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a b s t r a c t

An equation over a group G is an expression of formw1 . . . wk = 1G, where eachwi is either
a variable, an inverted variable, or a group constant and 1G denotes the identity element;
such an equation is satisfiable if there is a setting of the variables to values in G such that
the equality is realized (Engebretsen et al. (2002) [10]).
In this paper, we study the problem of simultaneously satisfying a family of equations

over an infinite group G. Let EQG[k] denote the problem of determining the maximum
number of simultaneously satisfiable equations in which each equation has occurrences
of exactly k different variables. When G is an infinite cyclic group, we show that it is NP-
hard to approximate EQ1G[3] to within 48/47 − ε, where EQ

1
G[3] denotes the special case

of EQG[3] in which a variable may only appear once in each equation; it is NP-hard to
approximate EQ1G[2] to within 30/29 − ε; it is NP-hard to approximate the maximum
number of simultaneously satisfiable equations of degree atmost d towithin d−ε for any ε;
for any k ≥ 4, it is NP-hard to approximate EQG[k]within any constant factor. These results
extend Håstad’s results (Håstad (2001) [17]) and results of (Engebretsen et al. (2002) [10]),
who established the inapproximability results for equations over finite Abelian groups and
any finite groups respectively.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since Feige et al. found the links between probabilistic proof systems and inapproximability [12], there has been a
lot of work in studying the inapproximability of NP-optimization problems. Since the discovery of the PCP theorem, the
inapproximability theory has seenmuch progress. The inapproximability results for someNP-complete problems have been
proven. For instance, Feige proved that approximating set cover to within ln n is NP-hard [11]. Håstad proved that it is NP-
hard to approximate clique problems within n1−ε [16] and it is NP-hard to approximate MAX-3SAT within 8/7− ε [17].
In this paper we study the simultaneous solvability of families of equations over infinite groups, which extends the

study of the simultaneous solvability of families of equations over finite groups. Many natural combinatorial optimization
problems can be described as questions concerning the simultaneous solvability of families of equations over finite groups.
There has been much work on this study. Many strong inapproximability results for problems such as Max Cut, Max Di-Cut,
Exact Satisfiability, and Vertex Cover [7–9,15,17,18,20,23] can be obtained from the connection. In [17], Håstad has proved
that it is NP-hard to approximate maximum simultaneously satisfiable equations over a finite Abelian group G. Later, the
result is extended to all finite groups [10].
We give some definitions from [10]. An equation in variables x1, . . . , xn over a group G is an expression of the form

w1 . . . wk = 1G, where each wi is either a variable, an inverted variable, or a group constant and 1G denotes the identity
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element. A solution is an assignment of the variables to values in G that realizes the equality. A collection of equations E
over the same variables induces a natural optimization problem, the problem of determining the maximum number of
simultaneously satisfiable equations in E . We let EQG denote this optimization problem. The special case where a variable
may only appear once in each equation is denoted as EQ1G; when each equation has single occurrences of exactly k variables,
the problem is denoted as EQ1G[k]; when a variable appears at most d times in each equation, this case is denoted as EQ

d
G; at

the same time, if each equation has single occurrence of exactly k variables, the problem is denoted as EQdG[k]. For example,
the equation ae−1abebcb−1cead = 1G could be part of an EQ3G[5] instance because five distinct variables occur and no variable
occurs more that three times.
A number of familiar optimization problems are related to EQG. For instance, when G = Z2, the familiarMax Cut problem

corresponds to the instances of EQ1Z2 [2], i.e. exactly two variables occur in each clause. For when G = S3, the non-Abelian
symmetric group on three letters, M. Goldmann and A. Russell reduce the problem ofmaximizing the number of bichromatic
edges in a 3-coloring of a given graph to EQG [14]. Håstad [17] and Zwick [23] describe some other examples. The general
problem has also been studied by Barrington et al. [5]. They have studied the computational complexity of determining
whether a system of equations over a fixed finite monoid has a solution. Finally, a number of well-studied combinatorial
enumeration problems can be produced from the EQG problem: see, e.g., [6,13,21,22]).
For G an Abelian group, Håstad [17] proved that it is NP-hard to approximate EQ1G[3] to within |G| − ε for any ε > 0.

Engebretsen et al. extended the result to all finite groups. They proved that if P 6= NP andG is any finite group, no polynomial
time approximation algorithm can approximate EQ1G[3] to within any |G| − ε for any ε > 0 [10].
For EQ1G over a finite group, the trivial randomized approximation algorithmwhich independently assigns each variable to

a uniformly selected value in G satisfies an expected fraction |G|−1 of the equations. According to the method of conditional
expectation [13], this algorithm can be efficiently derandomized.
For when G is the R field, Amaldi et al. [1] and Arora et al. [3] all study the complexity of the EQR problem. They proved

that it is NP-hard to approximate EQR within any constant factor and within a factor nε for some ε > 0, where n is the
number of equations.
To our knowledge, nobody has studied the complexity of simultaneously satisfying a family of equations over an infinite

group G. Since the structure of an infinite group is not obvious, we consider the simple situation where G is an infinite cyclic
group in this paper. We obtain some complexity results which are shown as follows.

Our result

In this paper, we show that, when G is an infinite cyclic group, it is NP-hard to approximate EQ1G[3] to within 48/47− ε;
it is NP-hard to approximate EQ1G[2] to within 30/29− ε; it is NP-hard to approximate EQG[k]within any constant factor; it
is NP-hard to approximate EQdG[k] to within d− ε for any ε (k ≥ 4).

Technique

Since an infinite cyclic groupG is isomorphic to the additive integer group Z, we study the problem EQZ. In order to obtain
the inapproximability result of EQ1G[3], we give a gap-preserving reduction from Max-E3-Sat to EQ

1
G[3]. Similarly, we give a

gap-preserving reduction from Max-E2-Sat to EQ1G[2].
We give a polynomial time reduction from EQ1Zd [3] to EQ

d
Z[4], where Zd is the cyclic group with d elements. Since it is

NP-hard to approximate EQ1Zd [3]within d− ε [17], it is NP-hard to approximate EQ
d
Z[4]within d− ε. Similarly, we can give

a reduction from EQ1Zd [k] to EQ
d
Z[k+ 1] (k > 4).

Structure of the paper

In Section 2, we introduce some definitions. Section 3 describes the reduction from the Max-E3-Sat problem to EQ1Z[3],
establishing the hardness of approximating EQ1Z[3]. Section 4 describes the reduction from the Max-E2-Sat problem to
EQ1Z[2], establishing the hardness of approximating EQ

1
Z[2]. In Section 5 we prove that approximating EQ

d
Z[4] is NP-hard

within d− ε by reducing EQ1Zd [3] to it. Finally, in Section 6 we present some conclusions and some open problems.

2. Preliminaries

We briefly introduce some notation (see [4]).

Definition 1. An optimization problem Π is a set I ⊆ {0, 1}∗, a set S ⊆ {0, 1}∗ of feasible solutions on input I ∈ I, and a
polynomial time computable measure m : I × S → R+, that assigns to each tuple of instance I and solution S a positive
real numberm(I, S), called the value of the solution S. The optimization problem is to find, for a given input I ∈ I, a solution
S ∈ S such thatm(I, S) is optimum over all possible S ∈ S.
If the optimum isminS∈S{m(I, S)} (resp.maxS∈S{m(I, S)}), we refer toΠ as aminimization (resp.maximization) problem.
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Definition 2. For an input I of a maximization problemΠ whose optimum solution has value opt(I), an algorithm A is said
to approximate opt(I) within a factor f (I) iff

1 ≤
opt(I)
A(I)

≤ f (I),

where f (I) ≥ 1 and A(I) > 0.

For studying the hardness of approximation problems we introduce the following reduction due to Arora [2].

Definition 3. Let Π and Π ′ be two maximization optimization problems and ρ, ρ ′ ≥ 1. A gap-preserving reduction from
Π to Π ′ with parameters ((c, ρ), (c ′, ρ ′)) is a polynomial transformation τ mapping every instance I of Π to an instance
I ′ = τ(I) ofΠ ′ such that for the optima optΠ (I) and optΠ ′(I ′) of I and I ′, respectively, the following hold:

optΠ (I) ≥ c H⇒ optΠ ′(I ′) ≥ c ′

optΠ (I) ≤ c/ρ H⇒ optΠ ′(I ′) ≤ c ′/ρ ′,

where c, ρ and c ′, ρ ′ depend on the instance sizes I and I ′, respectively.

3. The hardness of approximating EQ1
Z[3]

In this section, we show that it is NP-hard to approximate EQ1Z[3]within 48/47− ε. The proof is by gap-preserving Given
a finite set X of variables and a set C = {C1, . . . , Cm} of disjunctive clauses with exactly three literals in each clause, find a
truth assignment for X that satisfies as many clauses of C as possible. In the famous paper [17], Håstad proved the following
lemmas.

Lemma 2 (Theorem 6.1 of [17]). For any ε it is NP-hard to approximate Max-E3-Sat within a factor 8/7− ε.

Lemma 3 (Theorem 6.5 of [17]). For any ε it is NP-hard to distinguish satisfiable E3-CNF formulas from (7/8 + ε)-satisfiable
E3-CNF formulas.

In the following, we show that it is NP-hard to approximate EQ1Z[3]within 48/47− ε.

Theorem 4. It is NP-hard to approximate EQ1Z[3] within 48/47− ε for any ε.

Proof. We give a gap-preserving reduction from Max-E3-Sat to EQ1Z[3]. Let (X, C) with C = {C1, . . . , Cm} be an arbitrary
instance of Max-E3-Sat. For each clause Ci, 1 ≤ i ≤ m, containing three variables xi1, xi2 and xi3, we construct the following
equations:

ai1xi1 + ai2xi2 + ai3xi3 = 3 (5)
ai1xi1 + ai2xi2 + ai3xi3 = 1 (6)
ai1xi1 + ai2xi2 + ai3xi3 = −1 (7)
xi1 + yi + zi = 1 (8)
xi1 + yi + zi = −1 (9)
xi2 + yi + zi = 1 (10)
xi2 + yi + zi = −1 (11)
xi3 + yi + zi = 1 (12)
xi3 + yi + zi = −1 (13)
yi + zi + wi = 0 (14)
yi + zi − wi = 0 (15)

where aij = 1 if xij occurs positively in Ci and aij = −1 if xij occurs negatively (j = 1, 2, 3). Thus we have a systemwith 11m
equations.
Given a truth assignment which satisfies s clauses of Max-E3-Sat, we immediately obtain a solution (x, y, z,w) that

satisfies 5m + s equations of the above EQ1Z[3] instance. This is simply achieved by setting the variables xj to 1 if the
corresponding boolean variable is TRUE in the assignment and otherwise setting xj to−1 and setting yi = zi = wi = 0.
Consider any solution (x, y, z,w) of the above EQ1Z[3] instance. For each i, 1 ≤ i ≤ m, at most six equations can be

simultaneously satisfied: at most one of (5)–(7) and at most five of (8)–(15). If any component of x is neither 1 nor−1, we
can set it to 1; ifwi is not 0 and yi+zi is not 0,we can set them to0; for old values of yi, zi, since yi+zi is not 0, atmost one of (14)
and (15) is satisfied. But for new values yi = zi = wi = 0, (14) and (15) are both satisfied. Thus, for (14) and (15), at least one
of the equations satisfied is added. But for the new values of xi, it is possible that the equation of (5)–(7) satisfied becomes
unsatisfied. However, the number is at most 1. Hence, new values do not decrease the number of equations satisfied. Thus,
we can assume without loss of generality that any component of x is either 1 or−1 and yi = zi = wi = 0. Suppose that the



2516 W. Chen et al. / Theoretical Computer Science 411 (2010) 2513–2519

solution (x, y, z,w) satisfies 5m+ s equations. We set the corresponding boolean variable to TRUE if xj = 1 and otherwise
to FALSE. It is easy to see that the alignment satisfies s clauses of the Max-E3-Sat. Consequently, we have a correspondence
between solutions of the Max-E3-Sat instance satisfying s clauses and solutions of the EQ1Z[3] instance fulfilling 5m + s
equations. Thus we get

optMax-E3-Sat(I) ≥ c H⇒ optEQ 1Z [3](I
′) ≥ 5m+ c

optMax-E3-Sat(I) ≤ c/ρ H⇒ optEQ 1Z [3](I
′) ≤ 5m+ c/ρ,

where I is the instance of Max-E3-Sat and I ′ is the instance of EQ1Z[3].
Since it is NP-hard to distinguish satisfiable E3-CNF formulas from (7/8 + ε)-satisfiable E3-CNF formulas by Lemma 3,

it is NP-hard to distinguish the EQ1Z[3] instance fulfilling 6m equations and the EQ
1
Z[3] instance fulfilling 5m+ (7/8+ ε)m

equations. Thus the inapproximability factor is 6m/(5m+ (7/8+ ε)m) < 48/47− ε. �

4. The hardness of approximating EQ1
Z[2]

In this section, we show that it is NP-hard to approximate EQ1Z[2] within 30/29 − ε. The proof method is similar to the
method in Theorem 4. The proof is by gap-preserving reduction from the known Max-E2-Sat problem that is defined as
follows. Given a finite set X of variables and a set C = {C1, . . . , Cm} of disjunctive clauses with exactly two literals in each
clause, find a truth assignment for X that satisfies as many clauses of C as possible. By the Lemma 5.13 and theorem 6.16
of [17], we have the following conclusion:

Lemma 4. For any ε it is NP-hard to distinguish (11 − ε)-satisfiable E2-CNF formulas from (11 − 1
2 + ε)-satisfiable E2-CNF

formulas.

In the following, we show that it is NP-hard to approximate EQ1Z[2]within 30/29− ε. The following reduction is similar
to the reduction from Max-2-Sat to MAX FLS= given in [1].

Theorem 5. It is NP-hard to approximate EQ1Z[2] within 30/29− ε for any ε.

Proof. We give a gap-preserving reduction from Max-E2-Sat to EQ1Z[2]. Let (X, C) with C = {C1, . . . , Cm} be an arbitrary
instance of Max-E2-Sat. For each clause Ci, 1 ≤ i ≤ m, containing two variables xi1 and xi2, we construct the following
equations:

ai1xi1 + ai2xi2 = 2 (16)
ai1xi1 + ai2xi2 = 0 (17)
xi1 + yi = 1 (18)
xi1 + yi = −1 (19)
xi2 + yi = 1 (20)
xi2 + yi = −1 (21)
yi + zi = 0 (22)
yi − zi = 0 (23)

where aij = 1 if xij occurs positively in Ci and aij = −1 if xij occurs negatively (j = 1, 2). Thus we have a system with 8m
equations.
Given a truth assignment which satisfies s clauses of Max-E2-Sat, we immediately obtain a solution (x, y, z) that satisfies

4m+ s equations of the above EQ1Z[2] instance. This is simply achieved by setting the variables xj to 1 if the corresponding
boolean variable is TRUE in the assignment and otherwise setting xj to−1 and setting yi = zi = 0.
Consider any solution (x, y, z) of the above EQ1Z[2] instance. For each i, 1 ≤ i ≤ m, at most five equations can be

simultaneously satisfied: at most one of (16)–(17) and at most four of (18)–(23). If any component of x is neither 1 nor
−1, we can set it to 1; if zi is not 0 and yi is not 0, we can set them to 0; that doesn’t decrease the number of satisfied
equations. Consequently, we have a correspondence between solutions of the Max-E2-Sat instance satisfying s clauses and
solutions of the EQ1Z[2] instance fulfilling 4m+ s equations.
Since it is NP-hard to distinguish (11 − ε)-satisfiable E2-CNF formulas from (11 − 1

2 + ε)-satisfiable E2-CNF formulas
by Lemma 4, it is NP-hard to distinguish the EQ1Z[2] instance fulfilling 4m+ (11− ε)m equations from the EQ

1
Z[2] instance

fulfilling 4m+ (11− 1
2 + ε)m equations. Thus the inapproximability factor is

4m+(11−ε)m
4m+(11− 12+ε)m

< 30/29− ε. �
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5. The hardness of approximating EQd
G [4]

Since an infinite cyclic group G is isomorphic to the additive integer group Z, we study the problem EQZ. In this section,
we shall prove that approximating EQdZ[4] is NP-hard within d − ε by reducing EQ

1
Zd [3] to it. Using the PCP theorem and

Raz’s parallel repetition theorem [19], Håstad proved the following lemma [17].

Lemma 1. It is NP-hard to approximate EQ1Zd [3] within d− ε for any ε.

In the following, we give a gap-preserving reduction from EQ1Zd [3] to EQ
d
Z[4].

Theorem 1. It is NP-hard to approximate EQdZ[4] within d− ε for any ε.

Proof. Suppose the following system of equations is an instance I of EQ1Zd [3]:

x11 + x12 + x13 = b1mod (d)
... (1)
xm1 + xm2 + xm3 = bmmod (d)

We construct an instance I ′ of EQdZ[4] as follows:

x11 + x12 + x13 + d · y1 = b1
... (2)
xm1 + xm2 + xm3 + d · ym = bm

We claim that the reduction is gap-preserving. If a single equation xi1 + xi2 + xi3 = bimod (d) has a solution, then there is
a y such that xi1 + xi2 + xi3 + d · y = bi. So the single equation xi1 + xi2 + xi3 + d · yi = bi also has a solution. Thus the
number of simultaneously satisfiable equations of (1) is equal to the number of simultaneously satisfiable equations of (2).
So opt(I) = opt(I ′). Hence the reduction is gap-preserving. By Lemma 1, it is NP-hard to approximate EQ1Zd [3]within d− ε
for any ε. So it is NP-hard to approximate EQdZ[4]within d− ε for any ε. �

Similarly, for any k > 4, we can give a gap-preserving reduction from EQ1Zd [k] to EQ
d
Z[k+1]. Since it is NP-hard to

approximate EQ1Zd [k]within d− ε for any k ≥ 4, we come to the following conclusion:

Theorem 2. For any k > 4, it is NP-hard to approximate EQdZ[k] within d− ε.

By the Theorem 2, we can obtain the following conclusion.

Theorem 3. For any k ≥ 4, it is NP-hard to approximate EQZ[k] within any constant factor.

Proof. For any constant d, the set of instances of EQdZ[k] is a subset of the set of instances of EQZ[k], so it is NP-hard to
approximate EQZ[k] within d − ε for any k ≥ 4 by Theorems 1 and 2. Since d is any constant, it is NP-hard to approximate
EQZ[k]within any constant factor. �

On the basis of the result of Theorem 3, we have some corollaries.

Corollary 1. If G ≈ Z× Z, where G is isomorphic to Z× Z, then it is NP-hard to approximate EQG[k] within any constant factor
for any k ≥ 4.

Proof. We give a gap-preserving reduction from EQZ[k] to EQG[k]. Suppose the following system of equations is an instance
I of EQZ[k]:

a11x11 + · · · + a1kx1k = b1
... (3)
am1xm1 + · · · + amkxmk = bm

We construct an instance I ′ of EQG[k] as follows:

a11 < x11, y11 > + · · · + a1k < x1k, y1k >=< b1, b1 >
... (4)
am1 < xm1, ym1 > + · · · + amk < xmk, ymk >=< bm, bm >

Now we show that the reduction is gap-preserving.
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If opt(I) ≥ c , then there is a solution x satisfying at least c equations of (3). So< x, x > also satisfy at least c equations
of (4). Thus opt(I ′) ≥ c .
Suppose opt(I) ≤ c/ρ. When a single equation ai1 < xi1, yi1 > + · · · + a1k < xik, yik >=< bi, bi > is satisfiable, the

single equation ai1xi1 + · · · + aikxik = bi is also satisfiable. So opt(I ′) ≤ opt(I) ≤ c/ρ. So the reduction is gap-preserving.
Thus by Theorem 3, it is NP-hard to approximate EQG[k]within any constant factor for any k ≥ 4. �

By a method similar to the above, we come to the following conclusions.

Corollary 2. If G ≈ Z×Zd, where G is isomorphic to Z×Zd, then it is NP-hard to approximate EQG[k]within any constant factor
for any k ≥ 4.

Proof. We give a gap-preserving reduction from EQZ[k] to EQG[k]. Suppose the following systems of equation is an instance
I of EQZ[k]:

a11x11 + · · · + a1kx1k = b1
... (3′)
am1xm1 + · · · + amkxmk = bm

We construct an instance I ′ of EQG[k] as follows:

a11 < x11, y11 > + · · · + a1k < x1k, y1k >=< b1, 0 >
... (4′)
am1 < xm1, ym1 > + · · · + amk < xmk, ymk >=< bm, 0 >

Now we show that the reduction is gap-preserving.
If opt(I) ≥ c , then there is a solution x satisfying at least c equations of (3′). So< x, 0 > also satisfies at least c equations

of (4′). Thus opt(I ′) ≥ c .
Suppose opt(I) ≤ c/ρ. When a single equation ai1 < xi1, yi1 > + · · · + a1k < xik, yik >=< bi, 0 > is satisfiable, the

single equation ai1xi1 + · · · + aikxik = bi is also satisfiable. So opt(I ′) ≤ opt(I) ≤ c/ρ. So the reduction is gap-preserving.
Thus by Theorem 3, it is NP-hard to approximate EQG[k]within any constant factor for any k ≥ 4. �

Similarly, we can obtain the following conclusion.

Corollary 3. If G ≈ Z × G1, where G1 is a finite group, then it is NP-hard to approximate EQG[k] within any constant factor for
any k ≥ 4.

6. Conclusion

In this paper, we show that when G is an infinite cyclic group, it is NP-hard to approximate EQ1G[3] to within 48/47− ε;
it is NP-hard to approximate EQ1G[2] to within 30/29− ε; it is NP-hard to approximate EQG[k]within any constant factor; it
is NP-hard to approximate EQdG[k] to within d− ε for any ε (k ≥ 4).
We guess that it is NP-hard to approximate EQ1G[k] within any constant factor if G is a infinite group. Another open

problem is obtaining polynomial factor hardness of approximating EQ1G[k] (i.e. n
ε for some ε > 0, where n is the number of

equations). New techniques seem to be required in order to attack the open problem.
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