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Abstract—Clustering is often an essential first step in data
mining intended to reduce redundancy, or define data categories.
Hierarchical clustering, a widely used clustering technique, can
offer a richer representation by suggesting the potential group
structures. However, parallelization of such an algorithm is
challenging as it exhibits inherent data dependency during
the hierarchical tree construction. In this paper, we design a
parallel implementation of Single-linkage Hierarchical Clustering
by formulating it as a Minimum Spanning Tree problem. We
further show that Spark is a natural fit for the parallelization of
single-linkage clustering algorithm due to its natural expression
of iterative process. Our algorithm can be deployed easily in
Amazon’s cloud environment. And a thorough performance
evaluation in Amazon’s EC2 verifies that the scalability of our
algorithm sustains when the datasets scale up.

I. INTRODUCTION

The data, features extracted from the data, and the model
are the three major components of a machine learning solution.
Over the last decade, it has shown that in real-world settings,
the size of the dataset is the most important factor. A large
body of literature has repeatedly shown that simple models
trained over enormous quantities of data outperform more
sophisticated models trained on less data [1]–[3]. This has led
to the growing dominance of simple, data-driven solutions.

As one of simple and widely adopted machine learning
models, clustering is often an essential first step in data mining
to retrieve data’s membership. Many applications face the
demand to perform this operation over large amount of data.
For example, Internet companies collect massive amount of
data such as content produced by web crawlers or service logs.
Frequently, it needs apply similarity queries to gain valuable
understanding of the usage of their services. The understand-
ing may include identifying customers with similar buying
patterns, suggesting recommendations, performing correlation
analysis, etc. Processing the ever-growing volume of data in a
highly scalable and distributed fashion constitutes an answer
to such a demand.

Fortunately, frameworks such as MapReduce [4] and Spark
[5] can quickly process massive datasets by splitting them into
independent chunks that are processed in parallel. Users are
alleviated away from the system-level’s programming details
and only need to cope with the user-level APIs. However,
clustering algorithms are generally difficult to parallelize effec-
tively due to high data dependence. Relatively little work has
been done. In this paper, we present SHAS, a Single-linkage
Hierarchical clustering Algorithm using Spark framework. The
key idea is to reduce the single-linkage hierarchical clustering

problem to the minimum spanning tree (MST) problem in a
complete graph constructed by the input dataset. The paral-
lelization strategy naturally becomes to design an algorithm
that can partition a large-scale dense graph and merge the
intermediate solution efficiently and correctly. The algorithm
we propose is memory-efficient and can be scaled out linearly.
Given any practical memory size constraint, this framework
guarantees the correct clustering solution without explicitly
having all pair distances in the memory. This paper focuses
on the design and implementation of Spark-based hierarchical
clustering for numeric spaces, but the algorithm is general and
applicable to any dataset. In the experiment section, we present
a data-dependent characterization of hardness and evaluate
clustering efficiency with up to 2, 000, 000 data points. Also
our algorithm can achieve an estimated speedup of up to 310
on 398 computer cores, which demonstrates its scalability. In
addition, we closely examine the performance disparity in term
of the total execution time between two frameworks: Spark and
MapReduce. The main contributions of this paper are:

• We present SHAS, an efficient Spark-based single-
linkage hierarchical clustering algorithm.

• The proposed algorithm is general enough to be used
with any dataset that line in a metric space. The
algorithm can be used with various distance functions
and data types, e.g., numerical data, vector data, text,
etc.

• We thoroughly evaluate the performance and scala-
bility properties of the implemented algorithm with
synthetic datasets. We show that SHAS performs
significantly better than an adoption of state-of-
the-art MapReduce-based Single-linkage Hierarchical
Clustering (SHC) algorithm [6]. SHAS scales very
well when important parameters K, data size, number
of nodes, and number of dimensions increase.

The rest of paper is organized as follows. Section 2
describes the SHAS algorithm and examines its system design
with Spark framework. Section 3 presents the performance
evaluation. Section 4 reviews the existing work related to
the parallel hierarchical clustering and comparison between
disk-based and in-memory computing frameworks. Section 5
concludes the paper.

II. INTRODUCTION

The data, features extracted from the data, and the model
are the three major components of a machine learning solution.
Over the last decade, it has shown that in real-world settings,
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the size of the dataset is the most important factor. A large
body of literature has repeatedly shown that simple models
trained over enormous quantities of data outperform more
sophisticated models trained on less data [1]–[3]. This has led
to the growing dominance of simple, data-driven solutions.

As one of simple and widely adopted machine learning
models, clustering is often an essential first step in data mining
to retrieve data’s membership. Many applications face the
demand to perform this operation over large amount of data.
For example, Internet companies collect massive amount of
data such as content produced by web crawlers or service logs.
Frequently, it needs apply similarity queries to gain valuable
understanding of the usage of their services. The understand-
ing may include identifying customers with similar buying
patterns, suggesting recommendations, performing correlation
analysis, etc. Processing the ever-growing volume of data in a
highly scalable and distributed fashion constitutes an answer
to such a demand.

Fortunately, frameworks such as MapReduce [4] and Spark
[5] can quickly process massive datasets by splitting them into
independent chunks that are processed in parallel. Users are
alleviated away from the system-level’s programming details
and only need to cope with the user-level APIs. However,
clustering algorithms are generally difficult to parallelize effec-
tively due to high data dependence. Relatively little work has
been done. In this paper, we present SHAS, a Single-linkage
Hierarchical clustering Algorithm using Spark framework. The
key idea is to reduce the single-linkage hierarchical clustering
problem to the minimum spanning tree (MST) problem in a
complete graph constructed by the input dataset. The paral-
lelization strategy naturally becomes to design an algorithm
that can partition a large-scale dense graph and merge the
intermediate solution efficiently and correctly. The algorithm
we propose is memory-efficient and can be scaled out linearly.
Given any practical memory size constraint, this framework
guarantees the correct clustering solution without explicitly
having all pair distances in the memory. This paper focuses
on the design and implementation of Spark-based hierarchical
clustering for numeric spaces, but the algorithm is general and
applicable to any dataset. In the experiment section, we present
a data-dependent characterization of hardness and evaluate
clustering efficiency with up to 2, 000, 000 data points. Also
our algorithm can achieve an estimated speedup of up to 310
on 398 computer cores, which demonstrates its scalability. In
addition, we closely examine the performance disparity in term
of the total execution time between two frameworks: Spark and
MapReduce. The main contributions of this paper are:

• We present SHAS, an efficient Spark-based single-
linkage hierarchical clustering algorithm.

• The proposed algorithm is general enough to be used
with any dataset that line in a metric space. The
algorithm can be used with various distance functions
and data types, e.g., numerical data, vector data, text,
etc.

• We thoroughly evaluate the performance and scala-
bility properties of the implemented algorithm with
synthetic datasets. We show that SHAS performs
significantly better than an adoption of state-of-
the-art MapReduce-based Single-linkage Hierarchical
Clustering (SHC) algorithm [6]. SHAS scales very

well when important parameters K, data size, number
of nodes, and number of dimensions increase.

The rest of paper is organized as follows. Section 2
describes the SHAS algorithm and examines its system design
with Spark framework. Section 3 presents the performance
evaluation. Section 4 reviews the existing work related to
the parallel hierarchical clustering and comparison between
disk-based and in-memory computing frameworks. Section 5
concludes the paper.

III. THE SHAS ALGORITHM

In the section, we describe a parallel algorithm for cal-
culating single-linkage hierarchical clustering (SHC) dendro-
gram, and show its implementation using Spark’s programming
model.

A. Hierarchical Clustering

Before dive into the details of the proposed algorithm, we
first remind the reader about what the hierarchical clustering
is. As an often used data mining technique, hierarchical
clustering generally falls into two types: agglomerative and
divisive. In the first type, each data point starts in its own
singleton cluster, two closest clusters are merged at each
iteration until all the data points belong to the same cluster.
The divisive approach, however, works the process from top
down by performing splits recursively. As a typical example of
agglomerative approach, single-linkage hierarchical clustering
(SHC) [7] merges the two clusters with the shortest distance,
i.e. the link between the closest data pair (one in each cluster)
at each step. Despite the fact that SHC can produce “chaining”
effect where a sequence of close observations in different
groups cause early merges of these groups, it is still a widely-
used analysis tool to conduct early-stage knowledge discovery
for its simplicity and quadratic time complexity.

B. Problem Decomposition

Intuitively, we want to divide the original problem into
a set of non-overlapped subproblems, solve each subproblem
and then merge the sub-solutions into an overall solution. The
absence of any inter-instance dependencies ensures that this
strategy scales extremely well as we increases the degree of
parallelism (i.e, the number of instances). In the following, we
show how we convert the hierarchical clustering problem into a
MST finding problem, and the original problem decomposition
turns into the graph partitioning accordingly.

Based on the theoretical finding [8] that calculating the
SHC dendrogram of a dataset is equivalent to finding the
Minimum Spanning Tree (MST) of a complete weighted
graph, where the vertices are the data points and the edge
weights are the distances between any two points, the SHC
problem with a base dataset D can be formulated as follows:

“Given a complete weighted graph G(D) induced by
the distances between points in D, design a parallel algorithm
to find the MST in the complete weighted graph G(D)”.

To show the process of problem decomposition or complete
graph partition, a toy example is illustrated in Figure 1.
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Fig. 1: Illustration of the divide-and-conquer strategy on
input dataset D. We divide dataset D into two smaller parts,
D1 and D2, calculate MSTs for complete graphs induced by
D1 and D2 respectively, and the complete bipartite graph

between them, then merge these three intermediate MSTs to
find the MST for D.

Given an original dataset D, we first divided it into two
disjoint subsets: D1 and D2, thus the complete graph G(D)
is decomposed into to three subgraphs: G(D1), G(D2) and
GB(D1,D2), where GB(D1,D2) is the complete bipartite
graph on datasets D1 and D2. In this way, any possible edge
is assigned to some subgraph, and taking the union of these
subgraphs would return us the original graph. This approach
can be easily extended to s splits, and leads to multiple
subproblems of two different types: s complete subgraphs
on each split and C2

s complete bipartite subgraphs on each
pair of splits. Once we complete the dividing procedure and
form a set of subproblems, we distribute these subproblems
among multiple processes and apply a local MST algorithm
on each of them, the calculated sub-MSTs are then combined
to obtain the final solution for the original problem.

C. Algorithm Design

The algorithm below desribes how we divide the prob-
lem into disjoint subproblems and how the sub-solutions are
merged to form the final solution.

Following the dividing steps described in step 1-3 of
Algorithm 1, we break the original problem into multiple much
smaller subproblems, a serial MST algorithm can be applied
locally on each of them. For a weighted graph, there are three
frequently used MST algorithms, namely Boru̇vka’s, Kruskal’s
and Prim’s [9]–[11]. Boru̇vka’s algorithm was published back
in 1920s. At each iteration, it identifies the cheapest edge
incident to each vertex, and then forms the contracted graph
which reduces the number of vertices by at least half. Thus,
the algorithm takes O(E log V ) time, where E is the number

Algorithm 1 SHAS, a parallel SHC algorithm using Spark

INPUT: a base dataset D, and a merging parameter K
OUTPUT: a MST T induced on D

1: Divide D into s roughly equal-sized splits:
D1,D1, . . . ,Ds

2: Form C2
s complete bipartite subgraphs for each pair (Di,

Dj) and s complete subgraphs for each split Di

3: Use Prim’s algorithm to compute the sub-MST on
each subgraph

4: repeat
5: Taking the sub-MSTs, merge every K of them using

the idea of Kruskal’s algorithm
6: until one MST remains
7: return the final MST T ′

of edges and V is the number of vertices. Kruskal’s algorithm
initially creates a forest with each vertex as a separate tree,
and iteratively selects the cheapest edge that doesn’t create a
cycle from the unused edge set to merge two trees at a time
until all vertices belong to a single tree. Both of these two
algorithms require all the edge weights available in order to
select the cheapest edge either for every vertex in the entire
graph at each iteration. By contrast, Prim’s algorithm starts
with an arbitrary vertex as a MST root and then grows one
vertex at a time until it spans all the vertices in the graph. At
each iteration, it only needs one vertex’s local information to
proceed. Moreover, given a complete weighted graph, Prim’s
algorithm only takes O(V 2) time and O(V ) space complexity,
lending itself a good choice for the local MST algorithm.

As mentioned earlier, we have two types of subproblems:
complete weighted graph and complete bipartite graph. For the
first type of subproblem, we start with the first vertex v0 in
the vertex list just for convenience. While we populate all its
edge weights by calculating distance from v0 to every other
vertex, we track the cheapest edge and emit the corresponding
edge to the reducer in MapReduce framework (in this way, we
don’t need to store the MST explicitly). v0 is then removed
from the vertex list and the other endpoint of the emitted
edge is selected to be the next starting vertex. This process
is repeated until all the vertices are added to the tree. Thus,
our algorithm maintains quadratic time complexity and linear
space complexity.

The other type of subproblem is the complete bipartite
subgraph between two disjoint data splits, denoted as the left
and right split. Different from the complete subgraph case,
we need to maintain an edge weight array for each split
respectively. To start, we select the first vertex v0 in the left
split, populate an edge weight array from v0 to every vertex
in the right split, record the cheapest edge (v0, vt). In the next
iteration, we populate another edge weight array from vt to
every vertex in the left split except for v0. Then, the cheapest
edge is selected from both edge weight arrays. The endpoint of
the cheapest edge (which is neither v0 nor vt) is selected as the
next starting vertex, and the same process can be iterated until
the tree spans all the vertices. The procedure takes O(mn)
time complexity and O(m+n) space complexity, where m,n
are the sizes of the two disjoint sets.

From Step 4 in Algorithm 1, we iteratively merge all the
intermediate sub-MSTs and the pre-calculated T to obtain
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the overall solution. In extreme case, all the sub-MSTs and
T can be combined all at once using one process, however,
this incurs huge communication contention and computational
load; rather, we extend the merge procedure into multiple
iterations by introducing configurable parameter K such that
every K intermediate MSTs are merged at each iteration and
it terminates when only one MST remains.

In order to efficiently combine these partial MSTs, we use
union-find (disjoint set) data structure to keep track of the
component to which each vertex belongs [12]. Recall the way
we form subgraphs, most neighboring subgraphs share half of
the data points. Every K consecutive subgraphs more likely
have a fairly large portion of overlapping vertices. Thus, by
combining every K sub-MSTs, we can detect and eliminate
incorrect edges at an early stage, and reduce the overall
communication cost for the algorithm. The communication
cost can be further optimized by choosing the right K value
with respect to the size of dataset, which we will discuss in
the next section.

D. The Main Algorithm

1) Spark: As an in-memory cluster computing framework
for iterative and interactive applications, Spark [5] has attracted
a lot of attention and become one of the most active Apache
open-source projects with 20+ companies as contributors. In
particular, Spark is a parallel dataflow system implemented in
Scala and centered around the concept of Resilient Distributed
Datasets (RDDs) [13]. RDD is essentially an immutable collec-
tion partitioned across cluster that can be rebuilt if a partition
is lost. When RDD is set to be cached or persisted in memory,
each node caches its respective slices from local computation
and reuses them in other operations on that RDD. This is the
key that Spark can achieve much higher performance than disk-
based MapReduce.

RDD abstraction supports two kinds of operations: trans-
formations, which form a new dataset from a base dataset by
using functions such as map, and actions, which return the
final results to the driver program (e.g. collect) or a distributed
dataset (e.g. reduceByKey) after running a series of operations
on the dataset. Such an abstraction is provided through a
language-integrated APIs in Scala (a statically typed functional
programming language for Java VM). Each RDD dataset is
represented as a Scala Object, and the transformations to be
applied on the dataset are invoked as the methods on those
objects.

A Spark cluster consists of masters and workers. Mutiple
masters mode can be provided by using Apache ZooKeeper
[14] along with some kind of clusters managers such as Yarn
[15], Mesos [16] or Spark’s ”standalone” cluster manager. A
master’s lifetime can span over several queries. The work-
ers are long-lived processes that can store dataset partitions
in memory across operations. When the user runs a driver
program, it starts with a master, which defines RDDs for the
workers and invokes operations on them.

Spark’s programming model is well suited for bulk
iterative algorithms because RDDs are cached in memory and
the dataflow is created lazily which means the computation is
taken place only when RDDs are actually needed. It accepts
iterative programs, which create and consume RDDs in a loop.

By using Spark’s Java APIs, Algorithm 1 can be implemented
as a driver program naturally. The main snippet is listed below:

1 JavaRDD<String> subGraphIdRDD = sc
2 .textFile(idFileLoc,numGraphs);
3

4 JavaPairRDD<Integer, Edge> subMSTs =
subGraphIdRDD.flatMapToPair(

5 new LocalMST(filesLoc, numSplits));
6

7 numGraphs = numSplits * numSplits / 2;
8

9 numGraphs = (numGraphs + (K - 1)) / K;
10

11 JavaPairRDD<Integer, Iterable<Edge>>
mstToBeMerged = subMSTs

12 .combineByKey(
13 new CreateCombiner(),
14 new Merger(),
15 new KruskalReducer(numPoints),
16 numGraphs);
17

18 while (numGraphs > 1) {
19 numGraphs = (numGraphs + (K - 1)) / K;
20 mstToBeMerged = mstToBeMerged
21 .mapToPair(new SetPartitionId(K))
22 .reduceByKey(
23 new KruskalReducer(numPoints),
24 numGraphs);
25 }

Listing 1 : The Snippet of SHAS’s driver program in Java.

2) Partition phase: In order for a worker to know which
two splits to be read, we initially produce (C2

s + � s
2�) input

files, each of which contains a single integer gid between 0
and (C2

s + � s
2�) representing the subgraph id. Without loss

of generality, the subgraphs with id less than (C2
s ) are com-

plete bipartite graphs while the rest are the regular complete
ones. Given a certain graph type, we apply the corresponding
Prim’s algorithm accordingly. As described previously, given a
complete graph, the local MST algorithm starts with a single-
node tree, and then augments the tree one vertex at a time by
greedily selecting the cheapest edge among all the edges we
have calculated so far.

3) Local computation phase: Different from [6], where
the subMSTs need to be materialized to the disk at the Map
side and then shuffle to the Reduce side, Spark are lazy and
just logs the transformations such as LocalMST() in Map
operator on the base dataset at line 4 in Listing 1. Only when
an action operation takes place, in our case, when reduceBy
function gets called, the recorded transformations then start to
be realized and use as input for reduce operation. Thanks to the
Spark’s location aware schedule, if all the K inputs of reducers
are on the same node, KruskalReducer can be processed
right away without waiting for the input shuffling through
the wire, otherwise, it will not start until the missing input
shuffled through the wire. The data shuffle stage is similar to
MapReduce frame, where Map output is spilled into multiple
temporary files on the local machine in a sorted order, and
transferred to the designated reducer based on the partitioner.
Before passing to the reducer, the files are concatenated in the
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sorted order and merged into a single input file. This is called
data shuffle or sort-and-merge stage.

4) Merge phase: We remap the subgraph id gid using a
simple hash function below:

gid = gid/K (1)

The reassignment of subgraph ids guarantees that K consecu-
tive subgraphs are processed in the same reduce procedure.
However, this also implies that the number of parallelism
decreases by K per iteration. The reduceFunction combines
all the intermediate MSTs using K-way merge iteratively until
one MST remains.

IV. EXPERIMENTAL RESULTS

Cloud computing attracts a significant amount of attention
from industry, academia, and media because of its on-demand,
pay-as-you-go characteristics, etc. As a representative and one
of the most widely adopted public cloud platforms, Amazon
Elastic Compute Cloud (Amazon EC2) has been used for a
host of small and medium sized enterprises (SMEs) for various
applications. It comes as no surprise that our experiments are
also conducted on Amazon Web Service (AWS). We employ
“m2.4xlarge” instance [17] with a 64-bit architecture, featuring
8 virtual CPUs (Intel’s Xeon Family), 64.8 GB memory, and
two 840 GB ephemeral stores. Among Amazon EC2 instance
types, m2 and m3 instance types are optimized for memory-
intensive applications and provide low cost per GiB of RAM
as well as high network performance. The cluster is set up in
the US West (Oregon) region, the AWS’s newest infrastructure
location in the United States. In our experiments, we vary the
size of cluster from 7 to 50 m2.4xlarge instances, and the
number of cores ranges from 56 to 400 accordingly. In order
to make a fair comparison, we install the latest versions for
both frameworks: Spark 1.0.0 [18] and MapReduce 2.0.0 [19].

A. Data Sets

The data sets underlying this analysis are generated syn-
thetically using the IBM synthetic data generator [20]. Con-
sidering different data distributions, we synthesize two cate-
gories of datasets: synthetic-cluster and synthetic-random. In
synthetic-cluster datasets (clust100k, clust500k, and clust2m),
a certain number of seed points are selected first as the
centroids of clusters, the rest of points are then added ran-
domly to these clusters, while in the synthetic-random datasets
(rand100k, rand500k, and rand2m), points in each dataset are
drawn with a uniform distribution.

To summarize, our testbed contains up to 2,000,000 data
points and each data point comprises a numeric vector with
up to 10 dimensions. Before the experiments, each data set is
copied to the cluster’s ephemeral Hadoop File System [21] as
a single binary file. The structural properties of the dataset are
provided in the table below:

B. Performance

In each experiment, the data is split into a certain num-
ber of partitions evenly without any assumption of the data
distribution.

TABLE I: Structural properties of the synthetic-cluster and
synthetic-random testbed

Name Points dimensions size (MByte)

clus100k 100k 5, 10 5, 10
clus500k 500k 5, 10 20, 40
clus2m 2m 5, 10 80, 160

rand100k 100k 5, 10 5, 10
rand500k 500k 5, 10 20, 40
rand2m 2m 5, 10 80, 160

Fig. 2: The execution time comparison between Spark and
MapReduce.

1) Total Execution Time: We compare SHAS’s perfor-
mance with the equivalent implementation in MapReduce, both
of which are written in Java. Since Spark and MapReduce
have a significant difference in their implementation, we only
take the total execution time into consideration. Other system
metrics such as cpu load and memory usage are out of scope
of this paper.

We first evaluate the algorithm on the twelve synthetic
datasets described in Table I. Figure 2 illustrates the total
execution time of our algorithm on synthetic-cluster datasets.
Without any doubt, memory-based Spark greatly outperforms
disk-based MapReduce for all the datasets. More importantly,
the execution time using Spark decreases much more quickly
than using MapReduce. In other words, Spark shows much
stronger scalability as the number of cores increases. One
reason is that Spark keeps RDDs in memory which reduces
the amount of data to be materialized. The other is that per
iteration Spark has no framework overhead such as job setup
and tear-down as MapReduce.

2) The Speedup: In order to illustrate how SHAS algo-
rithm sustains the speedup as the size of cluster scales up
and the amount of data to process increases, we measure the

speedup on p cores as Speedup =
p0tp0
tp

, where p0 is the mini-

mum computer cores we conduct our experiments, which is 50
in our experiments, and tp is the SHAS’s execution time on p
cores. Figure 3 summarizes the speedup results on these twelve
datasets with different sizes and dimensionalities. As expected,
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Fig. 3: Speedup on synthetic datasets using 50-392 computer
cores.

the number of objects in the dataset significantly influences
the speedups (bigger datasets show better scalability), and the
dimensionality is another factor that affects the performance.
The categories of datasets hardly makes any difference in our
algorithm in that we use Euclidean distance as the edge weight
measure, and the distribution of data points has no impact on
the computational complexity in calculating distances.

3) The Merge Factor K: The motivation to have the con-
figurable merge factor is to offer a tradeoff between the number
of iterations and the number of parallelism. As discussed in
Equation (1), larger K leads to fewer iterations. Unfortunately,
larger K also implies less number of reducers and smaller
degree of parallelism. Therefore, finding a right value of K
is very important for overall performance. Figure 4 shows
speedup for datasets clust100K and clust500k with K equals to
2, 4, 8, and both datasets achieve better speedup when K = 2.
It appears that having a larger number of parallelism is more
important because if we have more reducers, essentially we
avoid shuffling the data which already reside on those reducers
and each iteration can finish much quicker. Therefore larger K
will deteriorate the performance.

4) The Data Shuffle: In this section, we discuss the cost of
I/O to load the partitions as well as the data shuffle patterns
in the context of Spark, which includes remote bytes read and
bytes written during the data shuffle stage of each iteration.

Recall that when we form the subgraphs, each split need
actually be paired with other s − 1 splits. The size of MST

in a bipartite subgraph is 2 |E|
s − 1, while one in a regular

complete subgraph is
|E|
s . Therefore, the total number of edges

produced by the local prim algorithm is s|V|, where |V| is
the total number of vertices, which decreases drastically from
the number of edges in the original graph. The amount of
data shuffle is linearly proportional to the number of vertices
residing in the merged subgraphs.

The data shuffle patterns are illustrated in Figure 5, in

Fig. 4: Speedup with the merge factor K.

Fig. 5: Total Remote Bytes Read Per Iteration.

which x axis represents Spark iterations, and y axis shows the
aggregated amount of bytes remotely read by all the reducers
per iteration. SHAS algorithm requires to find the MST given
a certain number of computer cores. The plot depicts the
increasing trend of the amount of data shuffle as the number
of splits increases. Notably, as we scale up the number of
processes, the number of Spark iterations increases. However,
the data is dramatically reduced after the first iteration by
almost 25%, which verifies our claim that incorrect edges
are pruned at a very early stage. The same trend is observed
for bytes written at the data shuffle stage. And the amount
of vertices decreases by approximately K times due to the
deduplication effect at the Kruskal reducer’s merging process.

5) The Load Balance: Spark provides a Ganglia web portal
to monitor the entire cluster’s performance. Ganglia [22], as a
cluster-wide monitoring tool, can provide insight into overall
cluster utilization and resource bottlenecks. Figure 6 shows
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the cluster’s snapshot at the first iteration. In our algorithm,
the dataset is partitioned evenly and induced subgraphs are
distributed based on the size of vertices, thus, the workload is
balanced among Spark workers. This is verified by the heap
map in Figure 6(a). The entire algorithm is CPU bound due
to the quadratic time complexity of Prim algorithm. Figure 6
(b) shows one of the later iterations. The edges are pruned by
KruskalReducer in the manner of K-way merge. As we can
see, the degree of parallelism runs down as the number of
reducers decreases, but the reduce operation has much lighter
CPU load compared with the Prim algorithm.

V. RELATED WORK

Hierarchical clustering provides a rich representation about
the structure of the data points without predetermining the
number of clusters. However, the complexity is at least
quadratic in the number of data points [23], which is not
tolerable with large-scale and high-dimension applications.
Several efforts were taken to parallelize hierarchical clustering
algorithm, relying on the advance of modern computer archi-
tectures and large-scale systems. Different platforms, including
multi-core [8], GPU [24], MPI [25] as well as recently
popularized MapReduce framework [26], [27], have all seen
its implementation.

Clustering using the single-linkage algorithm is closely
related to finding the Euclidean minimal spanning tree of a
set of points. Sequential algorithms with a runtime of O(n2)
are known [23]. Parallel implementations of single-linkage
dates back to late 1980s with the Rasmussen and Willett’s
implementation on a SIMD array processor [28]. SHRINK [8],
proposed by Hendrix et al., is a parallel single-linkage hier-
archical clustering algorithm based on SLINK [29]. SHRINK
exhibits good scaling and communication behavior, and only
keeps space complexity in O(n) with n being the number
of data points. The algorithm trades duplicated computation
for the independence of the subproblem, and leads to good
speedup. However, the authors only evaluate SHRINK on up
to 36 shared memory cores, achieving a speedup of roughly
19.

While both [23] and [8] are based on low communication-
latency systems, Feng et al. [30] explore the design in PC
cluster system with high communication cost. They propose
a parallel hierarchical clustering (PARC), which implements
CLAP [31] algorithm in a distributed fashion. The algorithm
includes sample clustering phase and global clustering phase.
The main idea is to form a fuzzy global clustering pattern by
exchanging the sample clustering results from each computer
node and then refine the initial global clustering with the entire
dataset. In order to achieve a high speedup, the authors apply
asynchronous MPI communication to exchange the intermedi-
ate results. However, the algorithm is only evaluated with 8
computer nodes.

MapReduce and its variants have been highly success-
ful in implementing large-scale data-intensive applications
on commodity clusters. However, most of these systems are
built around an acyclic data flow model that is not suitable
for other popular applications. This paper, focuses on one
such class of applications: those that reuse a working set of
data across multiple parallel operations. This includes many

iterative machine learning algorithms, as well as interactive
data analytical tools.

In the new cluster computing framework, Spark, however,
users can construct complex directed acyclic graphs (DAGs),
even cyclic graphs, each of which defines the dataflow of the
application. Separate DAGs can be executed all at once. Spark
can outperform Hadoop by 10x in iterative machine learning
jobs, and can be used to interactively query a 39GB dataset
with sub-second response time. The following two subsections
describe each of these advanced distributed frameworks.

A. Disk-based Computing Framework

MapReduce has emerged as one of the most frequently
used parallel programming models for processing large-scale
datasets since it was first proposed in 2004 by Dean and
Ghemawat [4]. Its open source implementation, Hadoop, has
become the de facto standard for both industry and academia.
There are many research efforts inspired by MapReduce rang-
ing from applying MapReduce to support Online Analysis,
improving MapRedcue’s pipeline performance, building high-
level languages on top of MapReduce (e.g. DryadLINQ [32],
Hive [33], Pig [34]).

The programming models of MapReduce [4] and Dryad
[35] are instances of stream processing, or data-flow models.
Because of MapReduce’s popularity, programmers start using
it to build in-memory iterative application such as PageRank,
even though data-flow model is not a natural fit for these
applications. Zaharia and et al. [13] proposes to add distributed
read-only in-memory cache to improve the performance of
MapReduce-based iterative computations.

MapReduce executes jobs in a simple but inflexible map-
shuffle-reduce structure. Such a structure has so far been
sufficient for one-pass batch processing, however, when there
are complicatedly cross-dependent, multi-stage jobs, one often
has to string together a series of MapReduce jobs and have
them executed sequentially in time. This leads to high latency.
Another limitation is that data is shared among parallel oper-
ations in MapReduce by writing it to a distributed file system,
where replication and disk I/O cause substantial overhead [36].

B. In-memory Computing Framework

Designing scalable systems for analyzing, processing and
mining huge real-world datasets has become one of the most
timely problems facing systems researchers. For example,
high-dimensional metric space are particularly challenging
to handle, because they cannot be readily decomposed into
small parts that could be processed in parallel. This lack of
data parallelism renders MapReduce inefficient for computing
on such problem, as has been argued by many researchers
(for example, [36]). Consequently, in recent years several in-
memory based abstraction has been proposed, most notably,
Spark [5].

Spark is a cluster computing framework that allows users to
define distributed datasets that can be cached in memory across
the cluster for applications that require frequent passes through
them. One of the advantages of such a programming model is
that you can write a single program, similar to DryadLINQ
[32]. Due to RDD’s immutability, data consistency is very
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(a) The first iteration

(b) One of later iterations

Fig. 6: Snapshot of cluster utilization at the first iteration and one of later iterations.
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easy to achieve. Users are able to store data in memory across
DAGs. The fault tolerance is also inexpensive by only logging
lineage rather than replicating or check-pointing data. Even
though the model seems being restricted, it is still applicable
to a broad variety of applications.

VI. CONCLUSION

In this paper, we have presented SHAS, a new paral-
lel algorithm for single-linkage hierarchical clustering. We
demonstrated how the algorithm scaled using Spark in contrast
with MapReduce. By evaluating SHAS empirically with two
synthetic datasets generated from different distributions, we
observed that it achieved a speedup of up to 300 on 392
computer cores. The parallelization technique employed by
SHAS can be extended to other types of problems, particularly
those that can be modeled as dense graph problems. Future
work on SHAS may involve efforts to take data set distribution
into consideration and use better graph partition scheme to
reduce the cost of the data shuffling between iterations.
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