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Abstract—Root Cause Analysis (RCA) is essential for pin-
pointing the root causes of failures in microservice systems.
Traditional data-driven RCA methods are typically limited to
offline applications due to high computational demands, and
existing online RCA methods handle only single-modal data,
overlooking complex interactions in multi-modal systems. In this
paper, we introduce OCEAN, a novel online multi-modal causal
structure learning method for root cause localization. OCEAN
introduces a long-term temporal causal learning module with
two encoders: one captures stable causal dependencies from
historical data, while the other models short-term variations
in the current batch data. We further design a multi-factor
attention mechanism to analyze and reassess the relationships
among different metrics and log indicators/attributes for enhanced
online causal graph learning. Additionally, a contrastive mutual
information maximization-based graph fusion module is developed
to effectively model the relationships across various modalities.
Extensive experiments on three real-world datasets demonstrate
the effectiveness and efficiency of our proposed method.

Index Terms—Root Cause Analysis, Microservice System, Multi-
modal Learning.

I. INTRODUCTION

Root Cause Analysis (RCA) is crucial for identifying the
underlying causes of system failures and ensuring the high
performance of microservice systems [} 2]]. Traditional manual
root cause analysis is labor-intensive, costly, and error-prone,
given the complexity of microservice systems and the extensive
volume of data involved. Consequently, effective and efficient
root cause analysis methods are vital for pinpointing failures in
complex microservice systems and mitigating potential financial
losses when system faults occur. Prior works leveraging causal
discovery have focused on constructing causal or dependency
graphs [3} 4} 2], which reveal causal links among system entities
and key performance indicators to trace underlying faults.

Despite significant advances, most of these approaches
are designed for offline use and face challenges with real-
time implementation in microservice systems due to high
computational demands. To address this, Wang et al. [1]]
introduced an online RCA method that decouples state-invariant
and state-dependent information and incrementally updates
the causal graph. Li ef al. [5] developed a causal Bayesian
network that leverages system architecture knowledge to
mitigate potential biases toward new data. However, these
online RCA methods are limited to handling single-modal data.
Recently, multi-modal data, such as system metrics and logs, are
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commonly collected from microservice systems, revealing the
complex nature of system failures [6]. For instance, failures
such as “Database Query Failures” might be overlooked if
only system metrics are considered, whereas issues like “Disk
Space Full” are more effectively identified through combined
analysis of metrics and logs. This underscores the importance of
using multi-modal data for a thorough understanding of system
failures. By integrating information from various sources, we
can detect the abnormal patterns of system failures that is
evident when analyzing single-modal data.

To bridge this gap, this paper proposes an online multi-modal
causal structure learning method for RCA in microservice
systems. Given the system KPI and multi-modal data (metrics
and log data), our objective is to construct an online multi-
modal causal graph that identifies the top k system entities
most relevant to the system KPI. Three major challenges arise
in this task: (C1) Enabling Long-term Temporal Causal
Relationship Learning in the Online Setting: Existing
temporal/sequential modeling techniques [7, 18, 9! [1, |6], (e.g.,
RNNs, Transformers, and LLMs) are computationally expensive
and limited to short-term dependencies. However, some system
faults, such as Distributed Denial of Service (DDoS) attacks,
may persist for extended periods. Effectively capturing these
long-term temporal dependencies in the online setting is
crucial for efficiently identifying various types of system
faults. (C2) Capturing the Correlation of Multi-dimensional
Factors: Existing RCA approaches [3| [10, 6] often analyze
abnormal patterns from multiple factors individually, such
as CPU usage or memory usage from system metrics and
frequency or golden signal from system logs, overlooking
potential relationships among these factors from both modalities.
Furthermore, these methods often consider all factors as equally
important; however, in real applications, certain factors prove to
be considerably more crucial than others. It is vital, therefore,
to reassess the contributions of each factor to the learning
of causal structures. (C3) Learning Multi-modal Causal
Structures: Effectively capturing the relationships between
different modalities in an online setting is crucial. Simply
combining causal graphs from individual modalities can be
problematic, especially if one modality is of lower quality.

To tackle these challenges, we introduce OCEAN, Online
Multi-modal Causal Structure LEArNing, for root cause iden-
tification in microservice systems. Specifically, we design
a long-term temporal causal relationship learning module
with two encoders, one for capturing the long-term temporal



dependencies and invariant causal relation for historical data
and another for modeling the small changes within current batch
data. We further develop a multi-factor attention mechanism to
analyze the correlations among various factors and reassess their
importance for causal graph learning. Additionally, we propose
a contrastive mutual information estimation technique to model
the relationships of different modalities. Our contributions can
be summarized as follows:

« We introduce a novel online framework for multi-modality
root cause analysis.

« We propose long-term temporal causal relationship learn-
ing module with two encoders, aiming to efficiently
capture long-term temporal dependencies and causal
relations for both historical data and current batch data.

o« We develop graph fusion techniques with contrastive
multi-modal learning to model the relationships between
different modalities and assess their importance.

« Extensive experiments on three real-world datasets demon-
strate the effectiveness and efficiency of our proposed
method.

II. PRELIMINARY AND RELATED WORK

Key Performance Indicator (KPI). In a microservice system,
KPIs serve as invaluable metrics for assessing the effectiveness
and productivity of the architecture [11]. They play an indis-
pensable role in monitoring and managing different aspects of
microservices to uphold optimal performance levels. Common
KPIs encompass latency and service response time. High values
in these metrics typically indicate suboptimal performance or
potential failure.

Entity Metrics. Entity metrics are the measurable time-series
attributes that provide insights into the performance and status
of services within a system [12]]. These entities encompass
various components such as physical machines, containers,
virtual machines, and pods. In microservice architectures,
typical entity metrics include CPU utilization, memory usage,
disk I/O activity, packet transmission rate, and etc. These
metrics are extensively employed to detect anomalous behavior
and pinpoint potential causes of system failures in microservice
environments [6} [13]].

Root Cause Analysis. Current root cause analysis (RCA) meth-
ods can be categorized into two main branches: single-modal
RCA methods and multi-modal RCA methods. Single-modal
RCA methods primarily investigate causal relationships among
system components using one type of data only [13| [2} [10} [1],
while multi-modal RCA methods [14} 15 6] benefit from
leveraging the rich data sources to achieve better performance.
Recently, large language model (LLM)-based approaches have
emerged as a new research direction for learning causal
relations in root cause identification, owing to the success of
LLMs in tackling complex tasks [7, 18} [16} 9} [17, [18]]. Unlike
existing RCA methods, this paper addresses the online multi-
modal RCA problem by uniquely modeling long-term temporal
dependencies while simultaneously capturing the cross-modal
correlation of multiple factors.

TABLE I
NOTATION TABLE

X ]UVI the historical system metric (offline data)
X the i-th batch of the system metric (streaming data)
Xjéj the historical system log (offline data)
X7 the ¢-th batch of system log (streaming data)

T1 the length of the historical metric data

Ty the length of the batch for the system metric
n—1 the number of system entities

T the total number of batches

dyr the number of different system metric features
dr, the number of different system log features

y the system Key Performance Indicator

G ={Vv, A} the causal graph
A the adjacency matrix in the causal graph

III. METHODOLOGY

In this section, we first present the problem statement and
then introduce OCEAN, an online causal structural learning
method designed to identify root causes using multi-modal data.
We propose three modules to tackle the challenges outlined in
the introduction: long-term temporal causal relationship learn-
ing, contrastive multi-modal learning and network propagation-
based root cause identification module. The overview of
OCEAN is provided in Figure [1]

A. Problem Statement

Let Xy = {XY,,X},,...,X],} denote the multivariate
time-series data of system metrics across n — 1 entities,
where X9, € R(=DxduxTi represents a large historical
dataset and X}, € R(=UxduxTz for j ¢ [1,7T] are smaller
sequential streaming batches. Here, dj; is the number of
metric features, and 77 and 75 denote the temporal lengths of
the historical and streaming segments, respectively. Similarly,
X = {X9,X} ..., XT} denotes the multivariate time-series
data of system logs, where each X} € R(=1)xdexT jg
obtained by preprocessing log records into structured time-
series format, and d; is the number of log features. The
system KPI is represented as y = {y’,y',...,y”7 }, where
y? € R™ and y' € R”2 correspond to historical and batch
KPI data, respectively. We consider n nodes in total: n — 1
microservice entities and one KPI node. The causal structure
among them is modeled by a directed graph G = (V, A),
where V denotes the set of vertices and A € R™*" is the
adjacency matrix, with 4;; # 0 indicating a causal influence
from node ¢ to node ;. For unified processing, we replicate
the KPI d,,; times and concatenate it with the metric and
log data, forming X9, € RrxduxTi - Xi g RrxduxTz,
and X9 € RxdexTi - Xi ¢ RnXdexTz In the offline
setting, only the historical data (X°, y°) are available for model
training, while in the online setting, streaming batches (X',
y*) are also used for root cause analysis. Finally, we employ
the Multivariate Singular Spectrum Analysis (MSSA)
model [19]], a state-of-the-art method for online anomaly
detection, to trigger the root cause analysis process. We
summarize the notations in Table

B. Long-term Temporal Causal Relationship Learning

To effectively capture temporal causal relationships among
system entities and KPIs, we adopt the Vector Autoregression
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Fig. 1.

The overview of the proposed framework OCEAN with three main modules: long-term temporal causal relationship learning, graph fusion with

contrastive multi-modal learning, and network propagation-based root cause localization. Both static encoder and dynamic encoder are trained in the offline
stage but only dynamic encoder will be finetuned with batch (streaming) data during the online stage.

(VAR) model [20], a classical yet powerful framework for
modeling dynamic interactions in multivariate time series.
Given the two-dimensional matrix X ; € R"™*T1 representing
the i system metric, the model predicts future values as:

Xipo = WIXI 4+ WX 2 4+ WX e,
dm
W—ZIIX Xiyis A 0)I%, (1
where X ; denotes the predicted values for the ™ metric,

Wk e R”X" are lag-specific weight matrices, € is the residual
error, and F'(-) represents a graph neural network (GNN) [21]]
parameterized by 6. The learnable adjacency matrix A encodes
causal relationships among entities and the KPI. Although a -
order VAR model captures long-range dependencies, it becomes
computationally expensive as t increases [22]. Similarly,
recurrent architectures (e.g., RNNs) and Transformers [23]]
often suffer from high computational overhead, limiting their
suitability for online root cause analysis. To address these
challenges, we propose a dual-encoder framework consisting
of a Static Encoder and a Dynamic Encoder to efficiently learn
long-term temporal dependencies and causal structures for
historical and streaming data, respectively. The Static Encoder
extracts stable, invariant causal relationships among entities in
the offline stage, while the Dynamic Encoder incrementally
adapts the learned causal structure during online updates.

a) Static Encoder: In microservice systems, each entity
is associated with multiple metric and log indicators (e.g.,
CPU usage, memory usage, log frequency, golden signals,
etc.). Conventional RCA methods typically analyze each factor
independently, overlooking cross-factor dependencies and their
varying importance under different abnormal patterns. To
address this limitation, we design the Static Encoder to jointly
model temporal dependencies and multi-factor correlations
across two modalities (metrics and logs) using attention-based
multi-factor learning [24} 23]]. Given historical metric data X?M
and log data X9, we first capture temporal dependencies via

a gated temporal convolutional network (TCN) [25]:

g(x,f) _x*f—Zf

Hv = tanh(g(va fl)) O}

x(t—d xT), 2)

o(9(X. ), (3)
where f € RK represents the 1-D kernel, f;,fs € R¥ are 1-D
convolution kernels, d is the dilation factor, ©® denotes the
Hadamard product, o(-) and tanh(-) are the sigmoid and tanh
functions respectively. The output HO € R™*4>*T5 represents
temporally encoded features for modality v € {M, L}. Stacking
dilated convolution layers exponentially increases the receptive
field, enabling efficient long-term modeling with reduced
computational cost. We validate the efficiency of dilated convo-
lutional operations in our experiments (see Subsection [[V-B0a)
by comparing their computational costs with those of VAR-
based methods.

To explore the correlation of different factors from two
modalities and then assess the contribution of each factor to
causal structure learning, we compute a multi-factor similarity
matrix for the j" system entity:

Cf = tanh(H}, [j]IW*(HE[]) "), “)
where W? € R73*75 s a learnable projection. The similarity
matrix C9 € R4>4M captures inter-factor relationships
between metric and log modalities for the historical data. We
then compute attention-based importance weights to quantify
each factor’s contribution to causal structure learning:

Z[j] = tanh(H} [j]W* + H}, [j]W°CY),
Z$,[j] = tanh(H{, [jJW® + H] [jJW*(C) ),

aOL 7] = softmax(w6Z%[j]),

&)

aj [j] = softmax(w"Zj, [j]),

where W4 W5 ¢ RT5xT3 and w®, w” € R™*. The attention
vectors al[j] measure the importance of each factor by
encoding information from both modalities, capturing rich

relationships for multi-modal and multi-dimensional data. With



these attention vectors, the weighted modality representations
are obtained as:

-H)[j, k], (©6)

Za j.k

and then passed through a multi-layer perceptron (MLP) for
factor recovery:
0°% = MLP°(H?). (7

Overall, the multi-factor learning process (Eqs. @), (3), (6)
and (7)) is summarized as:

0% = MFL(HY). 8)

To learn causal relationships among entities, we apply a
message-passing GNN (GraphSAGE [26]) to mimic fault
propagation through a message-passing mechanism:

XY = Uz(Aold( 0Y & NOYW1),

D Oulk)

kEN;

©)
IN |

where W1 is the weight matrix, o5 denotes ReLU, @ denotes
concatenation, Ayq is the historical causal graph, N\ represents
node entity j’s neighbors, and N aggregates neighbor infor-
mation. 5(2 predicts future values based on previous lagged
data Xg, leveraging temporal dependencies captured by dilated
convolutional neural networks. Finally, the training objective
minimizes the forecasting error:

L= dL+dM Zzza 4, KX s k) = X[, k1%

v g=1k=1
(10)

The aY[j, k] emphasize influential factors during temporal
forecasting, reinforcing interpretable causal learning.

b) Dynamic Encoder.: The Dynamic Encoder extends
the same architecture to model streaming data in the online
setting, enabling adaptive causal updates. It aims to efficiently
model the long-term temporal dependencies and the causal
relations among system entities and KPIs for the streaming
data in the online setting. Given the current batch data ij,
temporal dependencies are encoded as:

= tanh(g(X}, f5)) © o(g(X
— MFL(H),

H,
0,

L f), (11)

(12)

where f3, f; are dilated convolutional kernels. We then propa-
gate messages through the updated causal graph:

X! = 02((Aold 1+ AA, )(O:’) aNHOW?2),  (13)
1 Oi 14
Wil = N | keZAjf (14)

where AA, € R" " is added to capture incremental causal
changes in the current batch. Finally, we jointly minimize the
reconstruction losses from historical and streaming data:

L= dL+dM ZZZa i, KX s k] — X4 [, k)12

v j=1k=1

By integrating Eq. (T5) with the message-passing mechanism
in Eq. , the model continuously refines the causal adjacency
matrix A = Agg + AA,, capturing dynamic causal relations
such as X — y, where X denotes a potential root cause and
y is the system KPIL

C. Graph Fusion with Contrastive Multi-modal Learning

To address the challenges of multi-modal learning (as
discussed in Challenge C3 in Section[l), we propose to enhance
the relatedness between two modalities through contrastive
mutual information maximization. Given the representations
of historical data fI?, and current batch data fIL extracted from
both metric and log data, we maximize the mutual information
between these modalities:

L = T,(H, HY) + Ty (HY, HY), (15)

where Z is the mutual information parameterized by a neural
network ¢. Following the InfoNCE-style contrastive loss [27],
we approximate the mutual information by its lower bound:

zn: (o(HY, 1), o(HY [1]))
nia ® S sim(o(H, ). o(FY [K]))
(16)

SIIH

(H]Wv

where sim(a,b) = exp(ﬁl‘;”) represents the exponential of
cosine similarity between two entity representations a and b.
To generate the causal graph for the current batch, directly
summing the graphs from both modalities may yield overly
dense or cyclic structures. This problem is amplified when one
modality is of lower quality, as treating both modalities equally
can obscure critical causal patterns. To mitigate this issue, we
estimate the relative importance of the two modalities based
on the correlation of multiple metrics. Using the similarity
map for the current batch (i.e., C;), we compute the modality
importance and fuse the two causal graphs as follows:

C;j = tanh (Hy, [j]W*(HL[j])7),

> 2exp (3, Cill k)
S, [ Zrexp( 2, CilL k) + Xy exo( 52, Cill )|
A= (1= sp)(Aoa + AAL) + sar (Aol + AAwr),

where W? is a learnable weight matrix. This adaptive fusion
mechanism ensures that higher-quality modalities contribute
more to the causal graph update while maintaining structural
sparsity and stability.

Optimization. The overall training objective is defined as:

Lsparse = ||A~AL||1 + ||A-AJ\/IH17
L= _LMI + /\lﬁt + /\2£sparse + /\3h(A),

Sy =

7)



where || - ||; denotes the ¢;-norm that enforces sparsity on the
changes of the adjacency matrices. The sparsity regularization
Liparse €ncourages only a limited number of edge updates across
modalities. The acyclicity constraint h(A) = tr(eA®4)—n =0
holds if and only if A is a directed acyclic graph [28]], where
©® denotes the Hadamard product. \;, A2, and A3 are positive

hyperparameters balancing the contribution of each component.

Online Finetuning. During the offline training stage, both
the static and dynamic encoders are jointly optimized using
Eq. (I7). In the online adaptation stage, the static encoder is
frozen while the dynamic encoder is finetuned to efficiently

adapt to streaming data with reduced computational overhead.

D. Network Propagation-based Root Cause Identification

Malfunction effects often propagate from the root cause to
its neighboring entities, implying that the immediate neighbors

of anomalous KPIs may not necessarily be the true root causes.

To accurately identify the root cause, we first derive a transition
probability matrix based on the learned causal graph G and
then employ a random walk with restart (RWR) algorithm [29]]
to simulate the propagation of malfunction signals:

Aji
ZZ:1 Ab,i 7
where P is the normalized adjacency matrix. During the random
walk process, the model periodically restarts from the KPI node

with probability ¢ € [0, 1] to explore alternative propagation
paths. The RWR update equation is formulated as:

rit1 = (1 — ¢)Pry + crp, (19)

where r; denotes the probability distribution over nodes at step
t, and ry is the initial distribution concentrated on the target
KPI node. Upon convergence, the stationary distribution ry;
reflects the influence score of each entity, and the top-k entities
with the highest scores are identified as the most probable root
causes.

Stopping Criterion. As the online RCA process progresses
across multiple data batches, both the inferred causal structure

and the corresponding root cause rankings tend to stabilize.

To avoid redundant computation, we introduce an adaptive
stopping mechanism based on the rank-biased overlap (RBO)
metric [30], which quantifies the similarity between two ranked
lists while emphasizing higher-ranked items. Given the root
cause lists from consecutive batches, R; 1 and R;, their
similarity is computed as:

Y= RBO(Rt_l, Rt)7 (20)

where v € [0,1]. A larger v indicates a higher degree of
stability in the root cause rankings. The online RCA process
terminates automatically when the similarity score v exceeds
a predefined threshold.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
OCEAN by comparing it with state-of-the-art root cause
analysis techniques. Additionally, we conduct a case study an

an ablation study to further validate the assumptions outlined
in the previous sections.

A. Experimental Setup

Datasets. We evaluate the performance of OCEAN using
three public real-world datasets: (1) Product Review[] [31]]:
A microservice system dedicated to online product reviews,
encompassing 234 pods deployed across 6 cloud servers. It
recorded four system faults between May 2021 and December
2021. (2) Online Boutiqueﬂ [14]]: A microservice system
designed for e-commerce, including five system faults. (3)
Train Ticket [[14]: A microservice system for railway ticketing
services, also with five system faults. All three datasets contain
two modalities: system metrics and system logs.

Evaluation Metrics. We evaluate the effectiveness of the
proposed model with three widely-used metrics [10} 132]]: (1)
Precision@K (PR@K): This metric measures the probability
that the top-K predicted root causes are accurate. (2) Mean
Average Precision@K (MAP@K): It assesses the top-K pre-
dicted causes from an overall perspective. (3) Mean Reciprocal
Rank (MRR): This metric evaluates the ranking capability of
the models. (4) Time: the training time (in seconds) for each
batch of data.

Baselines. We compare OCEAN with eight methods: sin-
gle modality RCA methods, including Dynotears [28]],C-
LSTM [33], REASON [10], multi-modality RCA method,
i.e., MULAN [6], hypothesis based methods, PC [34], e-
Diagnosis [35], BARO [36], one online RCA method (i.e.,
CORAL [11]).

Reproducibility. All experiments are conducted on a desktop
running Ubuntu 18.04.5 with an Intel(R) Xeon(R) Silver 4110
CPU @2.10GHz and one 11GB GTX2080 GPU. We use the
Adam as the optimizer and we train the model for 100 iterations
at each batch. We use two layers of dilated convolutional
operations in the experiment. As for the stopping criteria, we
terminate the identification process if the similarity vy between
the current batch and the previous batch is greater than 0.9 for
three consecutive times. Each experiment is run with one trial.
For Product Review dataset, we set the size of historical metric
and log data to 8-hour intervals and each batch is set to be a
10-minute interval. Due to page limitation, we include the
additional experiments, such as the experiment on Train
Ticket dataset, the comparison with physical graph, time
complexity analysis, three-modalities analysis, comparison
with different architecture, and parameter analysis in a
more complete version onlind'|

B. Performance Evaluation

a) Experimental Results: In this subsection, we present
the performance evaluation on Tables [II] and for various
methods. Considering that many baseline methods (e.g., PC,
C-LSTM, REASON, Dynotears, and Baro) are designed for the
single-modality scenario, we assess their performance in both

. https://lemma-rca.github.io/docs/data.html
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I. https://arxiv.org/abs/2410.10021
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TABLE II
RESULTS ON PRODUCT REVIEW DATASET W.R.T DIFFERENT METRICS.

Modality Model PR@l1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@I10 Time (s)
PC 0 0 0 0.034 0 0 0 225.19
Dynotears 0 0.25 0.50 0.092 0 0.05 0.175 390.37
C-LSTM 0.25 0.5 0.5 0.409 0.417 0.45 0.475 1482.01
Metric Only REASON 0.25 1.00 1.00 0.563 0.583 0.75 0.875 247.87
CORAL 0.50 1.00 1.00 0.750 0.833 0.90 0.950 146.46
Baro 0.50 0.50 0.75 0.537 0.500 0.50 0.550 283.48
e-Diagnosis 0 0 0.25 0.038 0 0 0.050 367.13
PC 0 0 0 0.043 0 0 0 93.98
Dynotears 0 0 0.25 0.058 0 0 0.075 142.26
C-LSTM 0 0 0.25 0.059 0 0 0.075 602.92
Log Only REASON 0 0 0.5 0.088 0 0 0.100 129.17
CORAL 0 0 0.5 0.118 0 0 0.200 50.29
Baro 0.25 0.25 0.25 0.286 0.250 0.25 0.250 138.94
e-Diagnosis 0 0 0.25 0.039 0 0 0.050 149.23
PC 0 0 0.25 0.054 0 0 0.075 300.26
Dynotears 0 0.25 0.5 0.114 0 0.05 0.225 426.78
C-LSTM 0.25 0.5 0.5 0.341 0.250 0.35 0.425 1808.76
REASON 0.5 1.00 1.00 0.687 0.667 0.80 0.900 303.5
Multi-Modality MULAN 0.75 1.00 1.00 0.833 0.833 0.90 0.950 255.74
CORAL 0.75 1.00 1.00 0.875 0.917 0.95 0.975 186.73
Baro 0.50 0.75 1.00 0.587 0.500 0.60 0.700 307.26
e-Diagnosis 0 0 0.25 0.042 0 0 0.075 402.33
OCEAN 1.00 1.00 1.00 1.000 1.000 1.00 1.000 20.16
TABLE III
RESULTS ON ONLINE BOUTIQUE W.R.T DIFFERENT METRICS.
Modality Model PR@1 PR@3 PR@5 MRR MAP@2 MAP@3 MAP@5 Time (s)
PC 0.2 0.4 0.6 0.390 0.3 0.333 0.40 5.25
Dynotears 0.2 0.4 0.4 0.344 0.2 0.267 0.32 14.56
C-LSTM 0 0.4 0.8 0.300 0.1 0.200 0.44 20.75
Metric Only REASON 0.4 0.8 1.0 0.617 0.5 0.600 0.76 3.23
CORAL 0.2 1.0 1.0 0.600 0.6 0.733 0.84 2.99
Baro 0 0.8 1.0 0.417 0 0.467 0.68 3.46
e-Diagnosis 0 0.6 1.0 0.323 0 0.267 0.52 5.21
PC 0 0.4 0.6 0.257 0.1 0.200 0.32 3.88
Dynotears 0 0.2 0.6 0.207 0 0.067 0.24 10.23
C-LSTM 0 0.4 0.6 0.267 0.1 0.200 0.36 15.07
Log Onl REASON 0.2 0.8 0.8 0.458 0.3 0.467 0.60 2.39
s Dnly CORAL 0.2 0.6 1.0 0457 0.3 0.400 0.60 2.04
Baro 0 0.6 0.8 0.308 0 0.267 0.48 2.57
e-Diagnosis 0 0.4 0.4 0.208 0 0.133 0.24 3.47
PC 0.4 0.8 1.0 0.573 0.4 0.533 0.68 6.78
Dynotears 0.2 0.6 1.0 0.467 0.3 0.400 0.64 16.38
C-LSTM 0.2 0.4 1.0 0.450 0.3 0.333 0.60 22.66
REASON 0.4 1.0 1.0 0.667 0.6 0.733 0.84 4.51
Multi-Modality MULAN 0.4 0.8 1.0 0.617 0.5 0.600 0.76 4.96
CORAL 0.4 1.0 1.0 0.700 0.7 0.800 0.88 3.63
Baro 0.2 1.0 1.0 0.567 0.2 0.667 0.80 4.88
e-Diagnosis 0 0.8 1.0 0.383 0 0.400 0.64 6.51
OCEAN 0.6 1.0 1.0 0.800 0.8 0.867 0.92 1.84

single-modality scenarios (e.g., system metrics only or system
logs only) and the multi-modality case. We consider system
logs as additional system metrics to enable the performance
measurement of these single-modality RCA methods in the
multi-modality scenario. We calculate an average ranking score
based on the evaluation of different system metrics as the
final result for all single-modality methods and OCEAN. Our
observations are as follows: (1) Compared to single-modality
scenarios, most baseline methods benefit from leveraging multi-
modality data across three distinct datasets. (2) As an online
RCA method, CORAL outperforms all of the offline RCA

methods with respect to seven metrics. (3). OCEAN consistently
outperforms all baseline methods across the three datasets. (4).
The online RCA methods CORAL and OCEAN have less
training time compared with the offline RCA methods, while
OCEAN further reduces its computational cost to 1/9 compared
with CORAL. The reduced computational cost is attributed
to the efficiency of dilated convolutional operation and the
design of the multi-factor attention mechanism. Notice that
CORAL first learns the causal graph for each factor individually
and then fuses the causal graphs, which is computationally
expensive in the online setting. Notably, OCEAN exhibits



a remarkable improvement in MRR on the Product Review
dataset, excelling the second competitor (i.e., CORAL) by
12.5%. Moreover, OCEAN outperforms CORAL by 20% and
10% with respect to PR@1 and MAP@3, respectively. This
is attributed to the assessment of multiple factors and the
exploration of the correlation among different modalities.

100

CORAL

OCEAN (1-layer)
OCEAN (2-layer)
REAL-Time

804

VEER

Case 1

Case2 Case3 Cased4 Average
Fig. 2. Identification time for four cases as well as the average identification

time.

TABLE IV
ABLATION STUDY ON THREE DATASETS W.R.T MRR.

Model Product Review  Online Boutique  Train Ticket

OCEAN 1.00 0.8 0.381
OCEAN-F 0.75 0.8 0.331
OCEAN-M 0.875 0.7 0.320
OCEAN-S 0.833 0.7 0.345

b) Case Study: In this subsection, we evaluate the
promptness of two online RCA methods on the Product Review
dataset, CORAL and OCEAN, as shown in Figure |Z[ Note that
we also evaluate the effectiveness of the long-term temporal
causal structure learning module by varying the number of
dilated convolutional layers in OCEAN, specifically comparing
configurations with one and two layers. In Figure 2] the y-axis
represents the batch index at which an RCA method meets
the stopping criteria, and the real-time marker indicates the
actual system failure time. A lower batch index value signifies
faster identification of the ground-truth root cause by the RCA
method. Notably, CORAL did not successfully rank the ground-
truth root cause first in case 2, so we use the total number of
batches to represent its detection time for a fair comparison. Our
observations reveal that CORAL experiences about a 10-epoch
delay relative to real-time in most cases, whereas OCEAN (2-
layer) achieves quicker detection than OCEAN (1-layer). This
improvement confirms our hypothesis that adding more dilated
convolutional layers enhances the model’s ability to capture
longer temporal dependencies, as discussed in Subsection [[TI-B}

c) Ablation Study: In this subsection, we evaluate the
effectiveness of individual components within the objective
function of OCEAN (Egq. [I7). Specifically, we define OCEAN-
F and OCEAN-M as variants that lack the multi-factor attention
learning module and the contrastive multi-modal learning
module, respectively, while OCEAN-S removes the sparse
constraint. The results, shown in Table m indicate a significant
performance degradation when any component is omitted.

Specifically, removing the multi-factor attention module results
in 25% and 5% performance drop on the Product Review
dataset and Train Ticket dataset, respectively. Eliminating
the contrastive multi-modal learning module leads to 12.5%
reduction on the Product Review dataset. These findings
underscore the importance of each component in maintaining
OCEAN’s high performance.

V. CONCLUSION

In this paper, we investigate the challenging problem
of online multi-modal root cause localization in microser-
vice systems. We introduce OCEAN, a novel online causal
structure learning framework designed to effectively identify
root causes using diverse data sources. OCEAN utilizes a
dilated convolutional neural network to capture long-term
temporal dependencies and employs graph neural networks
to establish causal relationships among system entities and key
performance indicators. Additionally, we develop a multi-factor
attention mechanism to evaluate and refine the contributions
of various factors to the causal graph. Furthermore, OCEAN
incorporates a contrastive mutual information maximization-
based graph fusion module to enhance interactions between
different modalities and optimize their mutual information.
The effectiveness of OCEAN is validated through extensive
experiments on three real-world datasets, demonstrating its
robustness and efficiency.
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