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A. Grid-level Face Mask Attack

A.1. Formulation

The optimization formulations of the proposed grid-level
face mask attacks under different settings are presented in
Table 1. Here, S is the target face recognition model, x is the
original input face image. δ ∈ Ra×b is a a× b color matrix;
each element of δ represents an RGB color. M denotes the
mask matrix that constrains the area of perturbation; it con-
tains 1s where perturbation is allowed, and 0s where there
is no perturbation. For closed-set systems, ` denotes the
softmax cross-entropy loss function, y is the identity of x,
and yt is the target identity for impersonation attacks. For
open-set settings, d is the cosine distance (obtained by sub-
tracting cosine similarity from one), x∗ is the gallery image
of x, and x∗t is the target gallery image for impersonation.
T represents a set of transformations that convert the color
matrix δ to a face mask with a color grid in digital space.
Specifically, T contains two transformations: interpolation
transformation and perspective transformation, which are
detailed below.

A.2. Interpolation Transformation

The interpolation transform starts from a a × b color
matrix δ and uses the following two steps to scale δ into a
face image, as illustrated in Fig. 1: First, it resizes the color
matrix from a× b to a rectangle δ′ with c×d pixels, so as to
reflect the size of a face mask in a face image in digital space
while preserving the layout of the color grids represented
by δ. Specifically, in FACESEC, each input face image has
224×224 pixels. Let (a, b) = (8, 16) and (c, d) = (80, 160).
Then, we put the face mask δ′ into a background image, such
that the pixels in the rectangular area have the same value
with δ′, and those outside the face mask area have values of
0s.

*Work done during an internship at NEC Laboratories America.
†Corresponding author.
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Figure 1. Transformations for the grid-level face mask attack.

A.3. Perspective Transformation

Once the rectangle δ′ is embedded into a background
image, we use a 2-D alignment that relies on the perspec-
tive transformation by the following steps. First, we divide
δ′ into a left half part δ′L and a right half part δ′R; each is
rectangular with four corners. Then, we apply the perspec-
tive transformation to project each part to be with aligned
coordinates, such that the new coordinates align with the
position when a face mask is put on a human face, as shown
in Fig. 1. Let δ

′′

L and δ
′′

R be the left and right part of the
aligned face mask, the perspective transformation aims to
find a 3× 3 matrix Nk (k ∈ {L,R}) for each part such that
the coordinates satisfy:

δ
′′

k (x, y) = δ
′
k(u, v), k ∈ {L,R},

where

u =
Nk(1, 1)x+Nk(1, 2)y +Nk(1, 3)

Nk(3, 1)x+Nk(3, 2)y +Nk(3, 3)
,

and

v =
Nk(2, 1)x+Nk(2, 2)y +Nk(2, 3)

Nk(3, 1)x+Nk(3, 2)y +Nk(3, 3)
.



Table 1. Optimization formulations of grid-level face mask attacks.
Target System Attacker’s Goal Formulation

Closed-set Dodging maxδ `(S(x+M · T (δ)), y)
Closed-set Impersonation minδ `(S(x+M · T (δ)), yt)
Open-set Dodging maxδ d(S(x+M · T (δ)), S(x∗))
Open-set Impersonation minδ d(S(x+M · T (δ)), S(x∗t ))

Algorithm 1 Computing adversarial face mask.
Input: Target system S;

Input face image x and its identity y;
The number of iterations T ;
Step size α;
Momentum parameter µ.

Output: The color matrix of adversarial face mask δT .
1: Initialize the color matrix δ0 := 0, momentum g0 := 0;

2: Use interpolation and perspective transformations to
convert δ0: δ

′′

0 := T (δ0);
3: for each t ∈ [0, T − 1] do

4: gt+1 := µ · gt +
∇δt`(S(x+M ·δ

′′
t ),y)

||`(S(x+M ·δ′′t ),y)||1
;

5: δt+1 := δt + α · sign(gt+1);
6: δ

′′

t+1 := T (δt+1);
7: Clip δ

′′

t+1 such that pixel values of x+M · δ′′

t+1 are
in [0, 255/255];

8: end for
9: return δT .

Finally, we merge δ
′′

L and δ
′′

R to obtain the aligned grid-level
face mask.

A.4. Computing Adversarial Face Masks

The algorithm for computing the color grid for adversarial
face mask attack is outlined in Algorithm 1. Here, we use
the dodging attack on closed-set systems as an example. The
algorithms for other settings are similar. Note that δT is
the resulting color matrix, and the corresponding adversarial
example is x+M · T (δT ).

B. Universal Attack
B.1. Optimization Formulation

The formulations of universal perturbations are presented
in Table 2. In FACESEC, we mainly focus on universal
dodging attacks. Effective universal impersonation attack is
still an open problem, and we leave it for future work.

B.2. Computing Universal Perturbations

The algorithm for finding universal perturbations is pre-
sented in Algorithm 2. Here, we use the dodging attack
on closed-set systems as an example. The algorithms for

Algorithm 2 Finding universal perturbations.
Input: Target system S;

Input face image batch {xi, yi}Ni=1;
The number of iterations T ;
Step size α;
Momentum parameter µ.

Output: The universal perturbation δT for {xi, yi}Ni=1.
1: Initialize δ0 := 0, g0 := 0;
2: for each t ∈ [0, T − 1] do
3: for each i ∈ [1, N ] do
4: `i,t := `(S(xi +M · δt), yi);
5: end for
6: `t = min{`i,t}Ni=1;
7: gt+1 := µ · gt +

∇δt`t
||`t||1 ;

8: δt+1 := δt + α · sign(gt+1);
9: Clip δt+1 such that pixel values of x+M · δt+1 are

in [0, 255/255];
10: end for
11: return δT .

other settings are similar. Note that in practice, Line 3–6 in
Algorithm 2 can be executed in a paralleled manner by us-
ing GPUs. Therefore, compared to traditional methods that
iterate every data point to find a universal perturbation [3],
our approach can achieve a significant speedup.

C. Robustness of Face Recognition Compo-
nents

C.1. Open-set Systems Under Dodging Attacks

To study the robustness of open-set system components
under dodging attacks, we employ six different face recog-
nition systems and then evaluate the attack success rates of
dodging attacks corresponding to different target and surro-
gate face recognition models. Specifically, besides the five
systems (VGGFace, FaceNet, ArcFace18, ArcFace50, and
ArcFace101) presented in Table 2 of the main paper, we
build a face recognition model by training FaceNet [4] using
the VGGFace2 dataset [1] (henceforth, FaceNet+). Here,
FaceNet and FaceNet+ are trained using the same neural
architecture but different training sets, while the ArcFace
variations share the same training data but with different
architectures. The results are presented in Fig. 2.

We have the following two observations, which are sim-



Table 2. Optimization formulations of universal dodging attacks.
Target System Perturbation Type Formulation

Closed-set Pixel-level maxδmin{`(S(xi +Mδ), yi)}Ni=1, s.t. ||δ||p ≤ ε
Closed-set Grid-level maxδmin{`(S(xi +M · T (δ)), yi)}Ni=1

Open-set Pixel-level maxδmin{d(S(xi +Mδ), S(x∗i ))}Ni=1, s.t. ||δ||p ≤ ε
Open-set Grid-level maxδmin{d(S(xi +M · T (δ)), S(x∗i ))}Ni=1
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Figure 2. Attack success rate of dodging attacks with different open-set targets and surrogate models. Upper left: PGD attack. Upper right:
Eyeglass frame attack. Lower left: Sticker attack. Lower right: Face mask attack.

ilar to those observed from dodging attacks on closed-set
systems in the main paper. First, in most cases, an open-set
system’s neural architecture is more fragile than its training
set. For example, under the PGD attack, adversarial exam-
ples in response to FaceNet+ have a 94% success rate on
FaceNet (which is trained using the same architecture but
different training data), while the success rates among the Ar-
cFace systems (which are built with the same training set but
different neural architectures) are only around 50%. How-
ever, there are also some cases where the neural architecture
exhibits similar robustness to the training set. For example,
when black-box attacks are too weak (under sticker attack),

both neural architecture and training set are robust; when the
attacks are too strong (under face mask attack), these two
components exhibit similar levels of vulnerability. Second,
the grid-level face mask attack is considerably more effective
than the PGD attack, and significantly more potent than other
physically realizable attacks. Like dodging attacks in closed-
set settings, most black-box pixel-level physically realizable
attacks have relatively low transferability on open-set face
recognition systems, with only about 20% success rate.
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Figure 3. Attack success rate of impersonation attacks with different open-set targets and surrogate models. Upper left: PGD attack. Upper
right: Eyeglass frame attack. Lower left: Sticker attack. Lower right:Face mask attack.

C.2. Closed-set Systems Under Impersonation At-
tacks

Here, we use impersonation attacks to evaluate the ro-
bustness of closed-set systems. In our experiments, all the
closed-set models are 100-class classifiers, as introduced in
Section 4.1 of the main paper. For any input face image x
and its identity y ∈ [0, 99], we let the target identity of the
impersonation attack to be yt = (y+1)%100. An imperson-
ation attack is successful only when the resulting adversarial
example is misclassified as the target identity yt. The results
are shown in Table 3.

We have two key findings. First, compared to Table 3
of the main paper, we observe that closed-set systems are
significantly more robust to impersonation attacks than dodg-
ing attacks. Especially when an attacker has no accurate
knowledge about the target system, the attack success rate of
physically realizable attacks can be as low as 0%. Second, it
can be seen that closed-set systems exhibit moderate robust-
ness against digital impersonation attacks. In such attacks,

the knowledge of neural architecture is significantly more
important than the training set. For example, by knowing the
neural architecture of ArcFace18, a PGD attack can achieve
a 69% success rate. In contrast, this rate drops to 25% when
only the training set is visible to the attacker.

C.3. Open-set Systems Under Impersonation At-
tacks

To evaluate impersonation attacks on open-set systems,
we randomly select 100 pairs from the LFW dataset [2]
in a way similar to Section 4.1 of the main paper. Each
pair contains two face images corresponding to different
identities. We let one image as the input x and the other
as the target gallery image x∗t . An impersonation attack is
successful only when the resulting adversarial example and
x∗t are verified as the same identity. The experimental results
are presented in Fig. 3.

Similar to the impersonation attacks on closed-set sys-
tems, we have the following observations that are consistent



Table 3. Attack success rate of impersonation attacks on closed-set
face recognition systems by the attacker’s system knowledge. Z
represents zero knowledge, T is training set, A is neural architecture,
and F represents full knowledge.

Target System Attack Type Attacker’s System Knowledge
Z T A F

VGGFace

PGD 0.11 0.21 0.35 1.00
Eyeglass Frame 0.01 0.01 0.03 0.95

Sticker 0.00 0.00 0.00 1.00
Face Mask 0.00 0.01 0.02 1.00

FaceNet

PGD 0.23 0.32 1.00 1.00
Eyeglass Frame 0.00 0.00 0.28 0.99

Sticker 0.01 0.00 0.21 1.00
Face Mask 0.00 0.00 0.26 0.99

ArcFace18

PGD 0.18 0.25 0.69 1.00
Eyeglass Frame 0.01 0.01 0.05 0.89

Sticker 0.00 0.00 0.01 0.94
Face Mask 0.01 0.01 0.03 0.77

ArcFace50

PGD 0.13 0.15 0.45 0.87
Eyeglass Frame 0.02 0.02 0.03 0.67

Sticker 0.00 0.00 0.00 0.58
Face Mask 0.01 0.01 0.01 0.60

ArcFace101

PGD 0.14 0.16 0.42 0.96
Eyeglass Frame 0.00 0.00 0.03 0.58

Sticker 0.00 0.00 0.00 0.50
Face Mask 0.01 0.01 0.04 0.73

Table 4. Attack success rate of dodging PGD attacks on closed-set
face recognition systems. Here, only the target system’s training
data is visible to the attacker, and we use different surrogate models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.08 0.16 0.43 0.51
FaceNet 0.42 0.52 0.73 0.83

ArcFace18 0.42 0.51 0.87 0.92
ArcFace50 0.35 0.55 0.86 0.90

ArcFace101 0.32 0.39 0.71 0.78

with our previous summary. First, open-set systems are
very robust to black-box impersonation physically realiz-
able attacks. In most cases, these attacks can only achieve
a success rate of less than 10%. In contrast, the PGD at-
tack is significantly more potent. And under this attack, the
neural architecture is considerably more vulnerable than the
training set (e.g., comparing FaceNet variations to ArcFace
models).

D. Efficacy of Momentum and Ensemble Mod-
els in Transfer-based Attacks

Next, we evaluate the efficacy of using momentum and
ensemble-based surrogate models in transfer-based dodging
attacks. For a given closed-set target face recognition system,
we first train a surrogate model using the same training
data. Specifically, we use both a single surrogate trained

Table 5. Attack success rate of dodging eyeglass frame attacks on
closed-set face recognition systems. Here, only the target system’s
training data is visible to the attacker, and we use different surrogate
models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.17 0.22 0.26 0.28
FaceNet 0.08 0.09 0.14 0.16

ArcFace18 0.02 0.03 0.05 0.06
ArcFace50 0.05 0.05 0.10 0.12

ArcFace101 0.02 0.03 0.02 0.03

Table 6. Attack success rate of dodging sticker attacks on closed-set
face recognition systems. Here, only the target system’s training
data is visible to the attacker, and we use different surrogate models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.02 0.02 0.06 0.06
FaceNet 0.00 0.00 0.01 0.01

ArcFace18 0.00 0.00 0.01 0.01
ArcFace50 0.00 0.00 0.00 0.01

ArcFace101 0.00 0.01 0.04 0.04

Table 7. Attack success rate of dodging face mask attacks on closed-
set face recognition systems. Here, only the target system’s training
data is visible to the attacker, and we use different surrogate models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.18 0.26 0.20 0.32
FaceNet 0.26 0.38 0.42 0.42

ArcFace18 0.21 0.33 0.21 0.33
ArcFace50 0.28 0.34 0.36 0.36

ArcFace101 0.22 0.34 0.30 0.36

on a different architecture1, and an ensembled surrogate by
ensembling the other four systems in the way described in
Section 3.2 of the main paper. We then produce white-box
dodging attacks on the surrogate and evaluate the resulting
examples’ attack success rate on the target model. For each
attack, we compare the momentum method (i.e., w/ mmt) and
the conventional gradient-based approach (i.e., w/o mmt).
The results are shown in Table 4, 5, 6, and 7.

We have two key observations. First, both ensemble and
momentum contribute to stronger transferability, although in
most cases, ensemble contributes more. For example, the en-
semble method can boost the transferability of PGD attacks
on FaceNet by 31%, while the improvement by momen-
tum is only about 10%. Second, the efficacy of momentum
and ensemble models is highly dependent on the nature of
perturbation. For digital attacks, these methods combined
can significantly improve transferability by up to 55%. In

1For a given target model, we trained four single surrogates correspond-
ing to the other four architectures. Below, we only present the result of the
surrogate that has the highest attack success rate.



Table 8. Attack success rate of dodging attacks on open-set face
recognition systems by the universality of adversarial examples.
Here, N represents the batch size of face images that share a
universal perturbation.

Target System Attack Type Attacker’s Capability
N=1 N=5 N=10 N=20

VGGFace

PGD 1.00 0.89 0.81 0.53
Eyeglass Frame 1.00 1.00 1.00 1.00

Sticker 1.00 1.00 1.00 1.00
Face Mask 1.00 1.00 1.00 1.00

FaceNet

PGD 1.00 0.02 0.02 0.02
Eyeglass Frame 1.00 1.00 1.00 1.00

Sticker 1.00 1.00 0.99 0.90
Face Mask 1.00 1.00 0.99 0.98

ArcFace18

PGD 1.00 0.96 0.79 0.46
Eyeglass Frame 0.99 0.86 0.70 0.67

Sticker 1.00 1.00 1.00 0.99
Face Mask 0.98 0.98 0.93 0.92

ArcFace50

PGD 1.00 0.91 0.75 0.47
Eyeglass Frame 0.99 0.78 0.67 0.62

Sticker 1.00 1.00 1.00 0.00
Face Mask 0.99 0.99 0.99 0.94

ArcFace101

PGD 1.00 0.68 0.68 0.41
Eyeglass Frame 1.00 0.85 0.73 0.65

Sticker 0.99 0.98 0.97 0.97
Face Mask 1.00 1.00 1.00 1.00

grid-level face mask attacks, the improvement is as con-
siderable as up to 16%. However, both methods can only
marginally boost the transferability of pixel-level realizable
attacks. Especially in the sticker attacks, the improvement
is nearly negligible. We leave effective transfer-based pixel-
level physically realizable attacks as an open problem for
future research.

E. Universal Attacks

Finally, we evaluate open-set systems under universal
dodging attacks. The results are shown in Table 8. Compared
to Table 5 of the main paper, we find that open-set systems
are significantly more fragile to universal perturbations of
all types than their closed-set counterparts. For example,
when N = 20, the open-set ArcFace101 is susceptible to all
the four types of universal attacks, while in the closed-set
setting it is only vulnerable to the universal face mask attack.
Moreover, we again observe that the universal grid-level face
mask attack is more effective than the other perturbation
types. Here, we also find that the sticker attack is as potent
as the face mask attack in open-set settings.
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