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ABSTRACT
Discrete event sequences are ubiquitous, such as an ordered event
series of process interactions in Information and Communication
Technology systems. Recent years have witnessed increasing efforts
in detecting anomalies with discrete event sequences. However, it
remains an extremely difficult task due to several intrinsic chal-
lenges including data imbalance issues, discrete property of the
events, and sequential nature of the data. To address these chal-
lenges, in this paper, we propose OC4Seq, a multi-scale one-class
recurrent neural network for detecting anomalies in discrete event
sequences. Specifically, OC4Seq integrates the anomaly detection
objective with recurrent neural networks (RNNs) to embed the
discrete event sequences into latent spaces, where anomalies can
be easily detected. In addition, given that an anomalous sequence
could be caused by either individual events, subsequences of events,
or the whole sequence, we design a multi-scale RNN framework to
capture different levels of sequential patterns simultaneously. We
fully implement and evaluate OC4Seq on three real-world system
log datasets. The results show that OC4Seq consistently outper-
forms various representative baselines by a large margin. Moreover,
through both quantitative and qualitative analysis, the importance
of capturing multi-scale sequential patterns for event anomaly de-
tection is verified. To encourage reproducibility, we make the code
and data publicly available1.
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1 INTRODUCTION
Nowadays, Information and Communication Technology (ICT) has
permeated every aspect of our daily life and played a crucial role in
society than ever. While ICT systems have brought unprecedented
convenience, when in abnormal states caused by malicious attack-
ers, they could also lead to ramifications including severe loss of
economy and social wellbeing [12, 24, 33]. Therefore, it is vital to
timely and accurately detect abnormal states of ICT systems such
that the loss can be mitigated. Fortunately, with the ubiquitous
sensors and networks, ICT systems have generated a large amount
of monitoring data [5, 11, 12, 14, 24]. Such data contains rich in-
formation and provides us with unprecedented opportunities to
understand the complex states of ICT systems.

One type of the most important monitoring data is discrete event
sequence. A discrete event sequence is defined as an ordered series
of events, where each event is a discrete symbol belonging to a finite
alphabet [6]. The discrete event sequences can be seen everywhere
such as control commands of machine systems, logs of a computer
program, and transactions of customer purchases. Due to the rich
information they provide, they have been a valuable source for
anomaly detection adopted by both academic research and industry
practice [4, 6, 11, 12, 14]. For example, system logs that record the
detailed messages of run time information of modern computer
systems are extensively used for anomaly detection [14, 23, 27, 36].
Each log message can be roughly considered as consisting of a
predefined constant print statement (also known as “log key” or
“message type”) and a specific parameter (also known as “variable”).
When the log keys are arranged chronologically according to the
recording time, they form a discrete event sequence that can reflect
the underlying system state. Figure 1 illustrates the logs from a
BlueGene/L supercomputer system (BGL). In this example, six log
messages are generated by five corresponding predefined state-
ments (log keys). These log keys form a discrete event sequence.
When the system is in an abnormal state, the resulted discrete event
sequences will deviate from the normal patterns. For instance, if
“k2” always succeeds “k1” in a normal state, then the log key se-
quence in Figure 1 may indicate an abnormal state because “k2” is
after “k5”, which is unlikely to happen in the normal state. In the
following, we refer to discrete event sequences generated by normal
and abnormal system states as normal and abnormal sequences,
respectively.

Despite the increased interest in detecting anomaly for discrete
event sequences [14, 15, 25], the task remains challenging for several
reasons. The first challenge is from the data imbalance issue that is
commonly observed in anomaly detection related applications. As
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Log Messages

Log Key Sequence

Time Line

k1 k2 k3 k4 k5

2005-11-10-23.04.09.760063 R63-M0-N3-C:J14-U11 RAS KERNEL INFO iar 
00106298 dear 02f7a18c 
2005-11-10-23.12.32.269153 R63-M0-N5-C:J12-U01 RAS KERNEL INFO 488205 
floating point alignment exceptions 
2005-11-11-04.39.52.183132 R31-M0-N8-I:J18-U01 RAS KERNEL INFO ciod: 
generated 128 core files for program /bgl/apps/followup/SPaSM_static/
SPaSM_mpi.new_comp 
2005-11-11-18.58.22.474164 R23-M1-N0-C:J08-U11 RAS KERNEL INFO CE sym 
25, at 0x12127ee0, mask 0x10 
2005-11-14-18.25.23.269634 R46-M1-NE-C:J14-U11 RAS KERNEL FATAL rts: 
kernel terminated for reason 1004 
2005-11-15-21.12.12.119153 R63-M0-N2-C:J52-U01 RAS KERNEL INFO 489105 
floating point alignment exceptions 

k1:

k2:

k3:

k4:

k5:

k2:

k2

Figure 1: An illustrative example of BGL log messages and
the corresponding log key sequence. Each log message con-
tains a predefined log key that is underscored by red lines.

systems are in normal states most of the time, abnormal sequences
are very rare. This makes the data distribution substantially uneven
in terms of normal and abnormal states. Thus, binary classifica-
tion models that have achieved great success in the other problems
become ineffective for anomaly detection. Moreover, in reality, it
is hard to obtain prior knowledge about the abnormal sequence,
which further exacerbates the situation. The second obstacle comes
from the discrete property of events. Unlike continuous sequences
where each event is real-valued and has physical meanings, the
discrete event sequence consists of meaningless discrete symbols,
making it hard to capture the relations of events over time. Finally,
the sequential nature of the data makes the problem even more chal-
lenging. In order to determine whether a discrete event sequence is
abnormal or not, it is essential to consider each event, subsequences
of events, and the whole sequence jointly. This requires dedicated
efforts to designing models that not only have strong capability
to capture the sequential patterns but also are flexible to handle
sequential patterns at different scales.

To address the aforementioned challenges, in this paper, we pro-
pose OC4Seq, a multi-scale one-class recurrent neural network
framework for event sequence anomaly detection. It is proposed
to directly integrate the anomaly detection objective with a spe-
cially designed deep sequence model that explicitly incorporates
sequential patterns at different scales. The main contributions of
this work are summarized as follows:

• We identify the importance of multi-scale sequential patterns
in anomaly detection for discrete event sequences empiri-
cally.

• We introduce a novel one-class recurrent neural network
frameworkOC4Seq for discrete event sequence anomaly de-
tection. To the best of our knowledge,OC4Seq describes the
first attempt to incorporate a deep one-class classifier with
the event sequence anomaly detection task, and one of the
first to extend one-class classifier concepts into applications
from data mining fields.

• We propose to directly optimize the deep sequence model
with a one-class classification objective. The multi-scale
sequence model is trained to explicitly map the local sub-
sequence and whole sequence into different latent spaces,
where the normal data points are enclosed by hyperspheres
with minimum volume. Our proposed model can be trained
in an end-to-end manner.

• The proposed framework is fully implemented and exten-
sively evaluated on three real-world system log datasets. The
results show that OC4Seq outperforms the state-of-the-art
representative methods with a significant margin.

2 PROBLEM STATEMENT
Before we formally define the problem of anomaly detection for
discrete event sequences, we first introduce notations that will be
used throughout the rest of the paper. Lower-case letters such as
𝑖 and 𝑗 are used to denote scalar variables and upper-case letters
such as 𝑁 and𝑀 represent scalar constants. Moreover, we use bold
lower-case letters to denote vectors such as v and x and bold upper-
case for matrices such as W. In addition, the 𝑖𝑡ℎ entry of a vector v
is denoted as v(𝑖). Similarly, W(𝑖, 𝑗) indicates the entry at 𝑖𝑡ℎ row
and 𝑗𝑡ℎ column of a matrix W. In the rest of the paper, event and
discrete event are used interchangeably. We use (· · · ) to represent
an event sequence and subscripts are used to index the events in
the sequence such as (𝑥1, 𝑥2, 𝑥3).

Given an event set E that contains all possible discrete events, an
event sequence 𝑆𝑖 is defined as 𝑆𝑖 = (𝑒𝑖1, 𝑒

𝑖
2, · · · , 𝑒

𝑖
𝑁 𝑖 ), where 𝑒𝑖𝑗 ∈ E

and 𝑁 𝑖 is the length of sequence 𝑆𝑖 . Each event 𝑒𝑖
𝑗
is represented

by a categorical value, i.e., 𝑒𝑖
𝑗
∈ N+.

With the notations above, the anomaly detection for discrete
event sequence problem under the one-class setting is formally
defined as follows:

Given a set of sequences S = {𝑆1, 𝑆2, · · · , 𝑆𝑁 }, where each se-
quence 𝑆𝑖 is normal, we aim to design a one-class classifier that is able
to identify whether a new sequence 𝑆 is normal or not by capturing
the underlying multi-scale sequential patterns in S.

3 PRELIMINARIES: ONE-CLASS CLASSIFIER
In this section, we introduce preliminaries that lay a foundation
for our proposed framework. A one-class classifier is a specially
designed classifier that is trained with objects of a single class
and can predict whether an object belongs to this class or not in
the test stage. One of the most widely used one-class classifiers
is kernel-based such as One-Class Support Vector Machines (OC-
SVM) [29] and Support Vector Data Description (SVDD) [31]. Both
OC-SVM and SVDD are inspired by SVM that tries to maximize the
margin between two classes. Next, we use SVDD as an example to
illustrate traditional one-class classifiers. SVDD aims at finding a
spherically shaped boundary around the given data in the kernel
space. Specifically, let the center of the hypersphere be c and the
radius be 𝑅 > 0. The SVDD objective is defined as follows:

min
𝑅,c,𝜀

𝑅2 +𝐶
𝑛∑
𝑖=1

𝜀𝑖 (1)

𝑠 .𝑡 .∥𝜙 (x𝑖 − c)∥2 ≤ 𝑅2 + 𝜀𝑖 , 𝜀𝑖 ≥ 0, ∀𝑖
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where x𝑖 is the feature vector of the 𝑖𝑡ℎ data and 𝜀𝑖 ≥ 0 is a slack
variable for x𝑖 that is introduced to tolerate the presence of out-
liers in the training set, and the hyperparameter 𝐶 trades off the
errors 𝜀𝑖 and the volume of the sphere. The objective defined in
Equation 1 is a primary form and similar to SVM, it is solved in
the dual space by using Lagrange multipliers. For more details of
the optimization, please refer to the original paper [31]. Once the 𝑅
and c are determined, the points that are outside the sphere will be
classified as other classes.

Recently, a deep neural network based one-class classifier called
Deep SVDD was introduced in [28]. Inspired by SVDD, it tries to
find a minimum hypersphere in the latent space. Unlike SVDD,
which relies on kernel functions for feature transformation, Deep
SVDD takes advantage of deep neural networks to learn data rep-
resentations. It employs a quadratic loss for penalizing the distance
of every data point representation to the center. The objective func-
tion has been proved with nice theoretical properties [28]. Once
the neural networks are trained and the center is fixed, outliers will
be detected similarly as in SVDD.

4 THE PROPOSED FRAMEWORK
In this section, we introduce OC4Seq, a multi-scale one-class re-
current neural network framework for event sequence anomaly
detection. As illustrated in Figure 2, OC4Seq consists of two major
components that focus on the global and local information in the se-
quences, respectively. The details of each component are described
in the next subsections.

4.1 Learning Embeddings for Events
The inputs of the framework are the sequences of events, where
each event e𝑡 is a one-hot vector and e( 𝑗) = 1, e(𝑖) = 0, ∀𝑖 ≠ 𝑗 , if
e𝑡 is the 𝑗𝑡ℎ type event of the set E. In real-world scenarios, event
space could be very large, i.e., there are tens of thousands of event
types. This can lead e𝑡 to be very high-dimensional and cause noto-
rious learning issues such as sparsity and curse of dimensionality.
In addition, one-hot vector representation makes an implicit as-
sumption that events are independent with each other, which does
not hold in most cases. Therefore, we design an embedding layer
to embed events into a low-dimension space that can preserve rela-
tions between events. To do so, we introduce an embedding matrix
E ∈ R𝑑𝑒×|E | , where 𝑑𝑒 is the dimension of the embedding space
and |E | is the number of event types in E. With the embedding
matrix, the representation of e𝑡 can be obtained as follows:

x𝑡 = E𝑇 · e𝑡 (2)

where x𝑡 ∈ R𝑑
𝑒 is the new low-dimensional dense representation

vector for e𝑡 . After the embedding layer, the input sequences will
be passed into the other components that will be introduced next.

4.2 Anomaly Detection from Global
Perspective

To detect an anomalous sequence, it is important to learn an ef-
fective representation of the whole sequence in the latent space.
To this end, we propose to integrate the widely-used Gated Recur-
rent Neural Networks (GRU) [7] with one-class objective function.
Specifically, given a normal sequence, i.e., 𝑆𝑖 = (x𝑖1, x

𝑖
2, · · · , x

𝑖
𝑁 𝑖 ),

the GRU learns a representation of the sequence in a recursive
manner. At the 𝑡𝑡ℎ step, the GRU outputs a state vector h𝑖𝑡 , which is
a linear interpolation between previous state h𝑖

𝑡−1 and a candidate
state h̃𝑖𝑡 . Formally, we have:

h𝑖𝑡 = 𝑧𝑖𝑡 ⊙ h𝑖𝑡−1 + (1 − 𝑧𝑖𝑡 ) ⊙ h̃𝑖𝑡 (3)
where ⊙ is the element-wise multiplication. 𝑧𝑡 is the update gate,
which is introduced to control how much current state should be
updated given the current information x𝑖𝑡 . 𝑧𝑡 is calculated as:

𝑧𝑖𝑡 = 𝜎 (W𝑧x𝑖𝑡 + U𝑧h𝑖𝑡−1) (4)
where W𝑧 and U𝑧 are the trainable parameters and 𝜎 (·) is a sigmoid
function, which is defined as follows:

𝜎 (𝑥) = 1
1 + 𝑒−𝑥

(5)

Moreover, the candidate state h̃𝑖t introduced in Equation 3 is com-
puted as follows:

ℎ̃𝑖𝑡 = 𝑔(Wx𝑖𝑡 + U(𝑟 𝑖𝑡 ⊙ h𝑖𝑡−1)) (6)
where 𝑔(·) is the tanh function that is defined:

𝑔(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(7)

W and U in Eq. (6) are trainable parameters. 𝑟𝑡 is the reset gate. It
is introduced to determine how much the candidate state should
incorporate previous state. The reset gate is calculated as:

𝑟 𝑖𝑡 = 𝜎 (W𝑟x𝑖𝑡 + U𝑟h𝑖𝑡−1) (8)
As the state vector h𝑁 𝑖 at the final step summarizes all the

information in the previous steps, we regard it as the representation
of the whole sequence. Please note that the GRU component can
be replaced by any sequence learning models such as Long Short-
Term Memory (LSTM) [19]. In fact, we empirically found that the
two have similar performance. Due to its structural simplicity, we
choose GRU over LSTM. More details of the component analysis
can be found in Section 5.

Inspired by the intuition behind the Deep SVDD that all the
normal data should be lie within a hypersphere of minimum volume
in a latent space, we propose the following objective function to
guide the training process:

L𝑔𝑙𝑜𝑏𝑎𝑙 = min
Θ

1
𝑁

𝑁∑
𝑖=1

∥h𝑁 𝑖 − c∥2 + 𝜆∥Θ∥2𝐹 (9)

Here, c is a predefined center in the latent space and𝑁 is the total
number of sequences in the training set. The first term in the objec-
tive function employs a quadratic loss for penalizing the distance of
every sequence representation to the center c and the second term
is a regularizer controlled by the hyperparameter 𝜆. Therefore, this
objective will force the GRU model to map sequences to represen-
tation vectors that, on average, have the minimum distances to the
center c in the latent space.

Although the global GRU is effective to model the whole se-
quence, it might ignore vital information for event sequence anom-
aly detection because of the following reason: the abnormal prop-
erty of a sequence can be caused by only a small abnormal sub-
sequence or even a single abnormal event. However, when the
sequence is long, the abnormal information could be overwhelmed
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Figure 2: The overview of the proposed framework OC4Seq. It consists of two major components that learn the sequential
information from global and local perspectives, respectively.

by other normal subsequences during the representation learning
procedure. This could lead to a very high false negative rate.

4.3 Anomaly Detection from Local Perspective
In the previous subsection, we have introduced how to combine
GRU and one-class classification objective to embed the normal
sequences in a latent space where they lie within a small distance
to a predefined center. However, local information that is vital
for anomaly detection could be overwhelmed during this process.
Thus, we design a subsequence learning component to detect the
anomalies from the local perspective.

For a given event sequence, we construct subsequences of a fixed
size𝑀 with a sliding window. Therefore, each subsequence contains
its unique local information, which plays an important role in de-
termining whether the whole sequence is abnormal or not. To learn
the representation of subsequence, we introduce the local GRU com-
ponent that will model the sequential dependencies in every subse-
quence. Specifically, given a subsequence x𝑖

𝑡−𝑀+1, x
𝑖
𝑡−𝑀+2, · · · , x

𝑖
𝑡

of length𝑀 , the local GRU processes the events sequentially and
outputs𝑀 hidden states, the last of which is used as the represen-
tation of the local subsequence:

h𝑖𝑡 = GRU(x𝑖𝑡−𝑀+1, x
𝑖
𝑡−𝑀+2, · · · , x

𝑖
𝑡 ) (10)

Thus, for all subsequences in a sequence, the GRU will obtain a
sequence of hidden representations that encode the sequential de-
pendencies in every local region as follows:

h𝑖1, h
𝑖
2, · · · , h

𝑖
𝑁 𝑖−𝑀 = 𝐿𝑜𝑐𝑎𝑙𝐺𝑅𝑈 (x𝑖1, x

𝑖
2, · · · , x

𝑖
𝑁 𝑖 ) (11)

where LocalGRU is the name for the second GRU component that
processes each subsequence.

For a normal event sequence, it is intuitive to assume that all of
its subsequences are also normal. Thus, we further assume that all
the local subsequences should be within a hypersphere in another
latent space. To impose this assumption, we design the following
objective function to guide the local sequence learning procedure:

L𝑙𝑜𝑐𝑎𝑙 = min
Θ𝐿

1
𝑁

𝑁∑
𝑖=1

𝑁 𝑖−𝑀∑
𝑗=1

∥h𝑁 𝑖
𝑗
− c𝐿 ∥2 + 𝜆∥Θ𝐿 ∥2𝐹 (12)

Here, c𝐿 is a predefined center of another hypersphere in the latent
space and Θ𝐿 contains all the trainable parameters of LocalGRU.
Similarly, the first term penalizes the average distance between
all normal subsequences to the center c𝐿 and the second term is a
regularizer.

4.4 The Objective Function and Optimization
Procedure

In previous subsections, we have introduced the components of
OC4Seq for detecting abnormal event sequences from both global
and local perspectives, respectively. In this subsection, we design
an objective function to combine them together. Specifically, given
the global and local loss functions L𝑔𝑙𝑜𝑏𝑎𝑙 and L𝑙𝑜𝑐𝑎𝑙 , the overall
objective function of OC4Seq is defined as follows:

min
Θ𝐿,Θ

L = L𝑔𝑙𝑜𝑏𝑎𝑙 + 𝛼L𝑙𝑜𝑐𝑎𝑙 (13)

where 𝛼 is a hyper parameter that controls the contribution from
local information in the sequence. This objective enables us to train
the framework in an end-to-end manner. The specific optimization
procedure is described next.
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Table 1: The key statistics of RUBiS,HDFS, and BGL datasets.

Dataset # of normal # of abnormal # of log keys
RUBiS 11,677 1,000 24
HDFS 558,221 16,838 28
BGL 9,543 985 1,540

Optimization.We use stochastic gradient descent (SGD) and its
variants (e.g., Adam) to optimize the objective function defined in
Eq. (13). Following previous work [28], to accelerate the training
process, the predefined centers c is computed as follows: given
the untrained GRU, we firstly feed the sequences in the training
set into it and obtain the sequence representation vectors. Then,
we obtain an average vector by computing the mean value of all
representation vectors and use it as c. To obtain c𝐿 , a similar process
is applied with untrained LocalGRU. Once c and c𝐿 are obtained,
their values will not be updated in the optimization process. The
whole training process finishes when the objective value converges.
Inference. In the inference stage, for a given sequence, we calcu-
late the loss defined in Eq. (13) as its anomaly score. The higher
the value, the more likely the given sequence being an anomaly.
We employ a simple threshold-moving algorithm [16] to determine
the optimal threshold. Specifically, we first define a set of thresh-
olds, and then utilize the validation set to evaluate our model’s
performance under each. The optimal threshold would be the one
resulting in the best result based on the pre-defined evaluation met-
ric. In this work, to locate the threshold with the optimal balance
between precision and recall, we choose F1-score as the measure-
ment, which is the harmonic mean of precision and recall, and is
often considered as a more comprehensive evaluation metric for
class imbalanced problem [22]. Note that depending on different
application requirements, other metrics like Geometric Mean can
also be used. When the anomaly score is higher than the chosen
threshold, the sequence will be detected as an anomaly.

5 EXPERIMENT
In this section, we conduct extensive experiments to evaluate the
proposed frameworkOC4Seq on three real-world system log datasets.
We first describe the datasets and experimental settings. Then, we
present the experimental results and observations. Finally, we con-
duct qualitative analysis to gain deep understandings of the pro-
posed framework. To encourage reproducibility, we make our data
and code publicly available1.

5.1 Datasets
RUBiS [2]: This dataset is a weblog dataset and was generated by
an auction site prototype modeled after eBay.com [2]. Specifically,
each log message contains information related to a user web be-
havior including user_id, date, request_info, etc. Following previous
work [37, 39], we first parse each log message into a structured
representation, which consists of a log key and a variable among
others. Next, the log keys of the same user are collected following
the time order that forms an event sequence. Thus, each log key
sequence represents a user behavior session on a web server. Each

abnormal sequence corresponds to an attack case. In total, there
are 11, 677 normal sequences and 1, 000 abnormal sequences.
Hadoop Distributed File System (HDFS) [36]: This dataset was
generated by a Hadoop-based map-reduce cloud environment using
benchmarkworkloads. It contains 11,175,629 logmessages, of which
2.9% are labeled as anomalies by Hadoop experts. Each log message
involves a block ID, a timestamp, and state information. Tomake the
comparison fair, we used the publicly available dataset processed
by [14]. As described in [14], the log messages are firstly parsed into
structured text so that a log key is extracted from each log message.
In addition, the log keys are sliced into sequences according to
the associated block IDs. As a result, there are 558, 221 normal
sequences and 16, 838 abnormal sequences.
BlueGene/L (BGL) [27]: This dataset contains 4, 747, 936 log mes-
sages generated by a BlueGene/L supercomputer systemwith 131, 072
processors and 32, 768 GB memory at Lawrence Livermore National
Labs. Each log message contains system information such as type,
timestamp, nodes, content, etc. The log messages can be categorized
into two types, i.e., non-alert and alert. The non-alert messages are
labeled as normal and alert messages are labeled as abnormal. The
log messages are firstly parsed by Drain [17] Following previous
work [26], the log keys are sliced using time sliding windows. A
sequence is labeled as abnormal if it contains at least one abnormal
message. After processing, there are 9, 543 normal sequences and
985 abnormal sequences.

The statistics of the three datasets are summarized in Table 1. As
stated in Section 2, this work focuses on the one-class/unsupervised
setting, where the training dataset does not contain any abnormal
sequence. Therefore, each dataset is split into training, validation,
and test sets by the following process. Firstly, we randomly sample
the training data from the normal sequence set. Then, we sepa-
rately split the remaining normal sequences and all the abnormal
sequences into validation and test sets with the ratio of 3/7 (vali-
dation/test). At last, we combine the two validation/test sets into
one.

5.2 Baselines
We compare OC4Seq with the following five anomaly detection
baselines:

Principle Component Analysis (PCA) [35]. PCA is a classic
unsupervised method that has been extensively used for a variety
of problems. More recently, it becomes a popular method for anom-
aly detection [36]. Specifically, it first constructs a count matrix
M, where each row represents a sequence, each column denotes a
log key, and each entry M(𝑖, 𝑗) indicates the count of 𝑗𝑡ℎ log key
in the 𝑖𝑡ℎ sequence. Next, PCA learns a transformed coordinate
system, where the projection lengths of normal sequences are small
while the ones of abnormal sequences are large. Although it has
been shown that PCA can be effective in detecting anomalies, es-
pecially in reducing false positives [14], it ignores the sequential
information, which could play an important role in event sequence
anomaly detection. We use the open-sourced implementation [18].

Invariant Mining (IM) [23]. IM is another popular unsuper-
vised anomaly detection method. It is designed to automatically
mine invariants in logs and assumes that the discovered invari-
ants can capture the inherent linear characteristics of log flows.
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Table 2: The prediction performance comparison on RUBiS, HDFS, and BGL dataset.

Method HDFS RUBiS BGL
F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall

OC-SVM 0.509 0.622 0.431 0.351 0.220 0.869 0.336 0.215 0.764
PCA 0.634 0.968 0.471 0.784 0.862 0.718 0.423 0.269 0.993
Invariant Mining 0.943 0.893 1.000 0.912 0.841 0.996 0.428 0.273 1.000
DeepLog 0.941 0.952 0.930 0.935 0.885 0.992 0.326 0.196 0.980
DeepSVDD 0.872 0.964 0.796 0.970 0.974 0.966 0.410 0.298 0.659
OC4Seq 0.976 0.955 0.998 0.985 0.987 0.983 0.747 0.704 0.795

Similar to PCA, it firstly constructs a count matrix M. Next, IM
learns sparse, integer-valued invariants with physical meanings
from M. Finally, with the learned invariants, IM makes an invariant
hypothesis. And the sequences that do not satisfy the hypothesis
are detected as anomalies. As IM also relies on the𝑀 , it has similar
drawbacks to PCA. The IM used in this work was implemented
by [18].

One-Class SVM (OC-SVM) [29]. OC-SVM is a very effective
one-class classifier that has been extensively used for anomaly
detection [1, 21, 34]. Specifically, it learns a kernel that maps the
normal data into a latent space, where all the normal sequence
clusters in a small region. Thus, a sequence that does not belong
to the cluster is regarded as abnormal. To apply OC-SVM, we first
need to extract features from each sequence. In this work, we tried
two models to extract features: sequence auto-encoder [10] and bag-
of-words [38]. As we empirically found the latter often has better
performance, we choose bag-of-words as the feature extractor. The
OC-SVM used in this work was implemented with the scikit-learn
package.

DeepLog [14]. DeepLog is a state-of-the-art log anomaly detec-
tion method. This method is based on an LSTM model, which tries
to capture the sequential dependencies in sequences. Specifically,
by training with normal sequences, it learns to predict the next
token given the previously seen tokens in a sequence. During the
test stage, for each time step in a sequence, DeepLog will output a
probability distribution over all the log keys. If any of the actual
tokens are not in the top 𝑘 candidates, it will regard the sequence
as abnormal. Compared to other baselines, this method can uti-
lize sequential information and has demonstrated state-of-the-art
performance in previous work.

DeepSVDD [28]. DeepSVDD is a general one-class classifier
that builds on deep neural networks. It simultaneously learns a
representation vector for each data and optimizes the anomaly
detection objective directly. To make the comparison fair, we use
the same RNN models in OC4Seq as its representation learning
component.

5.3 Experimental Settings
Model Selection: For all the methods with hyper-parameters, we
use the validation set to select the best value and report the perfor-
mance on the test set. For DeepLog, we follow the original paper’s
suggestion [14]. Specifically, both the ℎ and 𝑔 are selected from
{8, 9, 10}, which denotes window size and candidate number, re-
spectively. The number of layers is set to be 2 and the number

of LSTM hidden units is 64. For OC4Seq, we use the same hyper-
parameters as DeepLog and select 𝛼 that controls the contribution
of local subsequence from {0.01, 0.1, 1, 10}.
Implementation Details:We implemented OC4Seq with Pytorch
1.5. The model is trained using Adam [20] optimizer with the learn-
ing rate to be 0.01. The mini-batch size is chosen to be 64 and the
model is trained for 100 epochs on a single NVIDIA GEFORCE RTX
2080 card.
EvaluationMetrics: To measure the model performance on anom-
aly detection, we choose the widely-used Precision, Recall, and
F1-score as the evaluation metrics. They are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where TP (True Positives) denotes the number of true abnormal
sequences that are detected by the model, FP (False Positives) mea-
sures the number of normal sequences that are regarded as anom-
alies, and FN (False Negatives) denotes the number of abnormal
sequences the model fails to report. Thus, based on these definitions,
there is a well-known trade-off between precision and recall. On
the other hand, the F1-score considers the balance of the two and
is often considered as a more comprehensive evaluation metric.

5.4 Performance Comparison
The results of all methods on three datasets are shown in Table 2.
From the table, we can make the following observations: 1) On
most datasets, OC-SVM has the worst performance. We argue that
this is because OC-SVM is highly dependent on feature qualities.
Unlike dense data where OC-SVM generally performs very well, it
is very hard to extract meaningful features from discrete event se-
quences. 2) IM and DeepLog outperform PCA significantly in most
of the evaluation metrics. This is expected as both IM and DeepLog
are designed specifically for anomaly detection for log data. 3) IM
and DeepLog generally have comparable results in terms of F-1
score. It is interesting to observe that IM always achieves a very
impressive Recall while DeepLog is better in Precision. We argue
that this difference could be caused by the fact that DeepLog fo-
cuses much on the local subsequence information while IM always
concentrates on global sequence information. 4) The performance
of DeepSVDD varies significantly in different datasets. This is be-
cause it only focuses on global information in the sequences. Thus,
it can do very well with the datasets where local information is
not important and becomes much worse otherwise. 5) On all the
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(a) Precision-Recall curves with different alpha. (b) Precision-Recall curves with # of layers. (c) Precision-Recall curves with different RNN cell
types.

Figure 3: Validation Precision-Recall curves on HDFS dataset.

(a) Showcase of the importance of local information. (b) Showcase of the importance of global information.

Figure 4: The local and global anomaly scores of HDFS log key sequences.

datasets, the proposed framework OC4Seq has achieved the best
F-1 scores. In addition, when comparing to the second-best method,
the performance gain brought by OC4Seq is significant. In terms
of Precision, OC4Seq still achieved the highest value in most cases.
For Recall, OC4Seq was only slightly outperformed by IM which
has much lower precision scores. 6) All of the methods performed
much worse on BGL datasets than the other two datasets. This
is because BGL involves much more log keys that can make the
task extremely difficult. Moreover, it is interesting to note that the
DeepLog method becomes especially ineffective as it heavily relies
on the next key prediction which is very difficult when log keys
space becomes large. In this challenging case, the improvement
from OC4seq over other baselines becomes even more remarkable.

As a summary, from the experimental results on three datasets,
our proposed framework OC4Seq demonstrates its superior perfor-
mance over the representative baselines. We argue this is because
OC4Seq can capture sequential information from both local subse-
quence and whole sequence and it directly optimizes the anomaly
detection objective. Next, we design further experiments to gain
deeper understandings of OC4Seq.

5.5 Parameter Analysis
In this subsection, we analyze key hyper-parameters and compo-
nents of OC4Seq. We only report the performance on the HDFS
validation dataset as we have similar observations on the others.
Moreover, the performance is evaluated by the Precision-Recall
curve as it eliminates the need to choose a specific anomaly thresh-
old and very suitable for datasets with imbalanced label distribution.
We also report the area under the Precision-Recall curve (average
precision) where the higher the value, the better the performance.

We firstly vary the value of 𝛼 from {0, 0.01, 0.1, 1, 10}, which
controls the contribution from local subsequence information. The
results are shown in Figure 3a. From the figure, we can see that
with the increase of 𝛼 , the performance firstly increases and then
decreases. The initial increase demonstrates the importance to in-
corporate local subsequence information while the latter decrease
suggests that the global sequential information is also very essential
and should not be overwhelmed by local information.

Next, we vary the number of RNN layers from {1, 2, 3, 4}, and
the results are shown in Figure 3b. These results suggest that more
layers do not necessarily lead to better performance as it may cause
other issues such as overfitting. Thus, it is important to select a
proper value through the validation process.
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Finally, to investigate how different types of RNN cells affect
anomaly detection performance, we experienced on popular cells,
i.e., RNN (Vanilla), GRU, and LSTM. The results are shown in Fig-
ure 3c. From the figure, it is easily seen that the LSTM and GRU cells
have very similar performance while vanilla RNN achieves much
worse results. These results are consistent with previous work [9].
Due to its simpler structure, we choose GRU in OC4Seq.

5.6 Case Study
In this subsection, to further understand how the local and global
information contribute to anomaly detection, we conduct case stud-
ies involving two pairs of representative log key sequences from
the HDFS dataset. Specifically, for a sequence, we use the trained
model to calculate the anomaly scores of each subsequence and the
whole sequence. The higher the anomaly score is, the more likely
the sequence is abnormal. The results are shown in Figure 4.

In Figure 4a, we show the first pair of normal and abnormal
sequences. The left panel uses dot lines to demonstrate the anoma-
lous scores for local subsequences. Each dot denotes one anomalous
score (y-axis) of 𝑥𝑡ℎ subsequence (x-axis). The right panel uses the
bar to show the anomalous score for the whole sequence (global
information). From the figure, we observe that the two sequences
have comparable anomalous scores for the whole sequence. Thus,
it is very difficult to detect the abnormal one purely from the global
perspective. However, from the local perspective, we can see that
the 10𝑡ℎ subsequence of the abnormal sequence has a very high
anomalous score while the anomalous scores of the subsequence of
the normal sequence are all very low. Therefore, in this case, the lo-
cal information plays a very important role in detecting anomalies.

In Figure 4b, the anomalous scores of the second pair of se-
quences are shown. Unlike the previous case, the second pair of se-
quences has very similar anomalous scores for local subsequences.
This makes it hard to detect anomalies from the local perspec-
tive. However, the abnormal sequence has a significantly higher
anomalous score from the global perspective than the normal one.
Therefore, the global information contributes a lot to detect the
anomaly in this case. From the two cases, we further illustrate the
importance of combining both local and global information in a
sequence for anomaly detection.

5.7 Visualization of Normal and Abnormal
Sequences

To gain insights into the one-class classifier objective function, we
project the global representations of both normal and abnormal
sequences in the HDFS validation set to a two-dimensional space
by Local Linear Embedding techniques [13]. The visualization of
the two-dimensional space is shown in Figure 5. We observe that
the normal sequences generally cluster together and lie in a very
small region. On the other hand, the abnormal sequences spread
all over the place. Therefore, the visualization clearly shows that
by directly minimizing the anomalous score, which measures the
distance between a normal data point and a center point, the one-
class classifier objective function is very effective to guide the model
to separate the abnormal and normal sequences in the latent space.

Figure 5: The visualization of the HDFS dataset. Abnormal
and normal data are denoted by red and blue dots, respec-
tively.

6 RELATEDWORK
In this section, we briefly review the related work on discrete event
sequence anomaly detection and one-class classifier.

AnomalyDetection forDiscrete Event Sequence:One group
of traditional methods for event sequence anomaly detection is
based on similarity measurement [3, 4], where the similarity be-
tween a test sequence and training sequences is calculated and the
anomalies are detected based on similarity scores. One major issue
with similarity based methods is that there is a lack of intrinsic
measurement of similarity between discrete event sequences and
the effectiveness of the model can be largely affected by the choice
of the similarity measurement. Other popular traditional methods
include Markovian techniques and Hidden Markov Model based
ones [8, 30]. However, the capacities of these models are too small
to capture the complex long-term dependencies in the sequences.
More recently, neural network based methods [14, 32] have been
proposed for anomaly detection and achieved great success due
to their strong representation learning ability and large modeling
capacities.

One-Class Classifier forAnomalyDetection:One-class clas-
sifiers focus on learning the properties of objects from a single class
and are trained to detect objects that are from any other classes.
Therefore, they are very suitable for anomaly detection tasks and
have gained great attention [29, 31, 34]. The two most successful
one-class classifiers are OC-SVM and SVDD [29, 31] that are based
on traditional kernel tricks. Only recently, the deep neural network
based one-class classifier is proposed by Ruff et al. [28]. Inspired by
SVDD [31], the authors designed a novel one-class classification
objective that has very nice theoretical properties and can effec-
tively train CNNs for image anomaly detection tasks. Considering
the success of one-class classifiers, we also build our framework
upon similar objective functions. However, unlike previous works
that mainly focus on dense data such as images, we conduct pio-
neering research of building one-class recurrent neural networks
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for discrete event sequences, which have very unique challenges
comparing to the dense data.

7 CONCLUSION
In this paper, we propose OC4Seq, an end-to-end one-class recur-
rent neural network for discrete event sequence anomaly detection.
OC4Seq can deal with multi-scale sequential dependencies and de-
tect anomalies from both local and global perspectives. Specifically,
OC4Seq incorporates an effective anomaly detection objective that
can guide the learning process of sequence models. The trained
multi-scale sequence model in OC4Seq explicitly maps the local
subsequence and whole sequence into different latent spaces, where
the normal data points are enclosed by hyperspheres withminimum
volume. The proposed OC4Seq has consistently shown superior per-
formance than representative baselines in extensive experiments on
three real-world datasets. In addition, through parameter analysis
and case studies, the importance of capturing multi-scale sequen-
tial dependencies for discrete event sequence anomaly detection
has been well demonstrated. Moreover, the visualization of the
sequence representations qualitatively suggests the effectiveness
of anomaly detection objectives.
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