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In this paper, we introduce the maximum duo-preservation string mapping problem
(MPSM), which is complementary to the minimum common string partition problem
(MCSP). When each letter occurs at most k times in any input string, the version
of MPSM is called k-MPSM. In order to design approximation algorithms for MPSM,
we also introduce the constrained maximum induced subgraph problem (CMIS) and the
constrained minimum induced subgraph (CNIS) problem.
We show that both CMIS and CNIS are NP-complete. We also study the approximation
algorithms for the restricted version of CMIS, which is called k-CMIS (k � 2). Using
Linear Programming method, we propose an approximation algorithm for 2-CMIS with
approximation ratio 2 and an approximation algorithm for k-CMIS (k � 3) with approxima-
tion ratio k2. Based on approximation algorithms for k-CMIS, we get approximation
algorithms for k-MPSM with the same approximation ratio.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The minimum common string partition problem (MCSP) has been well-investigated as a fundamental problem in com-
puter science [8,12]. Given two finite length strings over the finite letter alphabet, MCSP is to partition strings into identical
substrings with the minimum number of partitions. MCSP is also viewed as the problem of finding a letter-preserving bi-
jective mapping π from letters in one string A to letters in the other string B with the minimum number of breaks, where
a letter-preserving bijective mapping π means that each letter in A is mapped into the same letter in B and the mapping is
bijective, and a break is a pair of consecutive letters in A that are mapped by π to non-consecutive letters in B [12]. In a
string, a pair of consecutive letters is called a duo [12].

As an example, let us assume that there is a letter-preserving bijective mapping π (see Fig. 1.1) between two strings
A = abcab and B = ababc. From Fig. 1.1, we can see that π has only one break: ca is a duo of A, but π(c)π(a) is not a duo
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Fig. 1.1. A letter-preserving bijective mapping π for two strings: A = abcab, B = ababc.

Table 1
The approximation ratio summary for k-MCSP.

Paper 2-MCSP 3-MCSP 4-MCSP k-MCSP

[8] 1.5
[12] 1.1037 4
[6] 3 Ω(log n)a O(n0.69)
[18] O (k2)

[19] 4k

a It is a lower bound.

Fig. 1.2. Two strings A = abcab and B = ababc are transformed into a graph G AB .

of B . However, the other three duos in A (ab, bc, ab) are kept by π , each of which is called duo-preservation. So, the sum
of the number of breaks and the number of duo-preservations is four, which is the length of any input string minus 1.

For a letter-preserving bijective mapping between two strings, on the one hand, the optimization goal can be to minimize
the number of breaks that is known as the MCSP problem. On the other hand, the optimization goal can be to maximize
the number of duo-preservations. We define the maximization version of the problem as the maximum duo-preservation
string mapping problem (MPSM), i.e. the problem of finding a letter-preservation bijective mapping π from one string to the
other string with the maximum number of duo-preservations. When each letter occurs at most k times in any input string,
the version of MPSM is called k-MPSM. The MPSM problem is complementary to the MCSP problem as shown in Section 2.
From this complementary relationship, it follows that MPSM is also NP-hard since the MCSP problem is NP-hard [12].

While the MCSP problem has been widely studied, to the best of our knowledge, the MPSM problem has not been
addressed before. Specifically, various approximation algorithms have been proposed to solve the k-MCSP problem, a version
of MCSP, where each letter appears at most k times in any input string. These results are surveyed in Table 1.

Although there are approximation algorithms for MCSP, it is still required to design approximation algorithms for MPSM,
because a pair of complementary NP-hard problems may have different approximation cases, i.e. an approximation algorithm
for one problem sometimes cannot be used to approximate its complementary problem. For example, the minimum vertex
cover problem and the maximum independent set problem are two well-known complementary problems in computer
science [11]. For a given graph with n vertices, the minimum vertex cover problem can be approximated within a ratio of 2,
but the maximum independent set is NP-hard to approximate within a factor nδ , for some δ > 0 [10,4,3]. Another pair of
complementary problems is the Max-Satisfy problem and the Min-Unsatisfy problem [1,2]. Both the Max-Satisfy problem
and the Min-Unsatisfy problem are NP-hard, but their approximation cases are also different. For a system of m linear
equations with n variables over fractional numbers Q, the Min-Unsatisfy problem can be approximated within a factor of
m + 1, but the Max-Satisfy problem is NP-hard to approximate within a factor of nδ , for some δ > 0 [1,2].

We notice that the MPSM problem can be transformed to a graph optimization problem. We use the example in Fig. 1.1
to explain it. For two strings A = abcab and B = ababc in Fig. 1.1, we can construct a graph G AB as follows (see Fig. 1.2).
G AB has three parts M1, M2, and M3. Part M1 contains four (a,a) nodes. Part M2 contains four (b,b) nodes, and part M3
contains one (c, c) node. In G AB , there is an edge between (a,a) node at the position (1,1) of M1 and (b,b) node at the
position (1,1) of M2, because the first a and the first b in A form a duo ab and the first a and the first b in B also form a
duo ab. Other edges are similarly constructed.

In the graph G AB , the five black nodes are chosen from different rows and different columns in each Mi part, respec-
tively, because the subgraph induced by these five nodes has the maximum edge number of 3 (dashed lines in Fig. 1.2).
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From the chosen five black nodes, we can get the letter-preserving bijective mapping π with the maximum number of
duo-preservations in Fig. 1.1.

In order to study approximation algorithms for the MPSM problem, we introduce the following graph optimization
problem.

Problem 1.1 (CMIS and CNIS). Given an m-partite graph G with m parts: M1, . . . , Mm , where each Mi has ni × ni vertices
and all the vertices are put in an ni × ni matrix, the goal of the constrained maximum induced subgraph problem (CMIS)
is to find ni vertices from each part Mi , where ni vertices are from different rows and different columns, such that the
induced subgraph has the maximum number of edges. If all ni � k, the restricted version is called k-CMIS. On the other
hand, we define the minimization version as the constrained minimum induced subgraph (CNIS) problem in an m-partite
graph.

The contributions of the paper are as follows:

1. We prove that CMIS and CNIS are NP-complete;
2. Based on the randomized rounding technology, we propose an approximation algorithm for 2-CMIS with approximation

ratio 2;
3. We propose an approximation algorithm for k-CMIS (k � 3) with approximation ratio k2; and
4. We give a polynomial time reduction from the MPSM problem to the CMIS problem. Based on approximation algorithms

for k-CMIS, we get approximation algorithms for k-MPSM with the same approximation ratio;
5. We give a polynomial time reduction from the minimum common string partition problem (MCSP) to the CNIS problem.

Note. Without loss of generality, in this paper we assume that the strings do not contain two consecutive occurrences of
the same letter. In the case where two consecutive occurrences of the same letter, the reduced graph optimization problems
are CMIS and CNIS problems with edges exist inside the same parts. For CMIS and CNIS problems with edges exist inside
the same parts, the approximations results in Section 4 remain correct since in the proofs Section 4 don’t use the condition
r �= s for (vip

r , v jq
s ) ∈ E which implies that edges can exist inside the same parts.

2. Preliminaries

In this section, we first reproduce some formal notations and definitions (Definitions 2.1–2.6) about the MCSP problem
from [12], then describe the formal problem statement of the MPSM problem. Since our goal is to design a randomized ap-
proximation algorithm based on the randomized rounding technology, the definition of approximation ratio of a randomized
approximation algorithm is introduced.

Definition 2.1 (Duo). A duo is an ordered pair of letters that occur consecutively in a string [12].

Definition 2.2 (Partition). A partition of a string A is a sequence of strings P = (P1, P2, . . . , Pm) whose concatenation is
equal to A, that is P1 · · · Pm = A, where the strings Pi (1 � i � m) are called the blocks of P and m is called the number of
blocks [12].

Definition 2.3 (Common partition). Given a partition P = (P1, P2, . . . , Pm) of a string A = a1, . . . ,an and a partition
Q = (Q 1, . . . , Q m) of a string B = b1, . . . ,bn , we say that the pair 〈P,Q〉 is a common partition π of A and B if Q is a
permutation of P . The common partition π can be naturally interpreted as a bijective mapping from A to B , such that, for
each j (1 � j � m), the letters from P j are mapped from left to right to the corresponding letters from Q j′ (1 � j′ � m) [12].

Definition 2.4 (Break). A break is a pair of letters that are consecutive in string A but are mapped by π to letters that are
not consecutive in string B . Obviously, the block number of a partition is equal to its break number plus 1 [12].

Definition 2.5 (Letter-preserving bijective mapping). A letter-preserving bijective mapping is a bijective mapping π from letters of
string A to letters of the other string B such that any letter in A is mapped into the same letter in B [12]. Duo-preservation
means that a duo of A is kept by π in B .

Problem 2.1 (Minimum common string partition problem). The minimum common string partition problem (MCSP) is to find
a common partition of two strings A and B with the minimum number of blocks. MCSP is also viewed as the problem
of finding a letter-preserving bijective mapping from letters in one string to letters in the other string with the minimum
number of breaks. The restricted version of MCSP, where each letter occurs at most k times in each input string, is denoted
by k-MCSP [12].
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Definition 2.6 (Related strings). Two strings A and B are related if every letter appears the same number of times in A
and B [12].

Obviously, two strings have a common partition iff they are related [12].

Lemma 2.7. Two strings A and B have a letter-preserving bijective mapping iff they are related.

Proof. From the definition of the letter-preserving bijective mapping, there is a one-to-one correspondence between letters
in A and B . Thus, every letter appears the same number of times in A and B . Hence, A and B are related. �
Problem 2.2 (MPSM). The maximum duo-preservation string mapping problem (MPSM) is the problem of finding a letter-
preserving bijective mapping π from string A to string B with the maximum number of duo-preservations, where A and B
have the same length. The restricted version of MPSM, where each letter occurs at most k times in each input string, is
denoted by k-MPSM.

Note that two input strings are related in the MPSM problem.

Theorem 2.8. MPSM and MCSP are complementary.

Proof. Suppose π is the letter-preserving bijective mapping between two strings A and B in MPSM and MCSP. Then, the
number of duos of A is n − 1. Let nb be the number of breaks and nd be the number of duo-preservations. Thus, nb + nd =
n − 1. So, the MPSM problem is complementary to the MCSP problem. �

In the following, we give an example.
In Fig. 1.1, the letter-preserving bijective mapping π ′ has a break: ca is a duo, but π ′(c)π ′(a) is not a duo. Thus, the

number of blocks is two. However, for other three duos: ab, bc, ab, they are kept by π ′ . So, the sum of the number of blocks
and the number of pairs of consecutive letters that are kept by π ′ is five, which is the length of one of input strings.

Definition 2.9 (Approximation ratio). Let OPT(I) denote the optimum solution for an instance I of the maximization prob-
lem. Let Ẽ(R(I)) denote the expected value of the output solution R(I) of a randomized approximation algorithm R . For
some r � 1, if OPT(I)

Ẽ(R(I))
� r, for any instance I , then the randomized approximation algorithm R is called the algorithm of

approximation ratio of r [16].

3. The CMIS and CNIS problem are NP-complete

In this section, we prove that the CMIS and CNIS problems are NP-complete. We give a polynomial time reduction from
the MPSM problem to the CMIS problem.

Lemma 3.1. There exist a polynomial time reduction from the MPSM problem to the CMIS problem

Proof. Given two related strings X = x1x2 . . . xn and Y = y1 y2 . . . yn , let m be the number of different letters in X and
S = {a1, . . . ,am} be the unduplicated letter set. Let ni be the number of appearances of letter ai in X . Thus, n1 +· · ·+nm = n.
In the following, we construct an instance G XY of CMIS, which has m parts. For each ai , we construct one part Mi , which has
ni × ni nodes. Let 〈a11

i ,a12
i , . . . ,a1ni

i 〉 be all ai s in X by their appearance order. Let 〈a21
i ,a22

i , . . . ,a2ni
i 〉 be all ai s in Y by their

appearance order. For each a1h
i and a2�

i (1 � h, � � ni), we construct one node (a1h
i ,a2�

i ) in the h-th row and �-th column
of Mi . Edges only exist between nodes from different parts. There is an edge between (a1h

i ,a2�
i ) and (a1r

j ,a2s
j ) iff a1h

i a1r
j is a

duo in X and a2�
i a2s

j is a duo in Y . For the graph G XY , the goal of the CMIS problem is to find ni vertices at different rows
and different columns from each part Mi such that the subgraph induced by the chosen n nodes (n = n1 + · · ·+nm) has the
maximum number of edges.

The number of vertices in G XY is n2
1 +n2

2 +· · ·+n2
m which is O (n2). Thus, the number of edges in G XY is at most O (n4).

So, the reduction is of polynomial time complexity. �
Fig. 1.2 is a reduction example. The following Theorem 3.2 shows that the MPSM problem for strings X and Y is related

to the CMIS problem in the graph G XY .

Theorem 3.2. For the graph G XY , an induced subgraph by n nodes, of which ni nodes are chosen from different rows and different
columns in each Mi part respectively, has the maximum number of edges iff X and Y have a bijective mapping with the maximum
number of duo-preservations.
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Fig. 3.3. Two strings A = abcab and B = ababc are transformed into a graph Ḡ AB .

Proof. Since each node in the graph G XY denotes that a letter in X is mapped to a letter in Y , these n nodes denote a
bijective mapping π from X to Y . Since each edge in G XY denotes a duo-preservation, the number of edges in the induced
subgraph by these n nodes is the number of duo-preservations in the bijective mapping π . Thus, the maximum number of
edges in the induced subgraph by these n nodes is the maximum number of duo-preservations in a bijective mapping. The
other direction of the theorem is trivial. �

Thus, by Theorem 3.2 an approximation algorithm for the MPSM problem can be achieved by designing an approximation
algorithm for the CMIS problem with the same approximation ratio. If each letter in X and Y appears at most k times, then
each part in G XY has at most k · k nodes by the above reduction process. Thus, the k-MPSM problem can be reduced to the
k-CMIS problem with the same approximation ratio.

On the other hand, because the MPSM is NP-hard and it is obvious that CMIS is in NP, we get the following conclusion.

Theorem 3.3. The CMIS problem is NP-complete.

The CMIS problem and the CNIS problem are complementary, we get the following conclusion.

Theorem 3.4. The CNIS problem is NP-complete.

It is easy to know that if we modify the reduction process of Lemma 3.1, we can get a reduction from the MCSP problem
to the constrained minimum induced subgraph (CNIS) problem. In the reduction process of Lemma 3.1, we construct the
graph Ḡ XY , which has the same vertices of G XY , but the construction of edges is modified as follows: there is an edge
between (a1h

i ,a2�
i ) and (a1r

j ,a2s
j ) iff a1h

i a1r
j is a duo in X and a2�

i a2s
j is not a duo in Y . Then, the modified reduction is

a reduction from the MCSP problem to the constrained minimum induced subgraph (CNIS) problem. Thus, we get the
following conclusion.

Lemma 3.5. There exists a polynomial time reduction from the MCSP problem to the constrained minimum induced subgraph (CNIS)
problem.

For example, for two strings A = abcab and B = ababc, we can construct a graph Ḡ AB as follows (see Fig. 3.3).
In the graph Ḡ AB , the subgraph induced by the five black nodes has the minimum edge number of 1 (dashed line in

Fig. 3.3).
The following conclusion shows that the MCSP problem for strings X and Y is related to the CNIS problem in the graph

G XY .

Theorem 3.6. For the graph Ḡ XY , a subgraph induced by n nodes, of which ni nodes are chosen from different rows and different
columns in each Mi part respectively, has the minimum number of edges iff X and Y have a bijective mapping with the minimum
number of breaks.

Proof. Since each node in the graph Ḡ XY denotes that a letter in X is mapped to a letter in Y , these n nodes denote a
bijective mapping π from X to Y . Since each edge in Ḡ XY must produce a break, the number of edges in the induced
subgraph by n nodes is the number of breaks in the bijective mapping π . Thus, the minimum number of edges in the
subgraph induced by n nodes is the minimum number of breaks in a bijective mapping. The other direction of the theorem
is trivial. �
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4. Approximation algorithms for k-CMIS (k � 2)

In order to study approximation algorithms, Raghavan and Thompson introduced a randomized rounding method in [21].
Since then, the randomized rounding method has been widely used to design approximation algorithms for many NP-hard
problems ([5,15,22,20,13,14,16,17], etc.). The general idea behind the randomized rounding method is: (1) An NP-hard prob-
lem is first transformed into a 0–1 Integer Programming (IP) problem. (2) Then, it is relaxed to a Linear Programming (LP)
problem. (3) For the optimal solution to LP, the value of each variable is rounded to 0 or 1 by some specific method. Thus,
one approximation solution to some specific NP-hard problem can be achieved if the challenges of steps (1) and (3) can be
overcome.

In this section, we will design approximation algorithms for the CMIS problem based on the Linear Programming (LP)
technology.

First, we give the 0–1 Integer Programming (IP) formulation for the CMIS problem. Suppose G is an m-partite graph with
m parts: M1, . . . , Mm , where the vertices in each Mi are put in ni × ni matrix. For each node vip

r (1 � i � nr , 1 � p � nr ) in
Mr (1 � r � m), where vip

r is at the i-th row and p-th column, let xip
r be a 0–1 decision variable, that xip

r = 1 means that
vip

r is chosen, otherwise vip
r is not chosen. Thus, the 0–1 IP formulation for the CMIS problem is as follows:

Maximize
∑

(vip
r ,v jq

s )∈E

xip
r x jq

s (IP1)

subject to
nr∑

i=1
xip

r = 1, for r = 1, . . . ,m (1)

nr∑
p=1

xip
r = 1, for r = 1, . . . ,m (2)

xip
r ∈ {0,1}, for r = 1, . . . ,m

Constraints (1) and (2) guarantee that only the nodes at different rows and different columns from each part are chosen.
For example, for the graph G AB in Fig. 1.2, we have the following 0–1 IP formulation:

Maximize A11 B11 + A12 B12 + B12C + A21 B21 + A22 B22
subject to A11 + A12 = 1; A21 + A22 = 1;

A11 + A21 = 1; A12 + A22 = 1;
B11 + B12 = 1; B21 + B22 = 1;
B11 + B21 = 1; B12 + B22 = 1; C = 1;
Aij, Bij ∈ {0,1}, where i = 1 or 2, j = 1 or 2

Where Aij (1 � i, j � 2) is the decision variable corresponding to the node at the i-th row and j-th column in M1,
Bij (1 � i, j � 2) is the decision variable corresponding to the node at the i-th row and j-th column in M2, and C is the
decision variable corresponding to the node in M3.

Using the common relaxation method for IP formulation [16], we build the following LP formulation for the CMIS prob-
lem:

Maximize
∑

(vip
r ,v jq

s )∈E

zrip s jq (LP1)

subject to zrip s jq � xip
r , for all r (3)

zrip s jq � x jq
s , for all r (4)

nr∑
i=1

xip
r = 1, for r = 1, . . . ,m (3′)

nr∑
p=1

xip
r = 1, for r = 1, . . . ,m (4′)

0 � zrip s jq � 1, for all r

0 � xip
r � 1, for all r

0 � x jq
s � 1, for all r
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For example, the LP1 formulation for the graph G AB in Fig. 1.2 is as follows:

Maximize z1 + z2 + z3 + z4 + z5
subject to z1 � A11, z1 � B11;

z2 � A12, z2 � B12;
z3 � B12, z3 � C ;
z4 � A21, z4 � B21;
z5 � A22, z5 � B22;
A11 + A12 = 1; A21 + A22 = 1;
A11 + A21 = 1; A12 + A22 = 1;
B11 + B12 = 1; B21 + B22 = 1;
B11 + B21 = 1; B12 + B22 = 1; C = 1;
Aij, Bij, zr ∈ [0,1] for all i, j, r

First, we design the approximation algorithm for the 2-CMIS problem based on its L P1 formulation (see Algorithm 4.1):

1: By solving the Linear Programming formulation L P1 for the 2-CMIS problem, we get an optimum solution xip∗
r , z∗

rip s jq

for all r.
2: Randomized rounding:
3: for r = 1 to m do
4: if nr = 2 then

5: Let Xr =
(

x11∗
r x12∗

r
x21∗

r x22∗
r

)
. Let

−−→
Y1 = (x11∗

r , x22∗
r ) and

−−→
Y2 = (x12∗

r , x21∗
r )

6:
−→
Yi is chosen with probability

√
x1i∗

r√
x11∗

r +
√

x12∗
r

(i = 1,2).

7: When
−−→
Y1 is chosen, we set x11

r = x22
r = 1 and x12

r = x21
r = 0; When

−−→
Y2 is chosen, we set x12

r = x21
r = 1 and

x11
r = x22

r = 0.
8: end if
9: if nr = 1 then

10: We set x11
r = 1.

11: end if
12: end for
13: Output those nodes whose variables are set to 1. Let z′

rip s jq
= xip

r x jq
s . The edge number of induced subgraph by these

output nodes is
∑

(vip
r ,v jq

s )∈E

z′
rip s jq

.

Algorithm 4.1: The approximation algorithm for the 2-CMIS problem.

It is known that Linear Programming can be solved in a polynomial time (see [7]). Thus, Algorithm 4.1 is of polynomial
time complexity.

Theorem 4.1. Algorithm 4.1 is of expected approximation ratio 2 for 2-CMIS.

Proof. Let Pr(X) denote the probability of the event X . Let Ẽ(X) denote the expected value of the event X . For each r, let
A j denote the event that

−→
Y j is chosen ( j = 1,2).

By the constraints (3) and (4), we get z∗
rip s jq

= min{xip∗
r , x jq∗

s }. By the constraints (3′) and (4′), we get x11∗
r + x12∗

r = 1,

x11∗
r + x21∗

r = 1 and x12∗
r + x22∗

r = 1. So, we get x11∗
r = x22∗

r and x12∗
r = x21∗

r .

Thus, for any i, p (i, p = 1 or 2), when i = p, Pr(xip
r = 1) = Pr(A1) =

√
x11∗

r√
x11∗

r +
√

x12∗
r

=
√

xip∗
r√

x11∗
r +

√
x12∗

r

; when i �= p, Pr(xip
r = 1) =

Pr(A2) =
√

x12∗
r√

x11∗
r +

√
x12∗

r

=
√

xip∗
r√

x11∗
r +

√
x12∗

r

. So, in any case, Pr(xip
r = 1) =

√
xip∗

r√
x11∗

r +
√

x12∗
r

.

Since

√
x11∗

r +
√

x12∗
r

2 �
√

x11∗
r +x12∗

r
2 �

√
1
2 , we get

√
x11∗

r +
√

x12∗
r �

√
2. Thus Pr(xip

r = 1) � 1√
2

√
xip∗

r . Similarly, we can get

Pr(x jq
s = 1) � 1√

2

√
x jq∗

s .

So Pr
(
z′

rip s jq
= 1

) = Pr
(
xip

r x jq
s = 1

)
= Pr

(
xip

r = 1
)
Pr

(
x jq

s = 1
)

� 1
√

xip∗
r

√
x jq∗

s
2
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� 1

2
min

{
xip∗

r , x jq∗
s

}

= 1

2
z∗

rip s jq
.

For any instance I , let A(I) denote the output solution of the approximation algorithm. Let OPT(I) denote the optimum
solution. Let OPT(IP1) denote the optimum solution of IP1 formulation for I . Let OPT(LP1) denote the optimum solution of
LP1 formulation for I .

So Ẽ
(

A(I)
) = Ẽ

( ∑
(vip

r ,v jq
s )∈E

z′
rip s jq

)

=
∑

(vip
r ,v jq

s )∈E

Ẽ
(
z′

rip s jq

)

=
∑

(vip
r ,v jq

s )∈E

Pr
(
z′

rip s jq
= 1

)

� 1

2

∑
(vip

r ,v jq
s )∈E

z∗
rip s jq

= 1

2
· OPT(LP1).

Thus OPT(I)
Ẽ(A(I))

= OPT(IP1)

Ẽ(A(I))
� OPT(LP1)

Ẽ(A(I))
� 2.

Hence, Algorithm 4.1 is of approximation ratio 2 for 2-CMIS. �
Since the 2-MPSM problem can be reduced to 2-CMIS problem, an approximation algorithm for the 2-MPSM problem

can be achieved with the same approximation ratio as Algorithm 4.1. Thus, we can get the following conclusion.

Corollary 4.2. There is an approximation algorithm with expected approximation ratio 2 for 2-MPSM.

Second, we design the approximation algorithm for the 3-CMIS problem based on its LP1 formulation (see Algorithm 4.2):

1: By solving the Linear Programming formulation LP1 for the 3-CMIS problem, we get an optimum solution xip∗
r , z∗

rip s jq

for all r.
2: Randomized rounding:
3: for r = 1 to m do
4: if nr = 3 then

5: Let Xr =
⎛
⎝ x11∗

r x12∗
r x13∗

r
x21∗

r x22∗
r x23∗

r
x31∗

r x32∗
r x33∗

r

⎞
⎠.

6: Let
−−→
Y1 = (x11∗

r , x22∗
r , x33∗

r ),
−−→
Y2 = (x12∗

r , x23∗
r , x31∗

r ) and
−−→
Y3 = (x13∗

r , x21∗
r , x32∗

r ).
7: Let S1 = x11∗

r + x22∗
r + x33∗

r , S2 = x12∗
r + x23∗

r + x31∗
r and S3 = x13∗

r + x21∗
r + x32∗

r .

8:
−→
Yi is chosen with probability

√
Si√

S1+√
S2+√

S3
(i = 1,2,3).

9: When
−−→
Y1 is chosen, we set x11

r = x22
r = x33

r = 1; When
−−→
Y2 is chosen, we set x12

r = x23
r = x31

r = 1; When
−−→
Y3 is

chosen, we set x13
r = x21

r = x32
r = 1;

10: end if
11: if nr = 2 then
12: We set xip

r = 1 by the method in Algorithm 4.1.
13: end if
14: if nr = 1 then
15: We set x11

r = 1.
16: end if
17: end for
18: Output those nodes whose variables are set to 1. Let z′

rip s jq
= xip

r x jq
s . The edge number of induced subgraph by these

output nodes is
∑

(vip
r ,v jq

s )∈E

z′
rip s jq

.

Algorithm 4.2: The approximation algorithm for the 3-CMIS problem.

It is known that Linear Programming can be solved in a polynomial time (see [7]). Thus, Algorithm 4.2 is of polynomial
time complexity.
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Theorem 4.3. Algorithm 4.2 is of expected approximation ratio 9 for 3-CMIS.

Proof. Let Pr(X) denote the probability of the event X . Let Ẽ(X) denote the expected value of the event X . For each r, let
A j denote the event that

−→
Y j is chosen ( j = 1,2,3).

By the constraints (3) and (4), we get z∗
rip s jq

= min{xip∗
r , x jq∗

s }. By the constraints (3′) and (4′), we get S1 + S2 + S3 =
x11∗

r + x12∗
r + x13∗

r + x21∗
r + x22∗

r + x23∗
r + x31∗

r + x32∗
r + x33∗

r = 3.

When nr = 3, for any i, p, if xip∗
r ∈ −→

Y j , then Pr(xip
r = 1) = Pr(A j) =

√
S j√

S1+√
S2+√

S3
�

√
xip∗

r√
S1+√

S2+√
S3

. Since
√

S1+√
S2+√

S3
3 �√

S1+S2+S3
3 =

√
3
3 = 1, we get

√
S1 + √

S2 + √
S3 � 3. Thus Pr(xip

r = 1) � 1
3

√
xip∗

r . When nr = 2, by the proof of Theorem 4.1,

for any i, p, we have Pr(xip
r = 1) � 1√

2

√
xip∗

r � 1
3

√
xip∗

r . Thus, in any case, we get Pr(xip
r = 1) � 1

3

√
xip∗

r .

Similarly, we can get Pr(x jq
s = 1) � 1

3

√
x jq∗

s .

So Pr
(
z′

rip s jq
= 1

) = Pr
(
xip

r x jq
s = 1

)
= Pr

(
xip

r = 1
)
Pr

(
x jq

s = 1
)

� 1

9

√
xip∗

r

√
x jq∗

s

� 1

9
min

{
xip∗

r , x jq∗
s

}

= 1

9
z∗

rip s jq
.

For any instance I , let A(I) denote the output solution of the approximation algorithm. Let OPT(I) denote the optimum
solution. Let OPT(IP1) denote the optimum solution of IP1 formulation for I . Let OPT(LP1) denote the optimum solution of
LP1 formulation for I .

So Ẽ
(

A(I)
) = Ẽ

( ∑
(vip

r ,v jq
s )∈E

z′
rip s jq

)

=
∑

(vip
r ,v jq

s )∈E

Ẽ
(
z′

rip s jq

)

=
∑

(vip
r ,v jq

s )∈E

Pr
(
z′

rip s jq
= 1

)

� 1

9

∑
(vip

r ,v jq
s )∈E

z∗
rip s jq

= 1

9
· OPT(LP1).

Thus OPT(I)
Ẽ(A(I))

= OPT(IP1)

Ẽ(A(I))
� OPT(LP1)

Ẽ(A(I))
� 9.

Hence, Algorithm 4.2 is of approximation ratio 9 for 3-CMIS. �
Since the 3-MPSM problem can be reduced to 3-CMIS problem, an approximation algorithm for the 3-MPSM problem

can be achieved with the same approximation ratio as Algorithm 4.2. Thus, we can get the following conclusion.

Corollary 4.4. There is an approximation algorithm with expected approximation ratio 9 for 3-MPSM.

Similar to Algorithm 4.2, we can design an approximation algorithm for k-CMIS with approximation ratio k2. The algo-
rithm details can be found in Algorithm 4.3.

Thus, using the similar proof method of Theorem 4.3, it is easy to show the following conclusion (in the proof of
Theorem 4.3, 3 and 9 are replaced with k and k2 respectively).

Theorem 4.5. Algorithm 4.3 is of expected approximation ratio k2 for k-CMIS (k � 4).
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1: By solving the Linear Programming formulation for the k-CMIS problem, we get an optimum solution xip∗
r , z∗

rip s jq
for all

r.
2: Randomized rounding:
3: for r = 1 to m do
4: if nr = k then

5: Let Xr =

⎛
⎜⎜⎜⎜⎝

x11∗
r x12∗

r · · · x1k∗
r

x21∗
r x22∗

r · · · x2k∗
r

.

.

.

.

.

.

.

.

.

.

.

.

xk1∗
r xk2∗

r · · · xkk∗
r

⎞
⎟⎟⎟⎟⎠.

6: Let
−−→
Y1 = (x11∗

r , x22∗
r , . . . , xkk∗

r ),
−−→
Y2 = (x12∗

r , x23∗
r , . . . , x(k−1)k∗

r , xk1∗
r ), . . . ,

−−→
Yk = (x1k∗

r , x21∗
r , x32∗

r , . . . , xk(k−1)∗
r ).

7: Let S1 = x11∗
r + x22∗

r +· · ·+ xkk∗
r , S2 = x12∗

r + x23∗
r +· · ·+ x(k−1)k∗

r + xk1∗
r ), . . . , Sk = x1k∗

r + x21∗
r + x32∗

r +· · ·+ xk(k−1)∗
r .

8:
−→
Yi is chosen with probability

√
Si√

S1+√
S2+···+√

Sk
(i = 1,2, . . . ,k).

9: When
−−→
Y1 is chosen, we set x11

r = x22
r = · · · = xkk

r = 1; When
−−→
Y2 is chosen, we set x12

r = x23
r = · · · = x(k−1)k

r = xk1
r =

1; . . .; When
−−→
Yk is chosen, we set x1k

r = x21
r = x32

r = xk(k−1)
r = 1;

10: end if
11: if nr = k′ and 2 < k′ < k then
12: We set xip

r = 1 by the similar method above.
13: end if
14: if nr = 2 then
15: We set xip

r = 1 by the method in Algorithm 4.1.
16: end if
17: if nr = 1 then
18: We set x11

r = 1.
19: end if
20: end for
21: Output those nodes whose variables are set to 1. Let z′

rip s jq
= xip

r x jq
s . The edge number of induced subgraph by these

output nodes is
∑

(vip
r ,v jq

s )∈E

z′
rip s jq

.

Algorithm 4.3: The approximation algorithm for the k-CMIS problem.

Note. In Algorithm 4.3, the elements of
−→
Yi(1 � i � k) are at different rows and different columns. There are k! possible these

vectors. We choose k diagonal elements as these
−→
Yi . In order to improved the approximation ratio k2, it is required to use

better methods for choosing these
−→
Yi . We leave it as an open problem.

Since the k-MPSM problem can be reduced to k-CMIS problem, an approximation algorithm for the k-MPSM problem
can be achieved with the same approximation ratio as Algorithm 4.3. Thus, we can get the following conclusion.

Corollary 4.6. There is an approximation algorithm with expected approximation ratio k2 for k-MPSM (k � 4).

5. Conclusion

In this paper, we have proved that CMIS and CNIS are NP-complete. We have also proposed a 2-approximation algorithm
for 2-CMIS and a k2-approximation algorithm for k-CMIS (k � 3), which are based on the randomized rounding technology.
Based on approximation algorithms for k-CMIS, we get approximation algorithms for k-MPSM with the same approximation
ratio.
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