arXiv:2406.05375v2 [cs.Al] 26 Sep 2024

LEMMA-RCA: A Large Multi-modal Multi-domain
Dataset for Root Cause Analysis

Lecheng Zheng* Zhengzhang Chen' Dongjie Wang? Chengyuan Deng?
Reon Matsuoka’ Haifeng Chen'

Abstract

Root cause analysis (RCA) is crucial for enhancing the reliability and performance
of complex systems. However, progress in this field has been hindered by the
lack of large-scale, open-source datasets tailored for RCA. To bridge this gap, we
introduce LEMMA-RCA, a large dataset designed for diverse RCA tasks across
multiple domains and modalities. LEMMA-RCA features various real-world
fault scenarios from IT and OT operation systems, encompassing microservices,
water distribution, and water treatment systems, with hundreds of system entities
involved. We evaluate the quality of LEMMA-RCA by testing the performance of
eight baseline methods on this dataset under various settings, including offline and
online modes as well as single and multiple modalities. Our experimental results
demonstrate the high quality of LEMMA-RCA. The dataset is publicly available at
https://lemma-rca.github.io/.

1 Introduction

Root cause analysis (RCA) is essential for identifying the underlying causes of system failures,
ensuring the reliability and robustness of real-world systems. Recent advancements in artificial
intelligence and software development have led to increased complexity and interdependence in
modern systems. This complexity heightens their vulnerability to faults arising from interactions
among modular services, which can disrupt user experiences and incur significant financial losses.
Traditional manual RCA, however, is labor-intensive, costly, and prone to errors due to the complexity
of systems and the extensive data involved. Therefore, efficient and effective data-driven RCA
methods are crucial for pinpointing failures and mitigating financial losses when system faults occur.

Root cause analysis has been extensively studied across various domains and settings |(Capozzoli
et al. [2015]], Deng and Hooil [2021]], Brandén et al.| [2020]], Fourlas and Karras| [2021]],|Gao et al.
[2015]. Based on the application scenarios, RCA can be carried out in offline/online fashion with
single/multi-modal system data. Existing studies on RCA in these settings involve numerous learning
techniques such as Bayesian methods |Alaeddini and Dogan| [2011]], decision trees (Chen et al.| [2004]],
etc. Particularly, causal structure learning technique Burr| [2003]], Pamfil et al.|[2020]], Ng et al.|[2020],
Tank et al.| [2022], Yu et al.|[2023]],[Wang et al.| [2023alb], Zheng et al.|[2024] has proven effective in
constructing causal or dependency graphs between different system entities and key performance
indicators (KPIs), thereby enabling the tracing of underlying causes through these structures.

Data is the oxygen of data-driven methods. Despite significant progress in RCA techniques, the
availability of large-scale public datasets remains limited, often due to confidentiality concerns |Harsh
et al.[[2023]]. This scarcity hinders fair comparisons between RCA methods. Additionally, publicly
accessible datasets often contain manually injected faults rather than real faults, and each dataset

*University of Illinois at Urbana-Champaign
TNEC Laboratories America

HUniversity of Kansas

$Rutgers University

Preprint. Under review.

https://lemma-rca.github.io/

typically covers only a single domain. These limitations can prevent existing RCA methods from
effectively identifying various types of system faults in real-world scenarios, potentially leading to
regulatory and ethical consequences in critical sectors.

To address these limitations, we introduce LEMMA-RCA, a collection of Large-scalE Multi-ModAl
datasets with various real system faults to facilitate future research in Root Cause Analysis. LEMMA-
RCA is multi-domain, encompassing real-world applications such as IT operations and water
treatment systems, with hundreds of system entities involved. LEMMA-RCA accommodates
multi-modal data including textual system logs with millions of event records and time series metric
data with more than 100, 000 timestamps. We annotate LEMMA-RCA with ground truth labels
indicating the precise time stamps when real system faults occur and their corresponding root-cause
system entities.

Table 1: Existing datasets for root cause analysis. The top row corresponds to our dataset. The symbols v and
X indicate that the dataset has or does not have the corresponding feature, respectively.

Dataset Public Real Faults Large-scale Multi-domain . Modality .
Single Multiple
LEMMA-RCA v v v v v v
NeZha v v v
PetShop v v
ITOps v v v
Murphy v v

A comparison between LEMMA-RCA and existing datasets for RCA is presented in[Table I] We
briefly discuss the status of existing datasets: 1) NeZha|Yu et al.|[2023]] has limited size and contains
many missing parts in the monitoring data, and it is confined to one domain: microservice architec-
tures. 2) PetShop |Saurabh Garg, Imaya Kumar Jagannathan|[2024] has a small size. Additionally,
the system comprises only 41 components, limiting its complexity and reducing the practicality
for real-world scenarios. 3) ITOps |L1 et al.| [2022b]] dataset is not public and contains structured
logs that do not contribute to comprehending the underlying causal mechanism of system failures,
making it difficult to conduct fine-grained RCA. 4) Murphy Harsh et al.|[2023]] is collected from
a simple system and also not public. In comparison to prior work, LEMMA-RCA demonstrates a
comprehensive maturity on the accessibility, authenticity, and diversity.

LEMMA-RCA enables fair comparisons among different RCA methods. We evaluate eight baseline
methods, with five suited for offline settings and the remaining three designed for online RCA.
The quality of various data modalities is assessed in both online and offline setups. As previously
mentioned, causal-graph-based RCA methods provide deeper insights into system failures; hence, all
baseline methods fall into this category. The experimental results demonstrate the high quality of
LEMMA-RCA and its extensive utility for advanced research in root cause analysis.

2 Preliminaries

Key Performance Indicator (KPI) is a monitoring time series that indicates the system status. For
instance, latency and service response time are two common KPIs used in microservice systems. A
large value of latency or response time usually indicates a low-quality system performance or even a
system failure.

Entity Metrics are multivariate time series collected by monitoring numerous system entities or
components. For example, in a microservice system, a system entity can be a physical machine,
container, pod, efc. Some common entity metrics in a microservice system include CPU utilization,
Memory utilization, disk IO utilization, etc. An abnormal system entity is usually a potential root
cause of a system failure.

Data-driven Root Cause Analysis Problem. Given the monitoring data (including metrics and
logs) of system entities and system KPIs, the root cause analysis problem is to identify the top K
system entities that are most relevant to KPIs when a system fault occurs. RCA techniques can
be implemented in various settings, where offline/online and single-modal/multi-modal are mostly
commonly concerned. Offline RCA is conducted retrospectively with historical data to determine past
failures, whereas online RCA operates in real-time using current data streams to promptly address

issues. On the other hand, single-modal RCA relies solely on one type of data for a focused analysis,
while multi-modal RCA uses multiple data sources for a comprehensive assessment. We illustrate the
procedure of RCA in single-modal offline and multi-modal online settings in The related

work on data-driven RCA can be found in

/—\ Single-modal Offline RCA P
Physical System
Apply Metric N /\f /\/ /\/‘
Q Monitoring Agent | either Data DDDI] [[IUI] ﬂl][n ﬂl]ﬂn
Q @ Historical Data : e DT

Detector

System Fault Log Data E_% E_%j’ E_% %

atTime t

/Physical Sys'(em\«—l

! Detectorat i update | Detectorat |

Monitoring Agent ! Batchl |Detector | Batch2 !
Q g Batch Data : ;
- ‘ : ’

Multi-modal Online RCA

! Detectorat |
Batch t

Figure 1: Illustration of RCA workflow in the single-modal offline setting (top) and the multi-modal online
setting (bottom). The other two settings can be viewed as an ensemble of corresponding components (data
collection, detector, modality) and follow the same systematic procedure.

3 LEMMA-RCA Dataset

This section outlines the data resources, details the preprocessing steps, and presents visualizations to
illustrate the characteristics of the data released. The data licence can be found in

3.1 Data Collection

We collect real-world data from two domains: IT operations and OT operations. The IT domain
includes sub-datasets from Product Review and Cloud Computing microservice systems, while the
OT domain includes SWaT and WADI sub-datasets from water treatment and distribution systems.

Data specifics are provided in[Table 2] and [Table 3]

For IT domain, we developed two microservice platforms: the Product Review Platform and the
Cloud Computing Platform. The Product Review Platform is composed of six OpenShift nodes
(such as ocp4-control-plane-1 through ocp4-control-plane-3, ocp4-compute-1 and ocp4-compute-2,
and ocp4-infra-1) and 216 system pods (including ProductPage, MongoDB, review, rating, payment,
Catalogue, shipping, etc.). In this setup, we simulated four distinct system faults, including out-of-
memory, high-CPU-usage, external-storage-full, and DDoS attack, on four different dates. Each
simulation ran the microservice system for at least 49 hours with different pods involved. The
structure of this microservice system with some key pods of one simulation is depicted
(a). Both log and metric data are generated and stored systematically to ensure comprehensive
monitoring. Specifically, eleven types of node-level metrics (e.g., net disk IO usage, net disk space
usage, etc.) and six types of pod-level metrics (e.g., CPU usage, memory usage, etc.) are recorded by

Request

compute-2 || infra-1

(a) The architecture of Product Review Platform (b) Log data captured by the ElasticSearch

Figure 2: Visualization of the microservice system platform and ElasticSearch log data.

Prometheus [Turnbull| [2018]], and the time granularity of these system metrics is 1 second. Log data,
on the other hand, are collected by ElasticSearch Zamfir et al.[[2019] and stored in JSON files with
detailed timestamps and retrieval periods. The contents of system logs include Timestamp, Pod name,
Log message, etc as shown in[Figure 2](b). The JMeter Nevedrov| [2006]] is employed to collect the
system status information such as elapsed time, latency, connect time, thread name, throughput etc.
The latency is considered as system KPI as the system failure would result in the latency significantly
increasing.

For the Cloud Computing Platform, we simulate six different types of faults (such as cryptojacking,
mistakes made by GitOps, configuration change failure, etc.) on eleven system nodes. At each
simulation, we gather both system metrics and logs from various sources. In contrast to the Product
Review platform, system metrics are directly extracted from CloudWatch Metrics on EC2 instances,
and the time granularity of these system metrics is 1 second. Log events are acquired from CloudWatch
Logs, consisting of three data types (i.e., log messages, api debug log, and mysql log). Log message
describes general log message about all system entities; api debug log contains debug information
of the AP layer when the API is executed; mysql logs contain log information from database layer,
including connection logs to mysql, which user connected from which host, and what queries were
executed. Latency, error rate, and utilization rate are tracked using JMeter tool, serving as Key
performance indicators (KPIs). This comprehensive logging and data storage setup facilitates detailed
monitoring and analysis of the system’s performance and behavior.

Table 2: Data statistics of IT operation sub-datasets.

Microservice System Product Review Cloud Computing
Original Dataset Size 765 GB 540 GB
Number of fault types 4 6
Mean of number of entities 216.0 167.71
Mean of number of metrics 11 (node-level) + 6 (pod-level) 6 (node-level) + 7 (pod-level)
Mean of number of timestamps 131,329.25 109,350.57
Mean of maximal number of log event 153,081,219.0 63,768,587.25

For OT domain, we constructed two sub-datasets, SWaT and WADI, using monitoring data collected
by the iTrust lab at the Singapore University of Technology and Design [iTrust [2022]]. These two sub-
datasets consist of time-series/metrics data, capturing the monitoring status of each sensor/actuator as
well as the overall system at each second. Specifically, SWaT Mathur and Tippenhauer] [2016] was
collected over an 11-day period from a water treatment testbed equipped with 51 sensors. The system
operated normally during the first 7 days, followed by attacks over the last 4 days, resulting in 16
system faults. Similarly, WADI|/Ahmed et al.| [2017]] was gathered from a water distribution testbed
over 16 days, featuring 123 sensors and actuators. The system maintained normal operations for the
first 14 days before experiencing attacks in the final 2 days, with 15 system faults recorded.

Table 3: Data statistics of OT operation sub-datasets.

Water Treatment/Distribution SWaT WADI
Original Dataset Size 235.5 MB 847.6 MB
Number of fault types 6 9
Mean of number of entities 51.0 123.0
Mean of number of metrics 7 (node-level) + 7 (pod-level) 7 (node-level) + 7 (pod-level)
Mean of number of timestamps 899838.00 1278727.40

We visualized the key performance indicator (KPI) for eight failure cases in[Figure 3] where sudden
spikes or drops in latency indicate system failures. The first two sub-figures on the left show the KPIs
for two faults in the Product Review sub-dataset, while the third and fourth sub-figures depict faults
in the Cloud Computing sub-dataset. The first two sub-figures on the right display faults in the SWaT
dataset, and the last two show faults in the WADI dataset. The x-axis represents the timestamp, and
the y-axis shows system latency.

3.2 Data Preprocessing

After collecting system metrics and logs, we assess whether each pod exhibits stationarity, as non-
stationary data are unpredictable and cannot be effectively modeled. Consequently, we exclude
non-stationary pods, retaining only stationary ones for subsequent data preprocessing steps.

Log Feature Extraction for Product Review and Cloud Computing. The system logs we collected
revealed that some pod entities possess only a limited set of logs, insufficient for producing meaningful

000
06 005
04
010
02
1] 125000 150000 175000 5 %0 S0 750 150
1000
06
750
s00 o4
250 02
3 00
] o

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 3: Visualization of KPI for system failure cases. Left: The first two sub-figures are from the Product
Review sub-dataset; the third and fourth sub-figures are from the Cloud Computing sub-dataset; Right: the first
two sub-figures are from the SWaT sub-dataset; the last two sub-figures are from the WADI sub-dataset.

time-series data for root cause analysis. Upon examining their roles within the microservice systems,
we determined that these pods are largely irrelevant to actual system faults and thus excluded them
from further analysis. Additionally, the log data is unstructured and frequently uses a special token,
complicating its direct application for analysis. How to extract useful information from unstructured
log data remains a great challenge. Following [Zheng et al.|[2024]], we preprocess the log data into
time-series format. We first utilize a log parsing tool, such as Drain, to transform unstructured
logs into structured log messages represented as templates. We then segment the data using fixed
10-minute windows with 30-second intervals, calculating the occurrence frequency of each log
template. This frequency forms our first feature type, denoted as X € R”', where T is the number of
timestamps. We prioritize this feature because frequent log templates often indicate critical insights,
particularly useful in identifying anomalies such as Distributed Denial of Service (DDoS) attacks,
where a surge in template frequency can indicate unusual activity.

Moreover, we introduce a second feature type based on ‘golden signals’ derived from domain
knowledge, emphasizing the frequency of abnormal logs associated with system failures like DDoS
attacks, storage failures, and resource over-utilization. Identifying specific keywords like ‘error,
‘exception,” and ‘critical’ within log templates helps pinpoint anomalies. This feature, denoted as
XX € RT, assesses the presence of abnormal log templates to provide essential labeling information
for anomaly detection.

Lastly, we implement a TF-IDF based method, segmenting logs using the same time windows and
applying Principal Component Analysis (PCA) to reduce feature dimensionality, selecting the most
significant component as X+ € R?. We concatenate these three feature types to form the final
feature matrix X© = [X{; XZ; X1] € R3*T, enhancing our capacity for a comprehensive analysis
of system logs and improving anomaly detection capabilities.

KPI Construction for SWaT and WADI. The two datasets include the label column that reflects the
system status; however, the values within this column are discrete. To facilitate the root cause analysis,
it is beneficial to transform these values into a continuous format. Specifically, we propose to convert
the label into a continuous time series. To achieve this, we employ anomaly detection algorithms,
such as Support Vector Data Description and Isolation Forest, to model the data. Subsequently,
the anomaly score, as determined by the model, will be utilized as the system KPI. More data

preprocessing details on SWaT and WADI can be found in[Appendix B|

3.3 System Fault Scenarios

We simulate 10 different types of real system faults in Product Review and Cloud Computing
platforms. Due to the space limitation, we select two representative cases (one from each) and provide
the details below. Other fault scenarios are presented in[Appendix C| We also visualize the system
fault of these two cases in

* Cryptojacking. In this scenario, cloud usage fees increase due to cryptojacking, where a Coin
Miner is covertly downloaded and installed on a microservice (details-v1 pod) in an EKS cluster.
This miner gradually consumes IT resources, escalating the cloud computing costs. Identifying the
root cause is challenging because the cost (SLI) encompasses the entire system, and no individual

- roa
‘‘‘‘‘ 8 : Node Fargat | Service : Pod Affected Pod
i openshift cluster ™
PublcSubne -
v

productsage

Figure 4: Visualization of two system fault scenarios. Left: Cryptojacking. Right: External storage failure.

service errors are detected. Periodic external requests are sent to microservices, and after a day,
the miner’s activity triggers auto-scaling in details-v1, increasing resource usage. Fargate’s impact
on EKS costs is significant due to its resource dependency. KPI (SLI) is calculated from resource
usage, with all pod and node metrics collected from CloudWatch. However, there are no node logs
for Fargate, complicating diagnosis.

» External Storage Failure. In this system failure, we fill up the external storage disk connected to
the Database (DB) pod (i.e., mongodb-v1) within Microservice A’s OpenShift cluster. When the
storage becomes full, the DB pod cannot add new data, resulting in system errors. These errors
propagate to pods that depend on the DB pod, causing some services (ratings) within Microservice
A to encounter errors. We monitor changes in response and error information for Microservice
A using Jaeger logs. Metrics for all containers and nodes, including CPU and memory usage, are
obtained from Prometheus within OpenShift. Logs for all containers and nodes are retrieved from
Elasticsearch within OpenShift. Additionally, we collect message logs from the external storage.
We illustrate the metrics and log data of the root cause pod in[Figure 5]

. J———y

Figure 5: Visualization of root cause for one system failure case (i.e., External Storage Failure) on the Product
Review Platform. Left: six system metrics of root cause. Right: the system log of the root cause pod (i.e.,
Mongodb-v1) with the x-axis representing the timestamp, the y-axis indicating the log event ID, and the colored
dots denoting event occurrences. Sudden drops in the metrics data, as well as new log event patterns observed at
the midpoint, indicate a system failure.

4 Experiments

4.1 Experimental Setup

Evaluation Metrics. To asses baseline RCA method on LEMMA-RCA, we choose three widely-used
metrics Wang et al.|[2023b], Meng et al.|[2020a], Zheng et al.|[2024]] and introduce them below.

(1). Precision@K (PR@K): It measures the probability that the top K predicted root causes are real,

defined as:)
ik Rali) € Vo

min (K, |v,|)

where A is the set of system faults, a is one fault in A, V, is the real root causes of a, R, is the
predicted root causes of a, and 1 is the ¢-th predicted cause of R, .

(2). Mean Average Precision@K (MAP@K): It assesses the top K predicted causes from the
overall perspective, defined as:

1
achi<j<K

PR@K — Z by 1)
|A| ac€h

where a higher value indicates better performance.

(3). Mean Reciprocal Rank (MRR): It evaluates the ranking capability of models, defined as:

1 1
MRR@K = — —_— 3
|A] % rankp,)

where rankp, is the rank number of the first correctly predicted root cause for system fault a.

Baselines. We evaluate the performance of the following causal discovery based RCA models on
the benchmark sub-datasets: (1). PC [Burr, 2003]: This classic constraint-based causal discov-
ery algorithm is designed to identify the causal graph’s skeleton using an independence test. (2)
Dynotears [Pamfil et al.,|2020]: It constructs dynamic Bayesian networks through vector autore-
gression models. (3). C-LSTM [Tank et al.,2022]: This model utilizes LSTM to model temporal
dependencies and capture nonlinear Granger causality. (4). GOLEM [Ng et al., 2020]: GOLEM
relaxes the hard Directed Acyclic Graph (DAG) constraint of NOTEARS [Zheng et al.|[2018] with a
scoring function. (5). REASON [Wang et al., 2023b]: An interdependent network model learning
both intra-level and inter-level causal relationships. (6). Nezha [Yu et al.l [2023]]: A multi-modal
method designed to identify root causes by detecting abnormal patterns. (7). CORAL Wang et al.
[2023a]]: An online single-modal RCA method based on incremental disentangled causal graph
learning.

The fist four models can only learn the causal structure from time series data. Thus, we first collect
monitoring data from the beginning until system failures occur as historical records. Then, based
on the collected records, we apply the causal discovery models to learn causal graphs and leverage
random walk with restarts on such graphs |Wang et al.|[2023a]] to identify the top K nodes as the
root causes. Besides we extend NOTEARS and GOLEM to the online learning setting, denoted by
NOTEARS* and GOLEM*, respectivelyﬂ For the online setting, we use the historical normal data
(e.g., 8 hours for the Product Review sub-dataset, and 1 hour for the SWaT and WADI sub-datasets)
to construct the initial causal graph and update iteratively for each new batch of data. CORAL
can inherit the causations from the previous data batch, while NOTEARS* and GOLEM* have to
learn from scratch for each new data batch. More details of experimental settings can be found

in[Appendix F
4.2 Offline Root Cause Analysis Results

Product Review and Cloud Computing. We evaluate seven offline RCA methods including both
single-modal and multi-modal methods on Product Review and Cloud Computing sub-dataset. The
experimental results are presented in[Table 4]and [Appendix D] with respect to Precision at K (PR@K),
Mean Reciprocal Rank (MRR), and Mean Average Precision at K (MAP@K). Our observations
reveal the following insights: (1) The REASON method demonstrates notable success in identifying
the root cause in 75% of system fault scenarios, achieving a PR@1 score of 75%. This indicates the
utility of metric data alone in facilitating root cause identification. (2) The performance of these RCA
methods is diminished when relying solely on log data for root cause analysis. (3) Integrating both
metric and log data enhances the performance of most RCA methods in terms of MRR, compared
to using only metric data. This suggests that log data complements these methods, aiding in more
accurate identification of potential root causes.

Water Treatment/Distribution. We employ five single-modal RCA methods to evaluate the per-
formance of root cause localization on the SWaT and WADI datasets. The comparison results,
presented in[Table 5] are measured in terms of PR@K, MRR, and MAP@K. Our findings indicate
that the best-performing method is REASON, primarily due to its ability to capture hierarchical
causal relationships between low-level and high-level system entities. Compared with other public
datasets, these hierarchical relationships are significant contributions of our dataset, underscoring
their great benefit for accurate root cause localization.

4.3 Online Root Cause Analysis Results

We evaluate three RCA methods on all sub-datasets to assess the quality of the LEMMA-RCA
sub-dataset in an online setting. Notice that due to the lack of multi-modal online RCA methods,

Other baselines are not extended to the online setting as they are time-intensive when there are multiple data batches.

Table 4: Results for Offline RCA with Multiple Modalities on the Product Review dataset.

Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@I10

Dynotears 0 0 50.0% 6.96% 0 0 7.50%

PC 0 0 25.0% 5.32% 0 0 5.0%
Metric Only C-LSTM 25.0% 75.0% 75.0% 47.39% 50.0% 25.0% 67.50%
GOLEM 0 0 25.0% 4.31% 0 0 2.50%

REASON 75.0% 100.0% 100.0% 87.50% 91.67% 95.0% 97.5%

Dynotears 0 0 25.0% 5.84% 0 0 7.50%
PC 0 0 25.0% 6.93% 0 0 12.50%

Log Only C-LSTM 0 0 25.0% 5.90% 0 0 7.50%
GOLEM 0 0 25.0% 5.83% 0 0 7.50%

REASON 0 50.0% 750% 21.56% 16.67% 25.0% 40.0 %

Dynotears 0 0 50.0% 9.52% 0 0 15.0%

PC 0 0 25.0% 6.43% 0 0 12.5%

C-LSTM 50.0% 75.0% 75.0% 59.25% 58.33% 65.0% 70.0%

Multi-Modality GOLEM 0 0 25.0% 6.43% 0 0 5.0%
REASON 75.0% 100.0% 100.0% 87.50% 91.67% 95.0% 97.5%
Nezha 0 50.0% 75.0% 19.29% 8.33% 25.0% 47.50%

Table 5: Results for Offline RCA on the SWaT and WADI dataset.
Dataset Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@I10

Dynotears 12.5% 3229% 42.71% 27.85% 20.14% 24.38% 30.83%

PC 125% 34.38% 5833% 26.16% 12.85% 20.42% 35.0%
SWaT C-LSTM 125% 28.13% 52.08% 29.35% 13.89% 17.71% 31.88%
GOLEM 6.25% 12.5% 47.92% 22.36% 7.64% 9.58% 25.0%
REASON 25.0% 66.67% 84.38% 40.99% 23.96% 35.0% 57.60%
Dynotears 7.14% 300% 47.62% 22.23% 10.71% 17.43% 26.81%
PC 7.14% 35.0% 50.0% 27.74% 16.27% 23.90% 34.57%
WADI C-LSTM 0% 35.0% 51.19% 24.40% 1151% 18.55% 32.73%
GOLEM 0% 40.0% 53.57% 23.48% 9.92% 20.38% 34.83%
REASON 28.57% 65.0% 79.76% 53.35% 42.46% 50.62% 63.76 %

we measure the performance of these single-modal baseline methods using only metric data shown
in By observation, we find that the online version of RCA models (e.g., GOLEM™) outperform
their offline version (e.g., GOLEM) as online methods can rapidly capture the changing patterns
of the metric data, thus learning a more accurate and noise-free causal structure for RCA. Among
online methods, CORAL significantly outperforms NOTEARS* and GOLEM* due to the design of
state-invariant and state-dependent representations learning tailored for the online setting. Notably,
LEMMA-RCA is a large-scale real-world dataset, consisting of more than 100,000 timestamps across
several days with various system fault scenarios, which can be naturally transformed to the online
setting, compared with small datasets (e.g., NeZha|Yu et al. [2023]]) with limited timestamps for

online RCA.
Table 6: Results for Online Root Cause Analysis on All Sub-Datasets.

Dataset Model PR@I PR@5 PR@I0 MRR MAP@3 MAP@5 MAP@I0
CORAL 750% 100.0% 100.0% 87.50% 91.67% 950% 97.50%
product NOTEARS® 25.0% 75.0% 750% 48.11% S0.0% 60.0% 67.50%
GOLEM® 50.0% 75.0% 750% 64.58% 66.67% 70.0% 72.50%
CORAL 50.0% 833% 1000% 66.67% 66.67% 73.33% 86.67%
Coggﬁgng NOTEARS* 0% 16.67% 6667% 1130% 0% 333% 21.67%
GOLEM® 0% 50.0% 8333% 1827% 5.56% 20.0% 43.33%
CORAL 625% 5521% 9271% 31.72% 15.63% 29.79% 53.96%
SWaT ~ NOTEARS® 6.25% 36.46% 67.71% 2630% 1493% 23.54% 42.19%
GOLEM® 6.25% 42.71% 68.75% 28.09% 17.01% 26.04% 43.65%
CORAL 3571% 60.0% 83.33% 5190% 28.71% 3605% 56.0%
WADI ~ NOTEARS® 14.29% 4571% 72.62% 37.74% 18.65% 27.48% 48.38%
GOLEM® 21.43% 60.0% 73.81% 40.24% 19.84% 30.33% 48.98%

5 Discussions

Broader impact: To facilitate accurate, efficient, and multi-modal root cause analysis research
across diverse domains, we introduce LEMMA-RCA as a new benchmark dataset. Our dataset also
offers significant potential for advancing research in areas like multi-modal anomaly detection,
change point detection, causal structure learning, and LLM-based system diagnosis. Based on
the thorough data analysis and extensive experimental results, we highlight the following areas for
future research:

* Expanding Domain Applications: To enhance the LEMMA-RCA dataset’s versatility and impact,
we plan to incorporate data from additional domains such as cybersecurity and healthcare. This
integration of diverse data sources will facilitate the development of more comprehensive root cause
analysis technologies, significantly extending the dataset’s applicability across various industries.

* Online Multi-Modal Root Cause Analysis: The majority of RCA methods are offline and typically
single-modal. However, our research highlights a notable gap in online, multi-modal approaches.
This presents an opportunity to develop real-time, multi-modal root cause analysis methods that
can instantly process and analyze diverse data streams. Such advancements are crucial for dynamic
environments like industrial automation and real-time monitoring services, where immediate
response is essential.

Limitations: Despite its broad capabilities, the LEMMA-RCA dataset may have limitations in terms
of the dataset generalizability, as the system fault scenarios we created may not adequately reflect
the diversity of conditions prevalent in broader real-world applications. Another limitation is the
LEMMA-RCA dataset is associated with some missing data in the system metric readings. These
issues can arise from factors such as system interruptions and other unforeseen circumstances.

6 Conclusion

In this work, we present LEMMA-RCA, the first large-scale, open-source dataset featuring real
system faults across various application domains and multiple modalities. We evaluate the quality
of LEMMA-RCA by testing the performance of eight baseline methodologies on this dataset under
different settings, including offline/online modes and single/multiple-modality data. Our experimental
results demonstrate the high quality of LEMMA-RCA. By making this dataset publicly available,
we aim to facilitate further research and innovation in root cause analysis for complex systems,
contributing significantly to the development of more robust and secure methodologies that ensure
the high performance of modern systems, particularly those that are mission-critical.

References

Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. Wadi: a water distribution
testbed for research in the design of secure cyber physical systems. In Proceedings of the 3rd
International Workshop on Cyber-Physical Systems for Smart Water Networks, pages 25-28,
2017.

Adel Alaeddini and Ibrahim Dogan. Using bayesian networks for root cause analysis in statistical
process control. Expert Systems with Applications, 38(9):11230-11243, 2011.

Alvaro Brandoén, Marc Solé, Alberto Huélamo, David Solans, Maria S Pérez, and Victor Muntés-
Mulero. Graph-based root cause analysis for service-oriented and microservice architectures.
Journal of Systems and Software, 159:110432, 2020.

Tom Burr. Causation, prediction, and search. Technometrics, 45(3):272-273, 2003.

Alfonso Capozzoli, Fiorella Lauro, and Imran Khan. Fault detection analysis using data mining
techniques for a cluster of smart office buildings. Expert Systems with Applications, 42(9):
4324-4338, 2015.

Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. Failure diagnosis using
decision trees. In International Conference on Autonomic Computing, 2004. Proceedings., pages
36-43. IEEE, 2004.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
4027-4035, 2021.

George K Fourlas and George C Karras. A survey on fault diagnosis methods for uavs. In 2021
International Conference on Unmanned Aircraft Systems (ICUAS), pages 394-403. IEEE, 2021.

Zhiwei Gao, Carlo Cecati, and Steven X. Ding. A survey of fault diagnosis and fault-tolerant tech-
niques—part i: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions
on Industrial Electronics, 62(6):3757-3767, 2015. doi: 10.1109/TIE.2015.2417501.

Vipul Harsh, Wenxuan Zhou, Sachin Ashok, Radhika Niranjan Mysore, Brighten Godfrey, and Sujata
Banerjee. Murphy: Performance diagnosis of distributed cloud applications. In Proceedings of the
ACM SIGCOMM 2023 Conference, pages 438451, 2023.

Chuanjia Hou, Tong Jia, Yifan Wu, Ying Li, and Jing Han. Diagnosing performance issues in microser-
vices with heterogeneous data source. In 2021 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications,
Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New York City, NY,
USA, September 30 - Oct. 3, 2021, pages 493-500. IEEE, 2021.

iTrust. The website of itrust lab. [EB/OL], 2022. https://itrust.sutd.edu.sg/itrust-labs_
datasets/dataset_info/l

Tian Lan, Ziyue Li, Zhishuai Li, Lei Bai, Man Li, Fugee Tsung, Wolfgang Ketter, Rui Zhao,
and Chen Zhang. Mm-dag: Multi-task dag learning for multi-modal data-with application for
traffic congestion analysis. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 1188-1199, 2023.

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Aidong Zhang and Huzefa Rangwala, editors, KDD ’22: The 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, pages
3230-3240. ACM, 2022a.

Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang, Yanjun Wu, Long
Jiang, Leiqin Yan, Zikai Wang, et al. Practical root cause localization for microservice systems
via trace analysis. In 2021 IEEE/ACM 29th International Symposium on Quality of Service
IWQOS), pages 1-10. IEEE, 2021.

Zeyan Li, Nengwen Zhao, Shenglin Zhang, Yongqgian Sun, Pengfei Chen, Xidao Wen, Minghua Ma,
and Dan Pei. Constructing large-scale real-world benchmark datasets for aiops. arXiv preprint
arXiv:2208.03938, 2022b.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and
training on ics security. In 2016 international workshop on cyber-physical systems for smart water
networks (CySWater), pages 31-36. IEEE, 2016.

Yuan Meng, Shenglin Zhang, Yongqgian Sun, Ruru Zhang, Zhilong Hu, Yiyin Zhang, Chenyang Jia,
Zhaogang Wang, and Dan Pei. Localizing failure root causes in a microservice through causality
inference. In 28th IEEE/ACM International Symposium on Quality of Service, IWQoS 2020,
Hangzhou, China, June 15-17, 2020, pages 1-10. IEEE, 2020a.

Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin Zhang, Chenyang Jia,
Zhaogang Wang, and Dan Pei. Localizing failure root causes in a microservice through causality
inference. In 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS),
pages 1-10. IEEE, 2020b.

Dmitri Nevedrov. Using jmeter to performance test web services. Published on dev2dev, pages 1-11,
2006.

10

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and DAG constraints
for learning linear dags. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
gatzis, Paul Beaumont, and Bryon Aragam. DYNOTEARS: structure learning from time-series data.
In Silvia Chiappa and Roberto Calandra, editors, The 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy],
volume 108 of Proceedings of Machine Learning Research, pages 1595-1605. PMLR, 2020.

Saurabh Garg, Imaya Kumar Jagannathan. Root cause analyses on petshop application,
2024. https://github.com/amazon-science/petshop-root-cause-analysis/tree/
main?tab=readme-ov-file.

Jacopo Soldani and Antonio Brogi. Anomaly detection and failure root cause analysis in (micro)
service-based cloud applications: A survey. ACM Computing Surveys (CSUR), 55(3):1-39, 2022.

LuAn Tang, Hengtong Zhang, Zhengzhang Chen, Bo Zong, LI Zhichun, Guofei Jiang, and Kenji
Yoshihira. Graph-based attack chain discovery in enterprise security systems, May 14 2019. US
Patent 10,289,841.

Alex Tank, Ian Covert, Nicholas J. Foti, Ali Shojaie, and Emily B. Fox. Neural granger causality.
IEEE Trans. Pattern Anal. Mach. Intell., 44(8):4267-4279, 2022.

James Turnbull. Monitoring with Prometheus. Turnbull Press, 2018.

Dongjie Wang, Zhengzhang Chen, Yanjie Fu, Yanchi Liu, and Haifeng Chen. Incremental causal
graph learning for online root cause analysis. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 2269-2278, 2023a.

Dongjie Wang, Zhengzhang Chen, Jingchao Ni, Liang Tong, Zheng Wang, Yanjie Fu, and Haifeng
Chen. Interdependent causal networks for root cause localization. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach,

CA, USA, August 6-10, 2023, pages 5051-5060. ACM, 2023b.

Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin Zheng. Nezha:
Interpretable fine-grained root causes analysis for microservices on multi-modal observability data.
2023.

Vlad-Andrei Zamfir, Mihai Carabas, Costin Carabas, and Nicolae Tapus. Systems monitoring and big
data analysis using the elasticsearch system. In 2019 22nd International Conference on Control
Systems and Computer Science (CSCS), pages 188—193. IEEE, 2019.

Lecheng Zheng, Zhengzhang Chen, Jingrui He, and Haifeng Chen. Multi-modal causal structure
learning and root cause analysis. arXiv preprint arXiv:2402.02357, 2024.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

11

https://github.com/amazon-science/petshop-root-cause-analysis/tree/main?tab=readme-ov-file
https://github.com/amazon-science/petshop-root-cause-analysis/tree/main?tab=readme-ov-file

A Related Work

Single-modal Offline Root Cause Analysis (RCA) retrospectively identifies the primary cause
of system failures using a single data type after an event has occurred [Wang et al.| [2023b], Tang
et al.| [2019], Meng et al.[[2020b], |L1 et al.| [2021]],|Soldani and Brogi| [2022]. For example, Meng et
al. Meng et al.|[2020b] analyze monitoring metric data to discern sequential relationships and integrate
causal and temporal information for root cause localization in microservice systems. Similarly, Wang
et al. [Wang et al.| [2023b]] construct an interdependent causal network from time series data, using a
random walk strategy to pinpoint the most probable root causes. Li et al. [Li et al|[2021] evaluate
microservice traces, determining that a service with a higher ratio of abnormal to normal traces is
likely the root cause. Although these studies demonstrate notable efficacy, they rely exclusively on
single-modal data, which may lead to suboptimal and biased outcomes in root cause localization.

Multi-modal Offline RCA. Recent studies have explored utilizing multi-modal data for offline RCA,
which can be divided into two approaches|Yu et al.|[2023]],|[Hou et al.| [2021]], [Zheng et al.| [2024]],
Lan et al.| [2023]]. The first approach, exemplified by Nezha Yu et al.| [2023]] and PDiagnose [Hou et al.
[2021]], involves extracting information from each modality separately and then integrating it for
analysis. Conversely, the second approach focuses on the interactions between different modalities.
For instance, MULAN |Zheng et al.| [2024]] develops a comprehensive causal graph by learning
correlations between modalities, while MM-DAG |Lan et al.| [2023]] aims to jointly learn multiple
Direct Acyclic Graphs, improving both consistency and depth of analysis.

Online RCA. Despite significant advances, most RCA methods are designed for offline use, requiring
extensive data collection and full retraining for new faults, which delays response times. To address
this, Wang er al. Wang et al.|[2023a] introduced an online RCA method that decouples state-invariant
and state-dependent information and incrementally updates the causal graph. Li et al. [Li et al.| [2022a]]
developed a causal Bayesian network that leverages system architecture knowledge to mitigate
potential biases toward new data. However, these methods are limited to single-modal data, and there
is a critical need for online RCA methods that can effectively handle multi-modal data.

B Monitoring Time Series Segmentation for SWaT and WADI

In the original SWaT and WADI datasets, the attack model demonstrates irregular attack patterns,
occasionally targeting multiple sensors simultaneously, or executing attacks at closely spaced intervals.
To follow the principles of RCA, we have established two specific preprocessing rules for these
datasets: 1) Each recorded attack event must only involve a single sensor or actuator. 2) The duration
of the dataset corresponding to each attack event must be standardized to two hours. Consequently,
we selectively keep attack events that impact only one sensor or actuator. If the interval between
successive attack events is insufficiently short, we assume the stability in the monitoring data
immediately before and after each attack event. To ensure the necessary two-hour duration for each
event, we concatenate normal-state data from both before and after the attack period. This adjustment
positions the attack event centrally within a continuous two-hour segment, facilitating consistent and
accurate analysis.

C Additional System Fault Scenarios

* Silent Pod Degradation Fault. In this scenario, one of the duplicated pods in a load
balancer has a latent bug that causes its CPU usage to rise, leading to slower processing
and increased latency for some users. The issue is hard to identify because the pod remains
operational, preventing autoscaling from triggering and not affecting overall latency or
error rates. It may only be noticed through user reports or by specifically monitoring CPU
utilization of individual pods, resembling a silent failure. The process involves periodically
sending external requests to microservice A. After a day, CPU load in one productpage-v1
pod increases to simulate the bug, causing gradual latency rise without any errors. Metrics
and logs are collected from CloudWatch, and the KPI is measured using JMeter.

* Noisy Neighbor Issue. In this system fault scenario, the affected pod is productpage-v1. The
root cause is identified as the pod ratings in the robot-shop microservice moving between
nodes, causing a "NoisyNeighbor" issue in CPU usage, which affects the performance of

12

productpage-v1. This results in an increased error rate when accessing a faulty product
page, which is the key performance indicator (KPI) being monitored. The steps include
periodically sending requests to microserviceA (book-info), observing the pod ratings of
microserviceB (robot-shop) moving to the same node as productpage-v1, and noticing a
subsequent rise in CPU usage that impacts productpage-v1. Metrics are collected from
Prometheus, and logs are obtained from CloudWatch Logs. Configuration changes are also
logged.

Node Resource Contention Stress Test. In this system fault scenario, we’re testing a
system’s resilience by putting it under stress and then seeing how it performs. First, we use
JMeter to periodically send requests to Microservice A and meanwhile, the OpenSSL speed
command is employed to target the pod of Microservice B to impose a substantial burden
on the CPU, situated on the identical node as Microservice A within the infrastructure.
The responsiveness of Microservice A is monitored, utilizing JMeter’s logs to ensure any
discernible impacts. HTTP response logs are directly obtained from JMeter for analysis.
Furthermore, system metrics such as CPU and memory utilization across all containers and
nodes are retrieved from Prometheus, nested within the OpenShift environment. Finally, for
comprehensive system analysis, container logs are obtained from Elasticsearch within the
OpenShift framework, completing the holistic evaluation process.

DDoS Attack In this system fault simulation, we periodically send requests from an external
source to Microservice A over a monitoring period from June 3 2022 at 06:30 PM to June
52022 at 07:40 PM. On June 4, we increase the number of requests abnormally to create
an access load, which eventually affects the memory, causing an Out of Memory (OOM)
error in the Java application running inside the pods, specifically impacting the reviews-v2
and reviews-v3 pods. This error propagates to some services (reviews) within Microservice
A. We gather information about the response changes and errors in Microservice A using
Jaeger logs and Prometheus. Metrics for all containers and nodes, such as CPU and memory
usage, are obtained from Prometheus within OpenShift. Logs for all containers and nodes
are retrieved from Elasticsearch within OpenShift.

Malware Attack. A web server is targeted by a coordinated malware attack. The attack
begins with a root cause pod (scenariolO-malware-deployment) which attempts to connect
to other pods on the same network using a password list attack via sshpass commands. Once
it successfully logs into another pod (scenariol0-bot-deployment), it delivers a DDoS attack
script. This script is executed, causing the infected pods to generate additional load on
the productpage-v1 service, impacting its CPU, memory, and network performance, and
degrading its KPIs. Over time, more pods become involved in the DDoS attack, further
exacerbating the performance issues. The scenario involves monitoring the system using
JMeter for KPIs and collecting metrics and logs from CloudWatch to identify the root cause
and analyze the impact of the malware-infected pod on the system’s performance.

Bug Infection. The system fault scenario involves a latent bug in the API, which leads to an
increased CPU load on one of the four CPU cores over time. This elevated load affects the
response time of the web service, causing increased latency. The difficulty in identifying
this issue stems from the fact that the CPU load increase only impacts a single core, utilizing
about 25% of the total CPU capacity, which might not trigger standard monitoring alerts.
Additionally, the API runs in a multi-process manner, further complicating processing. We
periodically send user requests to the web service, simulate the bug after one day, and the
increased latency is observed. JMeter is used to measure the KPI (SLI) for web server
latency, while system metrics and logs are obtained by CloudWatch.

Configuration Fault. The fault scenario involves a Git user pushing a manifest file with
incorrect resource limits for the details-v1 microservice. This incorrect configuration leads
to unmanageable processing demands, causing the service to fail and be killed by the Out-
Of-Memory (OOM) killer, which in turn impacts the productpage-v1 service, increasing
the overall error rate. Specifically, the simulation procedure includes sending periodic
requests to microservice A (scenario9-book-info) and monitoring the pipeline as Git users
push changes. A faulty manifest is pushed and approved, leading to its deployment in the
Kubernetes environment. Initially, details-v1 handles the load but soon fails, affecting the
entire service. Key Performance Indicators (SLIs) such as error rates are measured using
JMeter, while metrics (CPU, memory usage) and logs are collected from Prometheus and

13

CloudWatch respectively. The data is analyzed to trace the root cause back to the incorrect
Git push operation.

D Additional Experimental Results

Here, we provide the experimental results of offline RCA methds on the Cloud Computing sub-dataset
in Table [7l

Table 7: Results for offline RCA with multiple modalities on the Cloud Computing sub-dataset.

Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@I10
Dynotears 0 16.7% 33.33% 7.45% 0 3.33% 11.70%
PC 0 0 0 2.86% 0 0 0
Metric Only C-LSTM 16.67% 33.33% 3333% 30.03% 27.78% 30.0% 31.67%
GOLEM 0 0 16.67% 4.40% 0 0 1.67%
REASON 16.67% 100.0% 100.0% 47.22% 44.44% 66.67% 83.33%
Dynotears 0 0 16.67% 4.78% 0 0 5.0%
PC 0 0 0 3.21% 0 0 0
Log Only C-LSTM 0 0 16.67% 4.42% 0 0 5.0%
GOLEM 0 0 16.67% 5.09% 0 0 5.0%
REASON 0 0 3333% 8.22% 0 0 6.67%
Dynotears 0 16.67% 33.33% 9.45% 0 3.33% 15.0%
PC 0 0 16.67% 4.19% 0 0 5.0%
C-LSTM 16.67% 3333% 50.0% 26.67% 16.67% 23.33% 36.67%
Multi-Modality =~ GOLEM 0 0 3333% 7.51% 0 0 8.33%
REASON 3333% 100.0% 100.0% 59.72% 61.11% 76.67% 88.33%
Nezha 0 3333% 3333% 1479% 11.11% 20.0% 26.67%

E LEMMA-RCA License

The LEMMA-RCA benchmark dataset is released under a CC BY-NC 4.0 International License:
https://creativecommons.org/licenses/by-nc/4.0. The license of any specific baseline methods used in
our codebase should be verified on their official repositories.

F Reproducibility

All experiments are conducted on a server running Ubuntu 18.04.5 with an Intel(R) Xeon(R) Silver
4110 CPU @2.10GHz and one 11GB GTX2080 GPU. In the online RCA experiment, we set the size
of historical metric and log data to 8-hour intervals and each batch is set to be a 10-minute interval.
We use the Adam as the optimizer and we train the model for 100 iterations at each batch. In addition,
all methods were implemented using Python 3.8.12 and PyTorch 1.7.1.

14

	Introduction
	Preliminaries
	LEMMA-RCA Dataset
	Data Collection
	Data Preprocessing
	System Fault Scenarios

	Experiments
	Experimental Setup
	Offline Root Cause Analysis Results
	Online Root Cause Analysis Results

	Discussions
	Conclusion
	Related Work
	Monitoring Time Series Segmentation for SWaT and WADI
	Additional System Fault Scenarios
	Additional Experimental Results
	LEMMA-RCA License
	Reproducibility

