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ABSTRACT

The latent behavior of an information system that can exhibit ex-
treme events, such as system faults or cyber-attacks, is complex.
Recently, the invariant network has shown to be a powerful way of
characterizing complex system behaviors. Structures and evolutions
of the invariance network, in particular, the vanishing correlations,
can shed light on identifying causal anomalies and performing sys-
tem diagnosis. However, due to the dynamic and complex nature
of real-world information systems, learning a reliable invariant net-
work in a new environment often requires continuous collecting
and analyzing the system surveillance data for several weeks or
even months. Although the invariant networks learned from old
environments have some common entities and entity relationships,
these networks cannot be directly borrowed for the new environ-
ment due to the domain variety problem. To avoid the prohibitive
time and resource consuming network building process, we pro-
pose TINET, a knowledge transfer based model for accelerating
invariant network construction. In particular, we first propose an
entity estimation model to estimate the probability of each source
domain entity that can be included in the final invariant network
of the target domain. Then, we propose a dependency construction
model for constructing the unbiased dependency relationships by
solving a two-constraint optimization problem. Extensive experi-
ments on both synthetic and real-world datasets demonstrate the
effectiveness and efficiency of TINET. We also apply TINET to
a real enterprise security system for intrusion detection. TINET
achieves superior detection performance at least 20 days lead-lag
time in advance with more than 75% accuracy.
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1 INTRODUCTION

Dynamic information systems, such as cyber-physical systems,
enterprise systems, and cloud computing facilities, are inherently
complex. These large-scale systems usually consist of a great variety
of components/entities that work together in a highly complex and
coordinated manner. For example, the cyber-physical system is
typically equipped with a large number of wireless sensors that
keep recording the running status of the local physical and software
components.

Recently, a very promising means for studying complex systems
has emerged through the concept of invariants [7, 9, 14, 16-18].
Such invariant models focus on discovering stable and significant
dependencies between pairs of system entities that are monitored
through surveillance data recordings, so as to profile the system
status and perform subsequent reasoning. A strong dependency
between a pair of entities is called an invariant relationship. By
combining the invariants learned from all monitoring entities, a
global system dependency profile can be obtained. The significant
practical value of such an invariant profile is that it provides im-
portant clues on abnormal system behaviors, and in particular on
the source of anomalies, by checking whether existing invariants
are broken (7, 14, 18, 21, 35].

For fully utilizing the invariant model, the first prerequisite is to
construct the invariant network from the system streaming data. In
the invariant network, a node represents a system component/entity
and an edge indicates a stable, significant interaction between two
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Figure 1: Comparison between a traditional work flow and TINET work flow of learning the invariant network. TINET extracts
the knowledge from a well-trained invariant network to speed up the training process of a new invariant network.

system entities. During the construction process, we infer the net-
work structure and invariant/dependency relations by continuously
collecting and analyzing the surveillance data generated by the sys-
tem.

Due to the dynamic and complex nature of the real-world infor-
mation system, learning a robust invariant network often requires a
very long training time. For instance, in enterprise security systems
(See Fig. 1), the construction process needs to collect at least 30 days
of streaming data to identify important entities and relationships
reliably. However, it is often impractical and uneconomical to wait
for such long time, especially for some mission-critical environ-
ments (e.g., nuclear plants) and PoC (Proof of Concept) scenarios.
Unfortunately, utilizing fewer days’ data will lead to an unreliable
network with poor performance. To illustrate this, we show, in
Section 4.7, that if we utilize only three days of training data then
we get a poor recall of 10% for intrusion detection, which is unac-
ceptable in real-world systems. Thus, to deploy our models reliably
in a new environment, we have to wait a long time (e.g., 30 days)
before we can get any reliable invariant network.

Enlightened by the cloud services [22], one way to “speed up”
the learning process is by reusing a unified invariant network
model in different domains/environments. However, due to the
domain/environment variety problem [28], directly apply the in-
variant network learned from an old environment to a new envi-
ronment often cannot achieve good performance. In Section 4.7, we
show that directly transferring the old invariant network can only
get a 15% precision result, which is also unacceptable in real-world
applications.

The good news is that it is easy and fast to compute a partial,
significantly incomplete, invariant network of the new environment
of interest. To avoid the prohibitive time and resource consuming
network building process, the aim of this paper is to complete this
partial information reliably by transferring knowledge from another
invariant network. Formally, given a partial invariant network of
the target domain and a complete invariant network of the source
domain. How can we reliably compute the full invariant network
of the target domain? There are two major challenges for achieving
this:
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e Challenge 1: Identify the domain-specific/irrelevant
entities between two environments. As aforementioned,
since the environments are different, not all entities of the
source domain are related to the target domain. For instance,
an invariant network from an electronic factory system will
have entities such as energy-related program, which will not
exist in an IT company enterprise system. Thus, we need to
identify the right entities that can be transferred from the
source domain to the target one.

e Challenge 2: Constructing the invariant relationships
on the new environment. After transferring the entities
from source to target, we also need to identify invariant rela-
tionships between the entities to complete the invariant net-
work. The challenge is to extract the invariant information
from the old environment, and then combine this knowledge
with the partial invariant network of the new environment.

To address the aforementioned two challenges, in this paper, we
propose TINET, an efficient and effective method for transferring
knowledge between Invariant Networks. TINET consists of two sub-
models: EEM (Entity Estimation Model) and DCM (Dependency
Construction Model). First, EEM filters out irrelevant entities from
the source network based on entity embedding and manifold learn-
ing. Only the entities with statistically high correlations with the
target domain are transferred. Then, after transferring the entities,
DCM model effectively constructs invariant (dependency) relation-
ships between different entities for the target network by solving
a two-constraint optimization problem. Our approach can use an
existing invariant network of an old environment to complete the
partial invariant network of the new environment. As a result,
the costly time and resource consuming re-building process of the
invariant network from scratch can be avoided. We perform an
extensive set of experiments on both synthetic and real-world data
to evaluate the performance of TINET. The results demonstrate
the effectiveness and efficiency of our proposed algorithm. We also
apply TINET to real enterprise security systems for intrusion de-
tection. By using TINET, we can achieve more than 75% accuracy
after 3 days of training time, this performance is almost the same as
30 days of construction of invariant network without using TINET.
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On the contrary, building an invariant network using only 3 days
of data can only get 10% accuracy. Thus, our method can achieve
superior detection performance at least 20 days lead-lag time in
advance with more than 75% accuracy.

2 PRELIMINARIES AND PROBLEM
STATEMENT

In this section, we first introduce the invariant network and then
define our problem.

2.1 Invariant Network

We formally define an invariant network as an undirected weighted
graph G = {V,E}, where V = {v1, ..., v} is the set of n hetero-
geneous system entities and E = {e, ..., e;, } is the set of m edges
between pairs of entities. The edges exist depending on whether
there are invariant or dependency relationships between the corre-
sponding pairs of system entities.

For example, in an enterprise security system (as illustrated in
Fig. 2), an invariant network is a graph between different computer
system entities such as processes, files, and Internet sockets. The
edges indicate the stable causal dependencies including a process
accessing a file, a process forking another process, and a process
connecting to an Internet socket.

Depending on the type of the collected system data, there are
different ways to generate the invariant relationships/edges. For the
time series data (e.g., sensor readings from a cyber-physical system),
given two pairs of time series x(t) and y(t), where t is the times-
tamp, the relationship between x(¢) and y(t) can be constructed by
using the AutoRegressive eXogenous (ARX) model [7, 14, 18, 21].
For the categorical event data (e.g., the process events from an
enterprise system), a common system event can be presented as
an edge between two nodes, each representing the initiator or the
target of the interaction [9, 35].

A network including all the invariant links is referred to as the
invariant network. Constructing the invariant network from the
system monitoring or surveillance data is referred to as the model
training. After the training, the learned complete invariant network,
as the system profile, can be applied to many autonomic system
management applications such as anomaly detection, system fault
diagnose, incident backtrack, and etc [7, 27].

2.2 Problem Statement

Given two environments/domains: a source domain Dg and a target
domain D7, an information system has been running in Dg for
a long time, while the same information system has only been
deployed in D7 for a short period of time. Let G be the well-trained
invariant network constructed based on the collected data from Dg.
Let Gt be the partial/incomplete invariant network constructed
based on the collected data from Dr. Our main goal is to transfer
the knowledge from Gg to help construct a complete invariant
network Gt of the domain Dr.

In the rest of the paper, we will use invariant relationship and
dependency interchangeably, and for simplicity, we will use source
network (target network) as the short name for the invariant net-
work of the source domain (target domain). The symbols used in
the paper are listed in Table 1.
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Table 1: Summary of notations

Notation | Description
Ds The source domain
Dt The target domain
Gs The invariant network of source domain
Gr The ground-truth invariant network of target domain
Gr The estimated invariant network of target domain
ér The partial incomplete invariant network of target domain
65 A sub-network of Ggs, which has the same entity set as 51-
Gr The target domain invariant network after entity estimation
G S The sub-network of Gg, which has the same entity set as Gr
A\T, A\s The adjacent matrix of GT, 65, respectively
ZT, As The adjacent matrix of ET, 53 respectively
ns The number of entities in 55
us The vector representation of entities in source domain
ur The vector representation of entities in target domain
P A set of meta-paths
w The weight for each meta-path in P
F(G1, G2) | The dynamic factor between G; and G,
Q) The regularization term
A p The parameters 0 < gy < 1,0 < A < 1

3 THE TINET MODEL

To address the two key challenges introduced in Section 1, we
propose a knowledge transfer algorithm with two sub-models: EEM
(Entity Estimation Model) and DCM (Dependency Construction
Model) as illustrated in Fig. 3. We first introduce these two sub-
models separately in details and then analyze the whole algorithm
including the parameters and complexity.

3.1 EEM: Entity Estimation Model

For the first sub-model, Entity Estimation Model, our goal is to
filter out the entities in the source network Gg that are irrelevant to
the target domain. To achieve this, we need to deal with two main
challenges: (1) the lack of intrinsic correlation measures among
heterogeneous entities, and (2) heterogeneous relations among
different entities in the invariant network.

3.1.1 Objective Function. To overcome the lack of intrinsic cor-
relation measures among heterogeneous entities, we embed en-
tities into a common latent space, where their semantics can be
preserved. More specifically, each entity, such as a user, or a pro-
cess in computer systems, is represented as a d-dimensional vector
and will be automatically learned from the data. In the embed-
ding space, the correlation of entities can be naturally computed
by distance/similarity measures in the space, such as Euclidean
distances, vector dot product, and so on. Compared with other dis-
tance/similarity metrics defined on sets, such as Jaccard similarity,
the embedding method is more flexible and it has nice properties
such as transitivity [37].

To address the challenge of heterogeneous relations among differ-
ent entities, we use the meta-path [32] to model the heterogeneous
relations. A meta-path is a path that connects entity types (labels)
via a sequence of relations over a heterogeneous network [32]. For
example, in a computer system, a meta-path can be a “Process-File-
Process”, or a “File-Process-Internet Socket”. “Process-File-Process”
denotes the relationship of two processes load the same file, and
"File-Process-Internet Socket" denotes the relationship of a file
loaded by a process who opened an Internet Socket. Notice that,
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Figure 2: An overview of an enterprise security system. It first uses the surveillance data of a long period of time (e.g., one
month) to learn an invariant network, then applies this invariant network for various forensic applications.

Source Domain Knowledge

Figure 3: An overview of TINET model. TINET contains
two sub-models: Entity Estimation Model (EEM) and Depen-
dency Construction Model (DCM).

the potential meta-paths induced from the heterogeneous network
Gg can be infinite, but not every one is relevant and useful for the
specific task of interest. Fortunately, there are some algorithms [5]
proposed recently for automatically selecting the meta-paths for
specific tasks.

Given a set of meta-paths P = {p1, p2, ...}, where p; denotes the
i-th meta-path and let |P| be the number of meta-paths. We can con-
struct |P| graphs Gp, by each time only extracting the correspond-
ing meta-path p; from the invariant network [32]. Let ug be the
vector representation of the entities in Gg. Then, we can model the
relationship between two entities using their vector representations
us(i) and us(j): ||us(i) — us(j)||% ~ Sg(i, j), where Sg is a weighted
average of all the similarity matrices Sp,: Sg = Zl‘.ill w;Sp,, Where
w;’s are non-negative coefficients, and S, is the similarity matrix
constructed by calculating the pairwise shortest path between every
two entities in Ap,. Here, Ay, is the adjacent matrix of the invari-
ant network Gy, . By using the shortest path in the graph, one can
capture the long-term relationship between different entities [1].
Then, the objective function of the EEM model can be defined as:

. 1 0
Lguéaw) — Z (||us(l) - uS(])”% - SG) + Q(uS’W)3 (1)

ij

where W = {wi, wg, ..., wp|}, and Q(us, W) = Alugl| + A[|W]|

is the generalization term [12], which prevents the model from

over-fitting. And A is the trade-off factor of the generalization term.

In practice, we can choose 6 as 1 or 2, which bears the resemblance

to Hamming distance and Euclidean distance, respectively.
Putting everything together, we get:

n 6
L85 =3 (lus(®) - usG)E - 56 + Qus, W)

ij
n |P|-1 o

=Z llus(i) — usG)HII% - Z wiSp, | +Allusll + AWl
ij i=0

(2
Then, the optimized value {ug, W}°P ¢ can be obtained by:
{us, W}°P! = arg min Lgus’w).
us,W

3.1.2  Inference Method. The objective function in Eq. 2 contains
two sets of parameters: (1) ug and (2) W. Then, we propose a two-

step iterative method for optimizing Lg“s’w), where the entity
vector matrix ug and the weight vector W for meta-paths mutually
enhance each other. In the first step, we fix the weight vectors W
and learn the best entity vector matrix ug. In the second step, we
fix the entity vector matrix ug and learn the best weight vector W.
Note that, based on the empirical experience, here we fix 6 = 2.

Fix W and learn ug: When we fix W, then the problem is
reduced to ||us(i) — us(j)||fv ~ S;(i,j), where Sg is a constant
similarity matrix. Then, the optimization process becomes a tra-
ditional manifold learning problem. Fortunately, we can have a
closed form to solve this problem, via the multi-dimensional scal-
ing technique[12]. More specifically, to obtain such an embedding,
we compute the eigenvalue decomposition of the following ma-
trix: —%H SGH = UAU, where H is the double centering matrix, U
has columns as the eigenvectors and A is a diagonal matrix with
eigenvalues. Then, ug can be computed as:

us = UVA. ®3)
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Fix ug and learn W: When fixing ug, the problem is reduced

to:
P| 0
LV =Z s (i) = us(DIF = D wisp, |+ Alusll + AW
i,j i=1
n 1P| 0
= Z C1 - ZwiSPi +/1||W|| + CZ’

ij i=0

4
where C1 = |lus(i) — us(j)||i- is a constant matrix, and C2 = A ||Es||
is a constant. Then, this function becomes a linear regression. So,
we also have the close form solution for W: W = (SgSG)_ISGCL

After we get the embedding vectors ug, then the relevance ma-
trix R between different entities can be obtained as R = ugug. We
can use a user-defined threshold to select the entities with high
correlation with target domain for transferring. But this threshold-
ing scheme is often suffered by the lack of domain knowledge. So
here, we introduce a hypothesis test based method for automatically
thresholding the selection of the entities.

For each entity in Gr, we first normalize all the scores by: R(i, :
Ynorm = R(,:) — p)/8, where u = M is the average value of
R(i,:), and § is the standard deviation of R(, :). This standardized
scores can be approximated with a Gaussian distribution. Then, the
threshold will be 1.96 for P = 0.025 (or 2.58 for P = 0.001) [12]. By
using this threshold, one can filter out all the statistically irrelevant
entities from the source domain, and transfer highly correlated
entities to the target domain.

By combining the transferred entities and the original incomplete
target network Gr, we get Gr, a network that contains all the
transferred entities, but missing the dependencies among them.
Then, the next step is to construct the missing dependencies in Gr.

3.2 DCM: Dependency Construction Model

To construct the missing dependencies/invariants in Gr, there are
two constraints need to be considered:

e Smoothness Constraint: The predicted dependency structure
in Gt needs to be close to the dependency structure of the
original incomplete target network Gr. The intuition behind
this constraint is that the learned dependencies should keep
the original dependencies of Gt as intact as possible. This
constraint guarantees that the constructed dependencies
follow the behaviors of the target domain.

Consistency Constraint: The inconsistency between Gr and
55 should be similar to the inconsistency between éT and
55. Here, Gs and 65 are the sub-graphs of Gg, which have
the same entity set with G and Gr, respectively. This con-
straint guarantees that the target network learned by our
model can keep the original domain difference with the
source network.

Before we model the above two constraints, we first need a
measure to evaluate the inconsistency between different domains.
As aforementioned, invariant networks are normal profiles of their
corresponding domains. So, we use the distance between different
invariant networks to denote the domain inconsistency.
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In this work, we propose a novel metric, named dynamic factor
F(Gg, GT) between two invariant networks Gs and Gt from two
different domains as:

- ]
|Gs| * (1Gs| - 1)/2

F(Gs, Gr) = s -] (5)

ns(ng —1)

where ng = |G5| is the number of entities in Gs, Ag and A7 denote
the adjacent matrix of GS and GT, respectively, and ng(ng — 1)/2
denotes the number of edges of a fully connected graph with ng en-
tities [1]. Next, we introduce the Dependency Construction Model
in details.

3.2.1 Modeling Smoothness Constraint. We first model the smooth-
ness constraint as follows:

2
s ns—1
(er@ur ()T = 7G| +Allur]
F

=

ur
‘[:2.1

i=1 j=0

—_
~.

2
u7u¥ - AT”F + Q(uT),

where ur is the vector representation of the entities in Gr, and
Q(ut) = Allur|| is the regularization term.

3.2.2  Modeling Consistency Constraint. We then model the con-
sistency constraint as follows:

()

where F(x, ) is the dynamic factor as we defined before. Then,
putting Eq. 5 and Q(u7) into Eq. 7, we get:

£ = ”F(”TUT’AS) F(A&AT)‘

+ Q(ur),

£ =||Fwrd, Gs) - FGs. G + twr)
ho-2d |
s F(Gs,Gr) . + Q(ur) ®)
i3]
N mmon Cs|| + Q(ur),
F

where C3 = F(@s,éT).

3.2.3 Unified Model. By putting the two constraints together,
we propose the unified model for dependency construction as fol-
lows:
LT =p L)+ (1 - p) Ly
2”1,471,{%: —Xs” ’

—_ C3
ns(ns — 1)

~ 112
= purud - &r| + - p) +Qur)

©)
The first term of the model incorporates the smoothness con-
straint component, which keeps the ut closer to the target domain
knowledge existed in Gs. The second term considers the consistency
constraint, that is the inconsistency between Gr and Gg should be
similar to the inconsistency between Gr and Gs. p and A are im-
portant parameters, which capture the importance of each term,
and we will discuss these parameters in Section 3.3.1.
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Algorithm 1: The TINET Algorithm

Input :Gg, 57-
Output:Gr
Select a set of meta-paths from Gs.;

-

Extract |P| networks from Ggs;

[N}

w

Calculate all the similarity matrix Sp, ;

\* Entity Estimation Process as introduced in Section 3.1x\;

=

while Convergence do
Calculate U and A;

o

7 us = U%;

8 Calculate S and Cy;
9 W =(SESc)"SaCr:
10 end

11 Construct éT;

oy

0

\* Dependency Construction Process as introduced in Section 3.2x\;
13 while Convergence do
14 Update ur using the gradient of Eq. 10;
15 end

16 Construct ET ;

To optimize the model as in Eq. 9, we use stochastic gradient
descent method [12]. The derivative on ur is given as:

1 aLgT 2 Huru% —A5”

2 OET

S
= pur(uruy — Ar) + (1 — pur
K T K ns(ns —1)

(10)
3.3 Overall Algorithm

The overall algorithm is then summarized as Algorithm 1. In the
algorithm, line 5 to line 11 implements the Entity Estimation Model,
and line 13 to 16 implements the Dependency Construction Model.

3.3.1 Parameter Setting. There are two parameters, A and , in
our model. For 4, as in [12, 32], it is always assigned manually based
on the experiments and experience. For y, when a large number of
entities are transferred to the target domain, a large y can improve
the transferring result, because we need more information to be
added from the source domain. On the other hand, when only a
small number of entities are transferred to the target domain, then
a larger p will bias the result. Therefore, the value of i depends
on how many entities are transferred from the source domain to
the target domain. In this sense, we can use the proportion of the
transferred entities in G to calculate yi. Given the entity size of G
as |Gy, the entity size of GT as |5T |, then y can be calculated as:

g = (IGrl = 1GT)/ |G- (11)

The experimental results in Section 4.6 demonstrate the effec-
tiveness of the proposed parameter selection method.

3.3.2  Complexity Analysis. As shown in Algorithm 1, the time
for learning our model is dominated by computing the objective
functions and their corresponding gradients against feature vectors.
For the Entity Estimation Model (EEM), the time complexity of
computing the ug in Eq. 3 is bounded by O(din), where n is the
number of entities in Gg, and d; is the dimension of the vector
space of ug. The time complexity for computing W is also bounded

—C3 +ur
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by O(d1n). So, suppose the number of training iterations for EEM
is t1, then the overall complexity of EEM model is O(t1d;n). For
the Dependency Construction Model (DCM), the time complexity
of computing the gradients of £y against ut is O(t2d2n), where ty
is the number of iterations and ds is the dimensionality of feature
vector. As shown in our experiment (see Section 4.5), t1, t2, d1, and
dy are all small numbers, so we can regard them as a constant, say
C. Thus, the overall complexity of our method is O(Cm), which
is linear with the size of the entity set. This makes our algorithm
practicable for large-scale datasets.

4 EXPERIMENTS

In this section, we evaluate TINET using synthetic data and real
system surveillance data collected from enterprise networks.

4.1 Comparing Methods

We compare TINET with the following methods:

NT: This method directly uses the original incomplete target
network without knowledge transfer. In other words, the estimated
target network Gr = 67.

DT: This method directly combines the source network and the
incomplete target network. In other words, the estimated target
network Gt = Gg + E;T.

RW-DCM: This method uses random walk, instead of the EEM
model (see Section 3.1)), to evaluate the correlations between enti-
ties and perform entity estimation, and then apply the DCM model
to perform the perform the dependency construction. The random
walk method has shown to be a powerful way for relevance search
in a graph [20].

EEM-CMEF: Collective matrix factorization (CMF) is a widely-
used transfer learning framework for constructing links/dependencies
in graphs [29]. However, it can’t be directly applied for transferring
system entities, which is required in this work. Thus, we modify
CMF by adding the entity estimation component. EEM-CMF first
uses EEM model (see Section 3.1) to perform the entity estimation,
and then uses CMF to perform the dependency construction.

4.2 Evaluation Metrics

Since in TINET algorithm, we use hypothesis-test for thresholding
the selection of entities and dependencies, similar to [12, 25], we
use Fl-score to evaluate the hypothesis-test accuracy of all the
methods. F1-score is the harmonic mean of precision and recall. In
our experiment, the final F1-score is calculated by averaging the
entity F1-score and dependency/edge F1-score.

To calculate the precision (recall) of the entity (edge), we compare

the estimated entity (edge) set with the ground-truth. The precision
Nc

Nr»
where N¢ is the number of correctly estimated entities (edges),
NE is the number of total estimated entities (edges), and Nt is the

number of the ground-truth entities (edges).

and recall can be calculated as: Precision = %,Recall =

4.3 Synthetic Experiments

We first evaluate the TINET on synthetic graph datasetsto have a
more controlled setting for assessing algorithmic performance.
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Figure 4: Performance on synthetic data. TINET outperforms all the other methods in all the datasets.

4.3.1 Synthetic Data Generation. According to our problem
statement (see Section 2), we need a source network Gg and an in-
complete target network Gr as the input, and a ground-truth target
network Gt to evaluate the performance in each synthetic data.
Based on the relationships among these three networks, we define
the following parameters to guide our synthetic data generation:

e Graph size: It is defined as the number of entities for an
invariant network. In particular, we use |Gg| to control the
size of the source network and |6T| to control the size of the
incomplete target network.

Dynamic factor F: It controls the difference between the
networks Gs and Gt (see Eq. 5 for definition).

Graph maturity score M: It is defined as the percentage of
entities and edges of the ground-truth graph Gr that have
already been learned in Gr. Here, graph maturity score is
used for simulating the period of learning time of Gr to
reach the maturity in the real system.

For a given |Gs|, |§T|, F, and M, we generate the synthetic data
as follows: We first randomly generate an undirected graph [33]
as the source network Gs with the size of |Gs|; Then, to get a
heterogeneous graph, we randomly assign one of the three different
labels to each entity?; After that, we further construct the target
network Gr by randomly adding/deleting F = d% of the edges and
entities from Gg. Finally, we randomly select M = ¢% of entities and
edges from Gt to form 57.

4.3.2 How Does TINET’s Performance Scale with Graph Size?
We first explore how the TINET’s performance changes with the
graph size difference between |Gs| and |6T |. Here, we set the matu-
rity score M to be 50%, the dynamic factor F to be 10%, and the size
of the incomplete target network |G| to be 0.9K. Then, we increase
the source network size |Gg| from 0.9K to 1.4K. From Fig. 4a, we
observe that with the increase of the size difference |Gg| — |5T|,
the performances of DT and RW-DCM are getting worse. This is
due to the poor ability of DT and RW-DCM for extracting useful
knowledge from the source domain. In contrast, the performance
of TINET and EEM-CMEF increases with the size differences. This

2Similar results have been achieved in synthetic networks with more than three labels.
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demonstrates the great capability of the EEM model for entity
knowledge extraction.

4.3.3 How Does TINET s Performance Scale with Domain Dy-
namic Factor? We now vary the dynamic factor F to understand
its impact on the TINET’s performance. Here, the graph maturity
score M is set to be 50%, and two network sizes |Gs| and |6T|
are set to be 1.2K and 0.6K, respectively. Fig. 4b shows that the
performances of all the methods go down with the increase of
the dynamic factor. This is expected because transferring the in-
variant network from a very different domain will not work well.
On the other hand, the performances of TINET, RW-DCM, and
EEM-CMF only decrease slightly with the increase of the dynamic
factor. Since RW-DCM and EEM-CMF are variants of the TINET
method, this demonstrates that the two sub-models of the TINET
method are both robust to large dynamic factors.

4.3.4 How Does TINET s Performance Scale with Graph Matu-
rity? Third, we explore how the graph maturity score M impacts
the performance of TINET. Here, the dynamic factor F is fixed
to be 0.2. The graph sizes |Gs| and |5T| are set to be 1.2K and
0.6K, respectively. Fig. 4c shows that with the increase of the M,
the performances of all the methods are getting better. The reason
is straightforward: with the maturity score increases, the challenge
of domain difference for all the methods is becoming smaller. In
addition, our TINET and its variants RW-DCM, and EEM-CMF
perform much better than DT and NT. This demonstrates the great
ability of the sub-models of TINET for knowledge transfer. Fur-
thermore, TINET still achieves the best performance.

4.4 Real-World Experiments

Two real-world system monitoring datasetsare used in this exper-
iment. The data is collected from an enterprise network system
composed of 47 Linux machines and 123 Windows machines from
two departments, in a time span of 14 consecutive days. In both
datasets, we collect two types of system events: (1) communications
between processes, and (2) system activity of processes sending or
receiving Internet connections to/from other machines at destina-
tion ports. Three different types of system entities are considered:
(1) processes, (2) Unix domain sockets, and (3) Internet sockets. The
sheer size of the Windows dataset is around 7.4 Gigabytes, and the
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Figure 5: Performance on real-world data. TINET outperforms all the other methods in all datasets.
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Figure 6: Performance on convergence. TINET converges
very fast, which makes it applicable for large-scale systems.

Linux dataset is around 73.5 Gigabytes. Both Windows and Linux
datasets are split into a source domain and a target domain accord-
ing to the department name. Knowledge transferring between a
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Linux system and a Windows system is not considered in this work
because the behaviors of these two systems are very different.

In this experiment, we construct one target network GT per
day by increasing the learning time daily. The final graph is the
one learned for 14 days. From Fig. 5, we observe that for both
Windows and Linux datasets, with the increase of the training time,
the performances of all the algorithms are getting better. On the
other hand, compared with all the other methods, TINET achieves
the best performance on both Windows and Linux datasets. In
addition, our proposed TINET algorithm can make the invariant
network deplorable in less than four days, instead of two weeks or
longer by directly learning on the target domain.

4.5 Convergence Analysis

As described in Section 3.3.2, the performance bottleneck of TINET
model is the learning process of the two sub-models: EEM (Entity
Estimation Model) and DCM (Dependency Construction Model). In
this section, we use both synthetic and real-world data to validate
the convergence speed of both sub-models.

For the synthetic data, we choose the one with the dynamic factor
F = 0.2, the invariant network sizes |Gs = 1.2K| and |§T| = 0.6K,
and the graph maturity M = 50%. For the two real-world datasets,
we fix the target network learning time as 4 days.

From Fig. 6, we can see that in all three datasets, TINET con-
verges very fast (i.e, with less than 10 iterations). This makes our
model applicable for the real-world large-scale systems.

4.6 Parameter Study

In this section, we study the impact of parameter u (see Eq. 9)
by using both synthetic and real-world data. As shown in Fig. 7,
when the value of y is too small or too large, the results are not
good, because u controls the leverage between the source domain
information and target domain information. The extreme value of
4 (too large or too small) will bias the result. On the other hand,
the p value calculated by Eq. 11 is 0.23 for the synthetic dataset,
0.36 for the Windows dataset, and 0.46 for the Linux dataset. And
Fig. 7 shows the best results just appear around these three values.
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Figure 7: Sensitivity analysis on parameter . Red dashed lines denote the values that computed by Eq. 11.

This demonstrates that our proposed method for setting the p value
is very effective, which successfully addresses the parameter pre-
assignment issue.

4.7 Case Study on Intrusion Detection

In this section, we evaluate the TINET’s performance in a real
commercial enterprise security system (see Fig. 2) for intrusion
detection. The same security system has been deployed in two com-
panies: a Japanese electric company and an American IT company.
We obtain one invariant network from the IT company after 30
days’ training, and an incomplete invariant network from the elec-
tric company after only 3 days’ training. Then, we apply TINET
and other baseline methods to learn the final invariant network by
leveraging the well-trained invariant network from the IT company.
After learning the invariant networks, the same graph-based intru-
sion detection approach [9] is applied during the testing period to
identify the causal anomalies (intrusions) via analyzing patterns in
the invariant networks.

In the one-day testing period, we try 10 different types of at-
tacks [19], including Snowden attack, ATP attack, botnet attack,
Sniffer Attack and etc., which resulted in 30 ground-truth alerts. All
other alerts reported during the testing period are considered as
false positives.

Table 2 shows the intrusion detection results in the electric com-
pany using the invariant networks generated by different transfer
learning methods and the real invariant network generated after 30
days’ training from the electric company. From the results, we can
clearly see that TINET outperforms all the other baseline meth-
ods by at least 15% in precision and 16% in recall. On the other
hand, the performance of the invariant network (3 days’ model)
constructed by TINET is very close to the ground truth model
(30 days’ model). This means, by using TINET, we can achieve
similar performance in one-tenth training time, which is of great
importance to mission-critical environments such as nuclear plants.

5 RELATED WORK

5.1 Transfer Learning

Transfer learning [2, 28] has been widely studied in recent years.
Most of the traditional transfer learning methods focus on numeri-
cal data [3, 8, 31]. When it comes to graph (network) structured data,
there is less existing work. In [11], the authors presented TrGraph,
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Table 2: Intrusion detection performance

Method Precision | Recall

NT 0.01 0.10

DT 0.15 0.30

RW-DCM 0.48 0.57

EEM-CMF 0.53 0.60

TINET 0.68 0.76

Real 30 days’ invariant network 0.70 0.76

anovel transfer learning framework for network node classification.
TrGraph leverages information from the auxiliary source domain
to help the classification process of the target domain. In one of
their earlier work, a similar approach was proposed [10] to discover
common latent structure features as useful knowledge to facilitate
collective classification in the target network. In [13], the authors
proposed a framework to propagates the label information from
the source domain to the target domain via the example-feature-
example tripartite graph. Transfer learning has also been applied to
the deep neural network structure. In [4], the authors introduced
Net2Net, a technique for rapidly transferring the information stored
in one neural net into another. Net2Net utilizes function preserv-
ing transformations to transfer knowledge from neural networks.
Different from existing methods, we aim to expedite the invariant
network learning process through knowledge transfer.

5.2 Link Prediction and Relevance Search

Graph link prediction is a well-studied research topic [15, 23].
In [36], Ye et al. presented a transfer learning algorithm to address
the edge sign prediction problem in signed social networks. Because
edge instances are not associated with a pre-defined feature vector,
this work was proposed to learn the common latent topological
features shared by the target and source networks, and then adopt
an AdaBoost-like transfer learning algorithm with the instance
weighting to train a classifier. Collective matrix factorization [29]
is another popular technique that can be applied to detect mission
links by combining the source domain and target domain graphs.
However, all the existing link prediction methods cannot deal with
dynamics between different domains in our problem.

Finding relevant nodes or similarity search in graphs is also
related to our work. Many different similarity metrics have been
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proposed such as Jaccard coefficient, Pearson correlation coeffi-
cient [1], and random walks [20, 30, 34]. However, none of these
similarity measures consider the multiple relations exist in the data.
Recent advances in heterogeneous information networks [6, 32]
have offered several similarity measures for heterogeneous rela-
tions, such as meta-path and relation path [24, 26]. However, these
methods cannot deal with domain variety problems.

6 CONCLUSION

In this paper, we introduce an important and challenging problem
of transfer learning on invariant networks. We propose TINET,
a transfer learning framework for accelerating invariant network
learning. By leveraging entity embedding and constrained optimiza-
tion techniques, TINET can effectively extract useful knowledge
(e.g., entity and dependency relations) from the source domain, and
transfer it to the target network. We evaluate the proposed algo-
rithm using extensive experiments on both synthetic and real-world
datasets. The experiment results convince us of the effectiveness
and efficiency of our approach. We also apply TINET to a real
enterprise security system for intrusion detection. Our method can
achieve superior detection performance at least 20 days lead-lag
time in advance with more than 75% accuracy.
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