosen among f0:1n;0:5n;0:8n;0:9n;ng and

f0:1;1;10;100;1000;10 000g. We examine the use of a single empiri-

cal kernel matrix (see Table 2), as well as a set of multiple empirical

kernel matrices whose kernel width parameters vary in b0 �
1
50

1
25;

1
10;

1
5;1;5;10

� �
(see Table 3). As can be seen, by incorporating

the label-aware base kernels, the learning performances are improved

in most of the data sets in both kernel combination schemes. We also

note that the improvement is less significant in case multiple empirical

kernel matrices are used. We speculate that when more empirical

kernel matrices are used (with varying kernel parameter), they may

have higher chances to align to the target. However, in some data sets,

such as usps38, and usps49, although multiple empirical kernel

matrices are used which lead to more base kernels, their performances

can still be significantly improved after adding the label aware base

kernels. We speculate that these data sets are very difficult, and even

under a wider choice of the kernel parameters, the resultant unsuper-

vised empirical kernel matrices are still poor candidate for base kernels,

and have to rely on using the label information to further improve their

quality. This clearly demonstrate the usefulness of the proposed label-

aware base kernels in difficult learning tasks.

5. Conclusion

This paper proposed a new algorithm for semi-supervised

kernel design. Unlike traditional methods that use kernel eigen-

vectors to span the base kernel and focus on tuning their weights,

this work aims at designing high-quality base kernel. In particular,

we compute the label-aware eigenvectors via extending the ideal

kernel eigenfunction. The experimental results demonstrated the

superiority of our algorithm. An important direction for our future

research is to theoretically study the alignment of the label-aware

base kernels. In addition, we would explore different ways for

propagating the ideal kernel and combining multiple kernels from

multiple sources.
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