
ABSTRACT

CHEN, ZHENGZHANG. Discovery of Informative and Predictive Patterns in Dynamic Networks
of Complex Systems. (Under the direction of Prof. Nagiza F. Samatova.)

A latent behavior of a dynamic physical system, such as a biological cell or an atmospheric-

ocean system is inherently complex. This complexity often arises from the selective, high-

dimensional, and nonlinear interconnections of functionally diverse system components to pro-

duce coherent behavior. Data-driven prediction or forecast of the system’s behavioral states

such as those resulting in land-hitting hurricanes, and discovery of state–determining compo-

nents and their cross-talks are challenging. The scarcity and complexity of the available data

limit the applicability of the existing machine learning methods to deal with such underdeter-

mined, or unconstrained problems. This dissertation addresses these challenges through the

following theories and advanced algorithms:

(1) System Phase-related Interplaying Components Enumerator (SPICE) that iteratively

enumerates statistically significant components that are hypothesized (1) to play an important

role in defining the specificity of the target system’s state(s) or phrases; (2) to exhibit a func-

tionally coherent behavior, namely, act in a coordinated manner to perform the state-specific

function; and (3) to improve the predictive skill of the system’s states when used collectively in

the ensemble of predictive models. When tested on the three important biological problems—

identification of biohydrogen production, motility, and of cancer-related system components—

SPICE demonstrated the superior performance in terms of various skill and robustness metrics,

including more than 10% accuracy increase on eight real-world data sets.

(2) The network-based community dynamics theory and scalable algorithm to uncover and

characterize the community-based dynamics in system networks with multi-functional com-

munities. The underlying theory for representative-based detection of all possible dynamic

communities—grown, shrunken, merged, split, born, or vanished—ensures the scalability and

practical applicability of the algorithm. The runtime speedup of 11–46 over the baseline al-

gorithm is observed. Significant and informative community-based dynamics are discovered in

the Food Web and Enron networks.

(3) A novel direction of contrast-based mining of complex networks is introduced to discover

phase-biased, statistically significant, and predictive anomalous communities. When coupled

with SPICE–detected system components as seeds, the significant reduction in the search space

and increase in informativeness are obtained. When tested on the two important extreme

event problems—identification of tropical cyclone-related and of African Sahel rainfall-related

climate indices—the algorithm demonstrated the superior performance in terms of various skill



and robustness metrics.
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Chapter 1

Introduction

An emerging field in data mining is detecting and analyzing the key features or functional

structures governing the behavior of dynamic physical systems across various domains from

atmospheric-ocean systems to biological cells [30, 31, 90]. Mining such informative and predic-

tive patterns or relationships can help scientists reveal underlying simplicity from complexity

[3], develop data-driven approaches for modeling latent system behavior, and complement the

typical hypothesis–driven scientific methodologies.

To achieve this goal, researchers often simplify the modeling process of system’s behavior

by using some key system components or features. In machine learning, feature selection

has been successfully employed to increase the prediction accuracy of classifiers; reduce the

computation time of the learning algorithms; increase the robustness of classifiers; and facilitate

the interpretability of the derived relationships between features by removing irrelevant and

redundant features. The development of feature selection techniques [17, 79, 126, 154] has

been an important field in many application domains like climate and biology. For example,

in the extreme event prediction, researchers often use the correlation method (e.g., Pearson

correlation) to calculate the correlation between each feature and tropical cyclone or rainfall

activity, choosing the climate features with the best individual correlations [31, 59].

However, physical dynamic systems are inherently complex, and often operate in multiple

phases, described as having similar defining characteristics but whose feedbacks behave in a

non-linear fashion [53]. And considering the fact that the number of observational samples to

build the prediction models of a real-world system is often significantly fewer than the number

of available features, the existing machine learning methods easily become hardly suitable for

dealing with such underdetermined, or unconstrained problems.

To complement the machine learning studies in instance–based data, graphic–theoretical

approaches for studying dynamic systems has emerged through the concept of complex networks
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[45, 155, 123, 20]. Such complex networks model a variety of systems including societies,

ecosystems, the Internet, and others [108]. For example, in climate networks [155, 45], the

nodes represent the spatial grid points and the edges between pairs of nodes exist depending on

the degree of statistical interdependence between the corresponding pairs of anomaly time series

taken from the climate data set. Complex networks have enabled hypothesis-driven insights

about the intricate interplay between the topology and dynamics of the physical system.

Networks of dynamic systems can be highly clustered [166]. A community, defined as a col-

lection of individual objects that interact unusually frequently, is a very common substructure

in many networks [55, 45, 155], including social networks, metabolic and protein interaction

networks, financial market networks, and even climate networks. For example, in protein inter-

action networks, a set of proteins that are strongly related may form a multiprotein complex or

perform a function together within a cell [179]. Previous work has been mainly focused on de-

tecting community structures in static graphs [55, 34, 129], or detecting conserved communities

in evolutionary networks [74, 113, 141].

In spite of the advantages offered by machine learning approaches and graph theoretical

approaches to discover some strong patterns in complex systems, there are several challenges

that need to be overcome. First, how can we discover the system component interplays in

instance-based data? As aforementioned, the system components often form hierarchical func-

tional modules (or communities) like protein complexes. Thus, the traditional approaches that

identify individual components that confer a given system state are likely not optimized to de-

tect groups of such interplays between system components. Second, in the networks of dynamic

systems, traditional methods can not detect the community dynamics, but only the conserved

or stable communities. In networks of biological systems, a small variation in a gene community

may indicate an event, such as gene fusion [137], gene fission [137], or gene gain [23]. Final-

ly, conventional community detection methods [55, 34, 129, 74, 113, 141] often fail to detect

predictive and phase-biased communities that are conserved within one group of networks but

undergo statistically significant structural transformation in the other groups of networks. Such

anomalous communities could contribute to our understanding of the system’s behavior for a

given phase.

In order to tackle these challenges of dynamic systems, we developed three major comple-

mentary technologies.
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1.1 Discovery of System’s State Determining Component In-

terplays

We first approach the problem of enumerating all the groups of cross–talking system components

that could be associated with the system state. In dynamic physical systems, it is often a

coordinated, not independent, action of several system components determines the system’s

state. The main challenge in enumerating of system state-determining component interplays is

how to deal with the enormous number of system components (or features) that could easily

reach thousands or even hundreds of thousands. Such enormous feature space could easily lead

to the problem, coined by Bellman as “the curse of dimensionality” [8], that is, the number

of system components (n ≈ 10, 000′s) is significantly larger than the number of observational

samples (m ≈ 100′s). Thus, the existing machine learning methods easily become hardly

suitable for dealing with such underdetermined, or unconstrained, problems.

We propose an iterative, classification-based approach, called SPICE (System Phase-related

Interplaying Components Enumerator), that comprehensively enumerates the set of feature sub-

sets that discriminate between different system states (or classes). Given a set of observations

about system components (features) with the corresponding assignment of the system’s state

(class), our method measures the importance of feature subsets to discriminate between system

states. Despite combinatorial complexity of the problem, our method almost exhaustively ex-

ploits feature subsets by focusing on information-theoretic selection process. Our method rests

on a hypothesis that if a subset of system components discriminates between system’s func-

tional states when considered altogether but not in any subset, then these components most

likely form a cross-talking state-determining feature subset. It also places the contribution of an

entire feature subset at the core of the analysis as opposed to the approaches that first evaluate

the importance of individual features and then filter those that are associated with a particular

system’s state. It further filters those feature subsets that are statistically significant and are

thus assumed to be relevant to the application domain.

SPICE can effectively handle a large number of features in a relatively small amount of

time. This property enables SPICE to work well with underdetermined problems. Additionally,

classification problems over climate and biological data are not limited to binary classification

problems. SPICE can handle multi-class datasets, which make it suitable for multi-class clas-

sification problems. When applied to more than ten microarray and biohydrogen production

data sets, SPICE successfully identifies cancer-related genes from various microarray data sets

and finds enzymes or COGs associated with biohydrogen production and motility phenotype by

microbial organisms. SPICE also improved the predictive skill of the system’s state determina-

tion by more than 10% relative to individual classifiers and/or other ensemble methods. Further
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details on SPICE approach appear in Chapter 2. And this work [174] has been published in

the Journal of BMC Systems Biology.

1.2 Discovery of Community Dynamics in Evolutionary Net-

works

Although graph-based anomaly detection has been done on exploring three different types of

anomalies including anomalous nodes, novelty edges, and abnormal subgraphs, little work has

focused on dynamic communities. Communities in the real networks are changing over time.

For example, in biological networks, a small variation in a gene-gene association community may

represent an event, such as gene fusion [137], gene fission [137], gene gain [23], gene decay [99],

or gene duplication [180], that would change the properties of the gene products (e.g., proteins)

and, consequently, affect the phenotype of the organism. Detecting community dynamics is

essential for a deeper understanding of the development and self-optimization of the system as

a whole.

In contrast to the previous work on graph-based anomaly detection and community iden-

tification in static graphs or tracking conserved communities in time-varying graphs, we first

introduce the concept of community dynamics, and then show that the baseline approach by

enumerating all communities in each graph and comparing all pairs of communities between

consecutive graphs is infeasible and impractical. We propose an efficient method for detecting

and tracking community dynamics in evolutionary networks by introducing graph representa-

tives and community representatives to avoid generating redundant communities and limit the

search space. When applied to two real-world evolutionary networks, Food Web and Enron

Email, significant and informative community-based anomaly dynamics have been detected in

both cases.

Further details on our approach, including a theoretical proof that only six types of com-

munity dynamics are possible in simple undirected graphs, the decision rules for detecting the

dynamic communities, and the completeness of the algorithm, appear in Chapter 3. The re-

sults of this work have been published at the IEEE ICDM conference [28] and in Journal of

Intelligent Information Systems [27].

1.3 Discovery of Anomalous Communities in Contrasting Group-

s of Networks

The complex networks of a dynamic system can be partitioned into different groups correspond-

ing to different system’s states. For example, in a tropical cyclone (TC) prediction system, we
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can build two different groups of climate networks, with one corresponding to strong TC years,

another with corresponding to low TC years. Different groups of networks may exhibit different

properties of the community structure. Detecting the anomalous communities in contrasting

groups of networks can help us better interpret the physical relevance of the interplaying features

determining the system’s phases.

As a third component of our work, we design a contrast-based algorithm to detect anoma-

lous communities in multiple groups of networks. We consider the anomalous communities in

contrasting groups of networks as features to determine the system’s phases. Because of the

expensive computational cost of generating all communities, we use the system components

(i.e., features), enumerated by SPICE, as seeds to efficiently generate the communities in the

networks. Different groups of networks may exhibit different properties of the community struc-

ture. Instead of detecting conserved/stable communities as conventional algorithms, we focus

on discovering the abnormal communities that contribute to different system phrases. The

abnormal communities are further used to build the ensemble of classifiers for predicting the

system states/phases. Further details on our algorithm and experimental results appear in

Chapter 4.
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Chapter 2

Discovery of System’s State

Determining Component Interplays

2.1 Introduction

Dynamic physical systems, such as the atmospheric-ocean system or biological cells, are in-

herently complex. This complexity arises from the selective and nonlinear interconnections of

functionally diverse system components to produce coherent behavior. The key challenge is to

reveal underlying simplicity from complexity [3]. Unlike the four Maxwell’s equations describing

all the electro-magnetic phenomena from “first principles,” the fundamental rules that quantify

the low dimensional behavior of such systems are yet to be discovered.

Complementing approaches based on first principles, where the underlying system model is

described by a system of equations, the data-driven modeling of system behavior is a promising

approach. It aims to interrelate data from disparate and noisy experiments and observations to

find informative features and link them to formulate fundamental principles governing a complex

behavior. This process frequently begins with a comprehensive enumeration of the system

“components” (e.g., co-regulated proteins in a cell or climate indices in the atmospheric-ocean

system) derived from experimental or observational data. Discovery of putative associations

(e.g., teleconnections) between these “components” can then be used to design in silico system

models (e.g., positive and negative feedbacks, information processing and signal transduction

cascades) to better understand real system behavior.

To somewhat simplify this intricate process, data-driven characterization of a complex sys-

tem behavior often starts with defining a target set of system’s distinct states of interest and

enumerating only those key system components that could be responsible for or contributing

to the given state. For example, if the target state is ethanol production by microbial cells via
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biomass degradation, then enumeration of state-related system components would identify all

the proteins involved in degradation of cellulose to sugars, transport of these sugars through the

membrane, and their fermentation to ethanol. Likewise, if the target state of the atmospheric-

ocean system is the intensity of seasonal hurricane activity (i.e., above normal, normal, or below

normal), then enumeration of hurricane activity-related system components would produce a

set of putative system’s parameters (e.g., temperature, precipitable water, pressure) associated

with particular spatial regions on Earth that likely affect the magnitude of the system’s re-

sponse. Similarly, if the system’s state of interest is cancer-prone cells in the human body, then

enumeration of cancer-related cellular components would identify all the genes that are likely

related to the expression of cancerous cellular phenotype.

The difficulty in enumerating all the state-related system components lies in dealing with

the enormous number of system components (or features) that could easily reach thousands or

even hundreds of thousands. Such enormous feature space could easily lead to the problem,

coined by Bellman as “the curse of dimensionality” [8]. For example, high-resolution ocean-

atmospheric models can be defined over the 1.4◦× 1.4◦ (latitude, longitude) spatial grid on the

globe, several altitude levels, and a few dozen variables.

Likewise, the interaction between two biomolecules, such as protein-protein interactions,

can be described through their set of contacting amino acid residues. A possible set of features

to describe this interface is enormous due to a number of chemical identities of the contacting

residue pairs (210 features from 20 amino acid types), orientation patterns of the contacting

residues, and spatial arrangements of 3-5 contacting residues. One needs to select all those

features that would provide clear differentiation between the true interfaces and merely feasible

associations of two rigid bodies. In addition, hierarchical nature of most biological systems

leads to “short- and long-range” interactions between the features. For example, hydrophobic

residue pairs could enhance a propensity for other adjacent hydrophobic pairs (“short-range”

feature correlation). On the other hand, highly specific residue interactions may be under

selective pressure to fit into an overarching architectural motif (such as helix-turn-helix motif),

thus contributing to “long-range” feature dependences.

Moreover, it is often the case that a coordinated, not independent, action of several sys-

tem components determines what state a given system is in. A system response represents a

complex process, involving a series of (frequently induced) interacting events. Such non-linear

cooperative or competing interactions between the system components often form hierarchical

functional modules (e.g., communities) that act not only on different spatial and temporal s-

cales but also in response to fluctuations induced by endogenous and exogenous factors. Hence,

the approaches that identify individual components that confer a given system state are likely

not optimized to detect groups of such interplays between system components. Instead, there
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is a need for methods that aim to enumerate all the groups of cross-talking system components

that could be associated with the system state. We call this problem the enumeration of

system state-determining component interplays.

To address this problem, we propose an iterative, classification-based approach that com-

prehensively enumerates the set of feature subsets that discriminate between different system

states (or classes). Given a set of observations about system components (features) with the

corresponding assignment of the system’s state (class), our method measures the importance of

feature subsets to discriminate between system states. Despite combinatorial complexity of the

problem, our method almost exhaustively exploits feature subsets by focusing on information-

theoretic selection process. Our method rests on a hypothesis that if a subset of system compo-

nents discriminates between system’s functional states when considered altogether but not in

any subset, then these components most likely form a cross-talking state-determining feature

subset. It also places the contribution of an entire feature subset at the core of the analysis as

opposed to the approaches that first evaluate the importance of individual features and then

filter those that are associated with a particular system’s state. It further filters those feature

subsets that are statistically significant and are thus assumed to be relevant to the application

domain.

2.2 Related Work

To the best of our knowledge, the proposed problem of enumerating statistically signifi-

cant component interplays that are key contributors to the system’s states has not

been addressed in literature. The problem resembles, yet with quite apparent distinctions, the

problems of feature selection, phylogenetic profiling, network alignment, and frequent subgraph

mining.

At a higher level, these problems could be divided into two major categories depending

on whether pairwise relationships between system components are known. If they are defined,

then the system could be modeled as a complex network, and multiple network alignment

approaches [26, 25] that look for subgraphs that co-occur across multiple network instances

for the same system’s phenotype are putative candidates for the target component interplays.

The key limitation of this strategy is that such approaches aim to identify the component

groups that are present in all or most of a given set of network instances and would likely

miss those that are only common to a subset of the instances. Likewise, they are not equipped

with any means to suggest that these groups are specific to the target system phenotype and

not common to multiple system phenotypes. While the former limitation is addressed by the

approaches based on frequent subgraph mining [92, 109], similar comments would still hold for
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the latter comment. In addition, the runtime for these approaches grows exponentially; even

the most efficient ones, such as MULE [92] that enumerates maximal frequent edge sets, took

almost 57 days for a set of 98 network instances (details available upon request). While efficient

heuristics have been reported [128], they are tailored for specific network types (e.g., metabolic

networks).

For the second category, the system is often represented by its set of components (i.e., fea-

tures) that are defined over multiple instances (i.e., observations) for each of the finite set of

system’s distinct phenotypes. In this case, univariate approaches, such as those that, for the

given feature, look for a strong correlation between its profile and the system’s phenotype profile

across multiple instances identify a set of putative candidates for component interplays. Dif-

ferent correlation measures, such as Pearson correlation, Mutual Information, Student’s t-test,

ANOVA, Wilcoxon rank sum, Rank products, and other univariate filter feature selection tech-

niques can provide different candidate sets that could be further assessed with set-theoretical

approaches to provide either higher specificity (i.e., intersection of sets) or higher sensitivity

(i.e., set union).

A particular instance of such a strategy is phylogenetic profiling [136], where different or-

ganisms that exhibit various (but finite) phenotypes (e.g., aerobic vs. anaerobic growth) are

considered as observations characterized by the the presence or absence of particular genes

(or components). The underlying hypothesis behind this approach is that candidate genes are

more likely to be present in phenotype-expressing organisms than in phenotype-non-expressing

organisms due to an evolutionary pressure to conserve the phenotype-related genes [94]. While

simple, fast, and effective [126] in finding individual components that are likely associated with

the system’s phenotype, such methods are quite limited in discovering of the component inter-

plays.

Multivariate feature selection approaches could be considered as the closest approximation

to the proposed problem. The multivariate feature selection approaches can be broadly divided

into the following categories: (1) filter techniques (e.g., fast correlation-based algorithm [93]), (2)

wrapper techniques (e.g., GA/KNN method (combining a Genetic Algorithm (GA) and the k-

Nearest Neighbor (KNN) method) [96]), and (3) embedded techniques (e.g., random forest [42]).

In filter techniques, the relevance of features is evaluated according to some metric, and the

features with the top k ranking are then selected for further analysis. Filter feature selection

techniques are simple, fast, and effective, but these techniques often ignore the correlations

between different features. In biology, these correlations depict protein interactions and should

not be ignored. Wrapper methods take the dependencies between the features into account,

but suffer from overfitting problem. Additionally, they are often computationally expensive.

Embedded methods can be far less computationally expensive than wrapper methods, but these
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Figure 2.1: The overview of SPICE’s key steps.

approaches are very specific to a given classification algorithm.

2.3 Method

The underlying assumption is that the associations between components are unknown. Ef-

fectively, the system under study is modeled by its set of components, and each component is

characterized by a continuous or categorical attribute. Fig. 4.4 depicts the key steps underlying

the proposed method, SPICE (System Phase-related Interplaying Components Enumerator).

At a higher level, SPICE first identifies a candidate component (feature) set (Section 2.3.1),

it then scores its state specificity-determining skill (Section 2.3.2) along with statistical signif-

icance assessment (Section 4.3.3). These three steps are repeated in an iterative fashion by

“knocking out” the selected candidate component sets until the stopping criterion is met (Sec-

tion 4.3.4). Finally, the ensemble of classifiers is formed to predict the system’s state(s) given

the values of all its component-interplay groups (Section 4.3.5). Next, we explain each of these

steps in more detail.
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2.3.1 Step 1: Identifying Candidate Component Interplays

We hypothesize that if the component is key to defining the system’s state then its value

distributions will be separable between the observations from different states. If the separation

is strong, then such a component, alone, is likely able to discriminate system states. And almost

any method, like entropy-based, would likely succeed in detecting those components. However,

with real data sets such a strong separation is less likely. There are different reasons for such

an assumption. For example, the evolution of system behavior may induce non-functional

changes to the system components. For example, natural mutations in a protein sequence

happen all the time; and if much time has passed since the functional divergence occurred, then

functional state-preserving mutations must have been compensated by correlated mutations at

other positions in the sequence to retain the protein function. As a result, one should strive

for discovery of separation signals that while being weaker at the individual component level,

they—as a group—should be able to discriminate between system states. Although the validity

of this assumption is yet to be verified, numerous studies, such as those on correlated mutations

[116, 4, 56, 152], provide indirect evidence in support of such a position. Another reason could

be attributed to the noise in the data, for example, due to limited sensitivity of experimental

devices. For instance, the chance of observing a strong signal about transient or transmembrane

protein interactions from mass spectrometry experiments is low.

Thus, the effective analysis should not only include an individual component with a strong

discriminatory signal, but also extend to a group(s) of interplaying components out of a set of

thousands of components. This creates a multiplicity of possible combinatorial interplays to

search for and excludes a possibility for a brute-force enumeration. Therefore, our goal is to

provide a framework for automatic exploration of such combinatorial interplays that could offer

both the computational efficiency and the application domain relevance.

In some cases, the domain knowledge may assist with constraining the search space of

possible interplays. For example, functionally important amino acid residues, such as substrate

binding sites, in a protein are likely located on the surface (i.e., clefts and cavities) of the protein

3-dimensional structure and not in the core. For a more general and domain-independent

solution, however, the issue of properly constraining the search space still remains.

To address this issue, we propose to employ the multilevel paradigm via divide-and-conquer

strategy. The multilevel paradigm is known for its effectiveness when solving very large-scale

scientific problems. In the context of linear systems of equations, for instance, algebraic multi-

grid methods, have been devised to solve linear systems by essentially resorting to divide-and-

conquer strategies that utilize the relationship between the mesh and the eigen-functions of the

operator. In the data analysis field, however, methods that take advantage of the multi-level

paradigm are less explored. A few recent studies include [66, 67] as well as the top-down divisive
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clustering (e.g., [68, 69, 72]) or spectral graph partitioning techniques (e.g., [73, 78]).

Specifically, the intuition behind our approach stems from the well-known concept of modu-

larity, introduced by Hartwell et al. [63], as a generic principle of complex system’s organization

and function. These functionally associated modules often combine in a hierarchical manner

into larger, less cohesive subsystems, thus revealing yet another the essential design principles

of system organization and function–hierarchical modularity [122, 138]. Thus, our method first

identifies modules of system components with putatively stronger associations within the mod-

ules than between the modules. This process divides all system components into modules that

likely function together to define what state the system is in. The process further conquers each

of these modules in order to refine the specificity of the inter-component relationships within the

module. Fig. 2.2 shows an illustration of this divide-and-conquer approach to multilevel dimen-
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Figure 2.2: An illustration of divide-and-conquer strategy for multi-level dimension reduction.

sion reduction. The sample artificial input set shown contains two substructures: points from a

multivariate Gaussian distribution (grey) and the three groups of colored points arranged into

nested rings (top). (Note that the color of the points is only there to show how the data groups
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together before and after the partition followed by dimension reduction). The standard PCA

result performed on the monolithic set is mediocre, i.e., distinguishing the four different groups

is impossible using only linear PCA. After partitioning the set, the “appropriate” technique is

applied to each partition (bottom): the kernel PCA to the nested ring points (left partition)

and the linear PCA to the Gaussian cluster (right partition). As a result, not only is the size

of the data reduced for each partition, but also the four groups become distinguishable using

only the first principal component.

Unlike the example in Fig. 2.2, in the context of our problem—enumeration of statistically

significant and application-relevant component interplays that are key contributors to the sys-

tem’s state—we deploy decision tree based procedure for identifying the right partitions of the

system’s features and then apply the “appropriate” classification technique to each partition.

The reason is that due to highly underdetermined nature of our problem, subsampling of the

input data sample could possibly lead to an unreliable inference methodology. Likewise, due

to a possibly non-linear interplay between the system’s features, it would be more desirable

to divide the system components into “blocks” with possibly stronger interconnects within the

blocks and weaker inter-connects between the blocks. This strategy is inspired by the mod-

ularity principle of complex systems. Thus, a higher-level supervised separation of the high

dimensional feature space into the rectangular shape hyperspaces is achieved via information-

theory driven decision boundaries with a subsequent refinement of decision boundaries within

the identified subspaces (see Step 2).

We propose a decision tree-based methodology for our feature space partitioning. The

features in a decision tree are considered as one feature subset, and each feature is a system

component. There are multiple reasons for why we choose decision tree based methodology,

including (a) efficiency to process many features (unlike BBNs that are exponential in the

number of features), (b) inherently multiclass by nature, and (c) the ability to handle continuous

and multi-variate types of features (unlike NNs for which distance metrics are poorly defined

for mixed data types), among others. We use the CART-decision tree algorithm [16] to select

a set of discriminatory features from the available feature space. Basically, CART builds a

decision tree by choosing the locally best discriminatory feature at each split step based on the

Gini Index Impurity Function. To avoid overfitting, CART employs backward pruning to build

smaller, more general decision trees. CART chooses features in a multivariate fashion, which

allows the feature selection process to find a set of discriminatory features instead of considering

one feature at a time.

More importantly, especially, in the context of underdetermined or unconstrained problems,

CART’s inherent feature pruning capability often leads to a fewer number of components,

or smaller size modules. This is a desirable property for building a more robust classifier
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downstream of our analysis pipeline (Step 2 and Step 5). Also, decision boundaries themselves

could result in rules that are more interpretable and could provide additional insights to domain

scientists on the magnitude of the feature attributes that affect a system’s phenotype. The

reason is that not only is it important to know what group of features is contributing to the

system’s phenotypic state but to what extent the feature values could change the system’s

phenotypic state. For example, if the expression of a particular gene becomes above a certain

threshold, then this causes a “knock-out” of a particular metabolic pathway. With decision

trees, the full feature space gets partitioned into hypersubspaces by the decision rules of the

form of ai ≤ fi ≤ bi. Once this high-level factors contributing to the system’s states are

learned, more complex (e.g., non-linear or conditional) relationships between the components

in the group could be learned by more sophisticated classifiers, such as BBNs or kernel SVMs

(see Step 2).

2.3.2 Step 2: Scoring Candidate Component Interplays

Candidate system’s components identified in Step 1 are next assessed in terms of their collective

ability to contribute to the system’s states. Basically, the goal is to define a scoring function

that could measure how well this group of components (features) discriminates between system

phenotypic states. On the one hand, mutual information (MI) for an individual component

could be used with its proper generalization to a group of components. However, robust prob-

ability estimation—an essential step in MI definition—requires a large sample size, which is

often unavailable for underdetermined systems. Moreover, the generalized MI is biased toward

the presence of a component in the group with high information content.

Due to these limitations, we define a scoring function in terms of classification accuracy

provided by multivariate discriminant methods, such as SVMs, BBNs, neural networks, or

decision trees. Specifically, we ask a question: if only a candidate component set were used

to determine the system’s phenotypic state, how much predictive skill this set could have.

Since individual components within the candidate group could be related to each other in a

complex manner, we first let a proper classifier (e.g., kernel SVM or BBN) learn this complex

relationships from the entire group of features and choose the accuracy of the best performing

classifier as the scoring measure of the putative components’ interplay (see Line 5–6 in Algorithm

4). Note that different candidate groups may require different classifiers—the best performing

classifier model is chosen both for Step 3 and for Step 5. [For our experiments, we use training

accuracy.]
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2.3.3 Step 3: Assessing Statistical Significance

Given a candidate feature set (Step 1) and its predictive skill score (Step 2), we next assess

statistical significance of this score, namely, how likely a similar skill score could be observed

at random. Specifically, we want to use the confidence level for the classification accuracy to

sift phenotype-specificity determining component groups. It is expected that the statistically

significant, highly scored component groups are application-significant. For example, a group of

candidate genes could be biologically significant for biohydrogen production or cancer phenotype

expression (see Sections 2.4.1).

It is worth observing that, generally, sample instances within the same system phenotype

tend to be more similar than those from the other phenotypes. Hence, separation of feature

value distributions between the samples from different states will be relatively clearer, and thus

classification accuracy—as a measure of feature set’s discriminatory power—can be biased.

This implies that standard statistical testing like shuffling the phenotype (class) labels is not

acceptable.

Thus, to provide a robust assessment of statistical significance, we measure an empirical

p−value of each candidate feature set using the Monte Carlo procedure described in [177].

Specifically, for each feature subset, we randomly sample N feature subsets (N = 1, 000) from

the entire feature set of the same size as our candidate set, and compute the corresponding

accuracies of the classifiers built from these feature sets. Then, we estimate an empirical

p−value of the target feature subset as p = (R + 1)/(N + 1), where N is the total number

of random samples (N ∼ 1, 000) and R is the number of these samples that produce a test

statistic greater than or equal to the value for the target feature subset. This corresponds to

the percentile where our target score falls onto within the accuracy distribution for N samples.

In our experiments, the selected p−value meets 95% confidence level. Algorithm 1 presents the

detailed pseudo-code for the statistical significance assessment.

2.3.4 Step 4: Iterative “Knock-out” of Component Interplays

The candidate component-interplay group identified in Steps 1-3 is probably not the only group

of system components that is responsible for a system’s behavioral phenotypic state. For

example, such a group of enzymes could contribute to a direct conversion of a particular type of

sugar to ethanol, but there could still be other groups of genes required for ethanol production,

such as regulators of these enzymes’ expression in the cell, transporters of different sugars from

the environment into the cell, or stress response regulators that detect toxin (i.e., ethanol)

concentration level in the cell. In addition, if a subsystem is critical for a specific system’s

function, then it often gets replicated (e.g., multiple gene copy numbers in the genome) in the

15



Algorithm 1: Statistical significance assessment

Input:
F : entire feature set
Fc : candidate set of features
Mc: classifier model learned from Fc
D : entire training data set over F and system phenotypic states S
A : the best performing classifier
α : the required confidence level (e.g., 95%)
N : the number of samples for Monte Carlo estimation

Output:
An indicator of the quality of Fc

1 Let εc be the training accuracy of Mc

2 Let ε be an empty set
3 for N iterations do
4 Let Fr be a random sample of |Fc| features from F
5 Let Dr be the restriction of D to the features in Fr
6 Train a classifier Mr by running A on Dr

7 Calculate the training accuracy of Mr and add it to ε

8 Calculate a p-value for ε and εc
9 if p-value ≤ (1− α/100) then

10 return PASS
11 else
12 return FAIL

complex system; this redundancy contributes to system’s robustness. Therefore, our task is not

simply to identify a single “best” group but, ideally, to enumerate them all.

The combinatorial nature of this task necessitates heuristic approaches. Our strategy is

inspired by the way biologists often conduct their mutagenesis studies. Namely, they knock-out

a group of genes (e.g., via gene deletion) and observe the mutant system’s response. By analogy,

our methodology knocks-out the selected candidate feature sets and proceeds with Steps 1-3

on the mutant system in an iterative fashion until some stopping criterion is met (see Line 2

in Algorithm 4). Under this approach, each iteration produces a subset of features out of the

current feature set (see Line 4 in Algorithm 4), then removes these features from the set so that

they can’t be selected again (see Line 9 in Algorithm 4).

There are several different criteria that could be used to decide when to stop the iterative

process. Ideally, one would observe a monotonically decreasing scoring value with the number of

iterations and will stop once the score falls bellow a certain threshold. However, no theoretical

grounds could be provided for such a monotonic behavior of the scoring function under the

scenario of iterative feature set knock-outs. In fact, we empirically observed a fluctuating

behavior of the scoring function with the number of iterations. Therefore, due to inherently

high dimensional data, we set the threshold on the maximum number of iterations as our
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stopping criterion. Line 2–2 in Algorithm 4 summarizes the aforementioned iterative knock-out

procedure.

Algorithm 2: SPICE: System’s state determining interplaying components enumer-
ator

Input:
F : a set of components (features)
D : a set of training data over F
D′: a set of test data over F
Y : a set of system states over D
A : basic classification algorithms

: (e.g., decision tree, SVM, Näıve Bayes, etc.)
Output:

Y ′ : predicted states for the test set D′

CIG: identified component-interplay groups

1 CIG← ∅
/* E: save the prediction results of candidate models */

2 E ← ∅
3 while stopping criterion is not met do

/* Run CART-decision tree to get a candidate component group */

4 A pruned decision tree T ← CART(D, Y )
5 Let Fc be a set of all components that belong to the internal nodes of T
6 DFc ← Extract the data from D only with the components in Fc
7 Prediction skill score εc ← applying A to DFc

8 Let Mc be the classifier model learned from Fc
9 if εc meets the statistical significance criterion (see Algorithm 1) then

10 Let D′Fc
be the restriction of D′ to the features in Fc

11 Predicted system states Y ′c ← Apply Mc to D′Fc

12 Add Y ′c to E
13 Add Fc to CIG

14 Remove features in Fc from F
15 Remove the data over feature Fc from D

16 Predict the class labels Y ′ based on a majority vote of the results in E
17 return Y ′ and CIG

2.3.5 Step 5: Bringing Component Interplays Altogether

While the enumerated set of putative system’s component interplays is important in its own

right (as illustrated in Section 4.4), here we combine them altogether by building an ensemble

of classifier models from Step 3. Thus, unlike traditional classification methods that aim to find

the single subset of features that offer the most optimum classifier performance, our goal is to

enumerate suboptimal feature sets that could provide insights on what factors and their inter-
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factor relationships could determine the specificity of the system’s state. We then combine these

subsystems through the framework of the ensemble methods in order to construct a system-level

predictor of system’s behavioral states.

In the last step (Step 5 in Figure 4.4), we need to combine the predictions of all the classifiers

that pass statistical significance criterion (Step 3) to come up with the final prediction value.

In order for the ensemble to make a prediction, each classifier is given a weighted vote, and

the class with the most votes is the prediction of the ensemble (see Line 16 in Algorithm 4).

We tested three possible weighting schemes: a simple majority voting scheme, in which every

classifier is given equal weight; a training accuracy-based method, in which every classifier is

weighted based on its training accuracy; and an internal cross-validation-based voting, in which

each classifier is weighted by that model’s cross-validation accuracy on the original training

data.

Two of the key characteristics for building a robust classifier ensemble include (a) the

diversity among the classifier models in the ensemble [105] and (b) the reasonably high accuracy

of the individual members in the ensemble. In our case, the former is ensured due to our feature

set knock-out strategy (Step 4) and the latter is guaranteed by a combination of decision-tree

based feature enumeration (Step 1), the scoring function (Step 2), and the statistical significance

assessment (Step 3) that, in combination, also reduce possible redundancy among the models

and thus reduce the possible bias (e.g., due to a significantly large portion of highly similar

models). By bringing the enumerated component interplays altogether (Step 5) a good ensemble

of classifiers can be achieved (as illustrated in Section 4.4).

2.4 Results

The nature of the proposed methodology, SPICE, suggests that detected component interplays

(Steps 1-4) (1) could play an important role in defining the specificity of the system’s state(s);

(2) would likely exhibit stronger inter-component relationships within the same group than

between the groups and are functionally coherent, namely, act in a coordintaed manner to

perform the state-specific function; and (3) collectively, could improve the predictive skill of

the system’s states (Step 5).

2.4.1 State-Specificity Determining Components

Groups of Enzymes Associated with Biohydrogen Production

Biological hydrogen is a promising renewable energy source [85], which can be generated by

utilizing one of three metabolic processes: light fermentation, dark fermentation, or photosyn-
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thesis [107]. To date, a number of phylogenetically diverse microorganisms have been identified

as hydrogen producing. Such organisms include photosynthetic bacteria, nitrogen-fixers, and

heterotrophic microorganisms [125]. In order to generate hydrogen, these organisms may rely

upon one or more metabolic routes. As such, the biohydrogen production phenotype provides

an opportunity to evaluate the capabilities of SPICE to handle a relatively complex phenotype.

Identification of phenotype-related components was based on the assumption that if a compo-

nent (i.e., a group of enzymes in a metabolic process) is specific to biohydrogen production,

then it is likely evolutionarily conserved across H2-producing organisms, and it is absent in

most H2-non-producing ones.

Our first experiment includes the data about 17 H2-producing and 11 H2-non-producing

microorganisms and compares SPICE’s performance against the two commonly used statis-

tical methods: Mutual Information (MI) and Student’s t-test, and one multivariate feature

selection approach: SVM recursive feature elimination (SVM-RFE). Among 17 H2-producing

microorganisms, four microorganisms utilize bio-photolysis, five microorganisms utilize light

fermentation, and eight microorganisms utilize dark fermentation. 11 microorganisms are list-

ed as non-hydrogen producing because they are not associated with hydrogen production based

on literature review, or they lack hydrogenase [76], one of the key enzymes involved in hydrogen

production. All microorganisms used in this experiment were verified as completely sequenced

using the NCBI database. The input to SPICE is a matrix, with the enzyme EC numbers along

the rows, 28 organisms (hydrogen producing and non-producing) along the columns, and the

entry in each cell (i, j) is the copy number for enzyme i in organism j. The last row of the

matrix includes information about the organism’s ability to express the hydrogen production

phenotype.

The mutual information method [81] assesses correlation between the enzyme’s phylogenetic

profile and the organism’s H2-production profile across multiple organisms. In addition, it

reports a significance threshold by shuffling the enzyme profile vectors and calculating the

mutual information with the organism’s phenotype profile. Only those enzymes, whose mutual

information values lie above the confidence cutoff are reported.

The Student’s t-test is another statistical method to identify phenotype related enzymes,

where we utilize the enzyme phylogenetic profiles alone to measures statistical bias of enzyme

copy numbers in one phenotypic group of organisms vs. the other. The test results are filtered

so that only enzymes with the p-value less than 0.05 are considered significant.

Guyon et al. [60] proposed the SVM-RFE algorithm to rank the features (enzymes) based

on the value of the decision hyperplane given by the SVM. The features with small ranking

scores are removed. The top 240 enzymes (out of 1,229 enzymes) are considered significant.

Figure 2.3 and 2.4 show the pathway and key enzymes for hydrogen production from the
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Figure 2.3: Fermentation of glucose to generate acetate. Schematic of key metabolic pathways
for hydrogen production in Clostridium acetobutylicum. Arrows with larger width indicate a se-
ries of reactions. Arrows with narrow width indicate individual reactions. Enzymes: 1, glycolyt-
ic enzymes; 2, pyruvate ferredoxin oxidoreductase (E.C. 1.2.7.1); 3, hydrogenase (E.C.1.12.7.2);
4, phosphotransacetylase (E.C. 2.3.1.8); 5, acetate kinase (E.C. 2.7.2.1).

fermentation of glucose to acetate (Figure 2.3) and butyrate (Figure 2.4) in Clostridium aceto-

butylicum. Within this process, glucose is broken down through a series of glycolytic enzymes

to generate pyruvate. Pyruvate is then converted to acetyl-CoA through the action of pyru-

vate ferredoxin oxidoreductase. During this step, hydrogen gas is produced when pyruvate is

oxidized, thus resulting in the formation of CO2 plus H2. Production of hydrogen via this

route is mediated through two enzymes—pyruvate ferredoxin oxidoreductase and hydrogenase.

Acetyl-CoA generated produced from pyruvate can then enter a number of pathways, including

the acetate and butyrate formation pathways.

While production of hydrogen occurs predominately during formation of Acetyl-CoA and

not in the secondary pathway (e.g., conversion of Acetyl-CoA to acetate), acetate and butyrate

fermentation pathways play an important role in the overall yield of hydrogen by microorgan-

isms. In metabolic engineering studies, the goal is to generate the highest theoretical yield of

hydrogen through alteration of metabolic routes or key enzymes related to hydrogen production.

For enhanced hydrogen production, acetate is the desired end product because of its higher

hydrogen yield compared to other by-products, such as butyrate [65, 103]. Specific differences

in conversion efficiencies can be observed by comparing the two chemical reactions below:

C6H12O6 + 2H2O → 2CH3COOH + 2CO2 + 4H2: glucose into acetate

C6H12O6 → CH3CH2CH2COOH + 2CO2 + 2H2: glucose into butyrate

The first reaction shows that the maximum theoretical hydrogen yield is 4 H2 per mol of

glucose produced when acetate is the end product [95, 88], compared to a maximum theoret-
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Figure 2.4: Fermentation of glucose to generate butyrate. Schematic of key metabolic path-
ways for hydrogen production in Clostridium acetobutylicum. Arrows with larger width indi-
cate a series of reactions. Arrows with narrow width indicate individual reactions. Enzymes:
1, glycolytic enzymes; 2, pyruvate ferredoxin oxidoreductase (E.C. 1.2.7.1); 3, hydrogenase
(E.C.1.12.7.2); 4, acetyl-CoA acetyltransferase (thiolase) (E.C. 2.3.1.9); 5, β-hydroxybutyryl-
CoA dehydrogenase (E.C. 1.1.1.157); 6, crotonase (E.C. 4.2.1.55); 7, butyryl-CoA dehydroge-
nase (E.C. 1.3.99.2); 8, phosphotransbutyrylase (E.C.2.3.1.19); 9, butyrate kinase (E.C. 2.7.2.7).
Abbreviations: Ferredoxin (Fd); Coenzyme A (CoASH).
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ical hydrogen yield of 2 H2 with butyrate as the end product [65, 97, 168]. During acetate

and butyrate formation, 2 mols of hydrogen are generated during reaction 3 when pyruvate

ferredoxin oxidoreductase reduces ferredoxin (Fd) and hydrogenase immediately oxidizes it to

generate H2 (Figure 2.3 and 2.4). When acetate is the only end product as depicted in 2.3, then

additional hydrogen is produced when 2NAD+ is reduced to form 2NADH+2H+ (reaction 3).

An illustration of the two reactions is shown in Figure 2.3 (acetate) and Figure 2.4 (butyrate).

Due to the importance of acetate and butyrate production in the generation of hydrogen

production, we evaluated the ability of SPICE to identify these two pathways. Results show

that SPICE identified all of the acetate pathway’s constituent enzymes, including acetate kinase

(E.C. 2.7.2.1), as being significant. In contrast, the Student’s t-test and the MI method did not

find any of the enzymes, and SVM-RFE detected acetate kinase. Additionally, all five enzymes

active in the butyrate pathway [103] were found by the SPICE method. Among these, only

three were discovered by the SVM-RFE, two were found by the Student’s t-test and none by

the MI method.

Hydrogen Production in Association with Formate: Within facultative anaerobes

like Escherichia coli, hydrogen gas may be produced directly through the production of formate.

In this pathway, pyruvate is converted to formate and acetyl-CoA with the use of pyruvate

formate lyase (E.C. 2.3.1.54) [61]. The formate hydrogen lyase complex made up of formate

dehydrogenase and ferredoxin hydrogenase breaks down the formate into hydrogen gas and

carbon dioxide [103]. In this study, pyruvate formate lyase was found by the SPICE method

to be significant.

Table 2.1: H2-related enzymes detected by different methods
Pathway Enzyme Enzyme Name t MI SVM-RFE SPICE

Acetate 2.7.2.1 acetate kinase + +

Butyrate

1.3.99.2 butyryl-CoA dehydrogenase + +
2.7.2.7 butyrate kinase + + +
1.1.1.157 3-hydroxybutyryl-CoA dehydrogenase +
2.3.1.19 phosphate butyryltransferase + +
2.3.1.9 acetyl-CoA C-acetyl-transferase + +

Formate 2.3.1.54 pyruvate formate lyase +

Note: t: Students’ t-test; MI: Mutual Information.

Table 2.1 shows that SPICE detected all the enzymes specific to the three pathways in

facultative anaerobes, such as Escherichia coli, while mutual information could not even discover

a single enzyme, Student’s t-test could only detect 2 enzymes, and SVM-RFE could find four

out of 7 enzymes. Thus, SPICE outperformed, in terms of sensitivity, the existing state-of-the-
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art methods based on Student’s t-test, MI, and SVM-RFE. The enzymes identified by SPICE

are next described in the context of their corresponding metabolic pathways.

COG Modules Corresponding to Biohydrogen Production

To expand our study beyond metabolic subsystems to include possible regulators, transporters,

and others, in our next experiment, we replace enzymes in the matrix with the clusters of

orthologous groups (COGs) [151]. We obtain COG–organism association information from the

STRING database.

SPICE was able to identify COG modules that are known to be associated with hydrogen

production based on our literature review and prior knowledge. Next, we will briefly summarize

some of these modules.

COG Modules Related to Nitrogenase

In addition to the metabolic pathways described above, other key enzymes are known to be

associated with hydrogen production in a number of microorganisms [162, 18, 104]. Examples

of such enzymes include nitrogenase and hydrogenase enzyme complexes. Hydrogen producing

organisms capable of fixing nitrogen contain enzyme complexes, termed nitrogenases. Within

nitrogenase complexes, nitrogen gas is converted to ammonia, inadvertently resulting in the

production of hydrogen gas as a byproduct [125, 18].

Evaluation of the COG modules generated by SPICE indicated the presence of two modules,

each containing an essential component of enzyme complex nitrogenase. In the first module,

two COGs (COG2710 and COG0120) were identified. COG2710 is associated with expression

of the molybdenum–iron protein (NifD) [125] and COG0120 is associated with the protein—

Ribose 5-phosphate isomerase (RpiA). NifD protein is one essential component of nitrogenase,

serving as the binding site for substrates during nitrogen-fixation [125, 124]. RpiA takes a

vital part in carbohydrate anabolism and catabolism through its participation in the Pentose

Phosphate Pathway (PPP) and Calvin Cycle [181]. In addition, studies of central metabolism

indicate that RpiA is a protein highly conserved across many microorganisms [181]. However,

in this study, RpiA was paired with NifD, suggesting that both proteins may be associated

with nitrogen-fixation, hence biological hydrogen production. In terms of hydrogen production,

metabolism of and the ability to metabolize specific carbohydrates play an indirect role in the

over-production of hydrogen. One example is the C. butyricum. Metabolic studies of the C.

butyricum demonstrate the ability of this bacterium to digest a variety of carbohydrates and

to produce hydrogen via degradation of carbohydrates [39].

Another role RpiA may play is the production of NADPH required for fixing nitrogen [9].

In nitrogen fixers, the oxidative pentose phosphate cycle has been reported as active. During

oxidative PPP, Riboluse-5-phosphate is converted to ribose-5-phosphate by Rpi. During this
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reaction, NADPH is generated, thus allowing for N assimilation, N-fixation, and production of

hydrogen.

The second nitrogenase-related module identified by SPICE contains COG1348 (NifH)

and COG3883 (Uncharacterized). Similar to NifD, NifH is also considered to be an essential

component of nitrogenase. It is responsible for assisting with the biosynthesis of co-factors

for NifD [140]. COG3883 is uncharacterized. While we cannot predict the role of the protein

from this module, its presence suggests that it is either associated with the nitrogen fixation or

hydrogen production phenotype.

COG Modules Corresponding to Hydrogenase

Hydrogenase enzyme complexes are key enzymes involved in the uptake and production

of biological hydrogen [162]. Analysis of hydrogenase enzymes have identified three different

types, each associated with a number of accessory proteins necessary for activation [162, 161].

These include the [NiFe]-hydrogenase, [FeFe]-hydrogenase, and non-metal containing hydroge-

nase enzyme [162]. Due to the importance of hydrogenase in both hydrogen production and

hydrogen uptake, several studies have examined the role of hydrogenase enzymes in a number

of different hydrogen-producing organisms [2, 62]. These studies have found many microor-

ganisms, including Clostridium acetobutylicum, capable of having both hydrogen uptake (e.g.,

[FeFe]-hydrogenase) and hydrogen evolving enzymes (e.g., [NiFe]-hydrogenase). In this study,

SPICE predicted the presence of both hydrogen uptake and hydrogen evolving enzymes as re-

lated to the hydrogen production phenotype. Categorization of hydrogen uptake hydrogenases

may be due to the absence of hydrogenase in microorganisms present in our data set.

In this study, SPICE identified one module containing a hydrogen evolving hydrogenase.

Within this module two COGs, COG4624 (iron only hydrogenase) and COG3541 (predicted

nucleotidyltransferase) were present. The protein ID for COG4624 was not identified in the

literature review; however, [Fe]-hydrogenases are responsible for producing hydrogen [163]. Nu-

cleotidyltransferases are proteins involved in a number of biological processes ranging from

DNA repair to transcription [102]. Since these proteins are generally involved in DNA and

RNA-related processes, it is unclear why a predicted nucleotidyltransferase was paired with hy-

drogenase. To understand the interaction between these two proteins, experimental molecular

analysis is necessary.

Another COG module found by SPICE contains COG0068 and COG0025, which are as-

sociated with expression of two hydrogenase uptake proteins—hydrogenase maturation factor

(HypF) and NhaP-type Na+/H+ and K+/H+ antiporters (Nhap). HypF has been found as

a carbamoyl phosphate converting enzyme (or an auxiliary protein) involved in the synthesis

of active [NiFe]–hydrogenases in Escherichia coli and other bacteria [115]. NT01CX 0020, an

orthologous group of COG0025, is associated with expression of sodium/hydrogen exchanger
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protein (NHE3). NHE3 has been found to play an important role in hydrogen production of

Acidaminococcus fermentans, Escherichia coli and bacterial communities within a dark fermen-

tation fluidised-bed bioreactor [75, 91, 5].

SPICE also identified three other types of hydrogenase maturation proteins—HypC, HypD,

and HypE. COGs corresponding to these proteins are COG0298 (HypC), COG0409 (HypD),

and COG0309 (HypE). Understanding complexes, such as uptake hydrogenase enzymes, is im-

portant for deciphering regulatory mechanisms and activity of these key enzymes. For example,

in studies evaluating accessory proteins present in [NiFe]-hydrogenase complexes, HypCDEF

proteins are described as regulators for maturation of uptake hydrogenase through participa-

tion in development of the active center [162, 1]. If one of the Hyp proteins is missing, the

entire complex is inactivated.

In H2–producing microorganisms such as Escherichia coli, hydrogenase maturation proteins

act as regulators for maturation of uptake hydrogenase in development of the active center

[162, 18]. Regulation is conducted by inserting Fe, Ni, and diatomic ligands of HypA–F proteins

into the hydrogenase center for activation and maturation [133]. To carry out this process, HypE

and HypF are in charge of synthesis and insertion of Fe cyanide ligands into the hydrogenase’s

metal center, and HypC and HypD are responsible for construction of the cyanide ligands

[18, 11].

In addition, SPICE identified two hydrogenase proteins associated with anaerobiosis [162].

They are COG0374 (HyaB) and COG0680 (HyaD). Unlike the Hyp proteins, which are accessory

proteins involved in the assembly of the metallocenters, Hya proteins are responsible for the

maturation of hydrogenase-1 [163].

Other COG Modules Related to Biohydrogen

Other biohydrogen production-related COGs, such as COG0374, COG0375, COG3261,

COG0680, COG4624 and others, shown under the hydrogenase category in STRING database

are detected as part of other modules by SPICE. As mentioned earlier, hydrogenase is one of

the key proteins (or enzymes) involved in hydrogen production and uptake [76].

Motility-related COG Modules

For a large-scale experiment, we set up another experiment on a different phenotype—motility.

A total of 141 organisms including 56 non-motile organisms and 85 motile organisms were

chosen from Slonim et al. [136]. For p-value of less than 0.01, SPICE detected 96 modules.

One of the motility phenotype-related COG modules contained COG1338, COG0265, COG1484,

and COG3420. Among the four COGs, COG1338, whose function is associate with the ex-

pression of flagellar biosynthetic protein (Flip), has a high correlation with flagellar assembly

pathway [98]. Flagellar assembly pathway, which enables the movement of microorganisms, is
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well-known to be important for bacterial motility [98, 120]. Proteins associated with the other

three COGs include uncharacterized serine protease (YyxA) and two hypothetical proteins.

YyxA in a motile organism, Bacillus amyloliquefaciens, has a similar phylogenetic profile to

chemotaxis-related proteins [134]. Chemotaxis pathway, which is also important for bacterial

motility, determines how the microorganism moves according to its environment [136]. Chemo-

taxis pathway and flagellar assembly pathway function together to guide bacteria’s direction

of movement [136]. The phylogenetic profile of the other two hypothetical proteins (associate

with COG1484 and COG3420) are shown to be correlated with the pattern of motility across

many bacterial genomes [136].

Additionally, SPICE enumerated other COG modules that contained other known flagellar-

related COGs like COG1516, COG1345, and COG1815 and other known chemotaxis-related

COGs such as COG0840, COG0643, and COG0835, supported by literature [136, 98, 120]. Be-

sides flagellar-related and chemotaxis-related COGs, type III secretion system-related COGs,

such as COG1766, COG1684, COG1987, and COG1338, were also found in some of our enu-

merated modules. The type III secretion system is found to be highly correlated with bacterial

motility, because some of its protein structure is very similar in structure, function, and gene

sequence to the flagellar assembly system [10, 98].

Cancer-related Genes

Identifying all the genes that could discriminate tumor cells from normal cells in microarray gene

expression data is non-trivial [148]. Again, the task is not to find a single “best”-discriminating

gene set, but enumerate as many cancer-related genes and groups of genes as possible provid-

ed they are associated with cancer expression phenotype; this task is becoming particularly

important in the context of personalized medicine.

Leukemia data was selected to show the effectiveness of our method to detect phenotype-

related gene modules in biological networks. Leukemia data can be downloaded from Broad

Institute Cancer Program Data (http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi).

It contains 72 measurements for the expression of 7,129 genes, corresponding to the samples

taken from bone marrow and peripheral blood. Out of these samples, 47 samples are classified

as ALL (Acute Lymphoblastic Leukemia), and 25 samples are classified as AML (Acute Myeloid

Leukemia).

The first 5 models built by SPICE identified a total of 11 genes supported by available

literature on Leukemia cancer and information from NCBI database (Table 2.2). Specifically,

KIAA0016 (Zyxin) gene is highly (hardly) correlated with anti-cancer agents [19]. Other genes

(e.g., ID’s of 1834, 2288, 2, and 1882) are informative for Leukemia cancer diagnostics [30].

These gene groups would be difficult to detect with a single iteration step.
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Table 2.2: Cancer-related genes found by SPICE

Model ID Gene ID Gene description

Model 1
210 KIAA0016
4847 Zyxin

Model 2
4 AFFX-BioC-5 at

760 CYSTATIN A

Model 3
96 WUGSC

1834 CD33 CD33 antigen

Model 4
129 Niemann-Pick C disease protein mRNA
2288 DF D component of complement

Model 5
2 AFFX-BioB-M at
3 AFFX-BioB-3 at

1882 CST3 Cystatin C

Note: More cancer-related genes are found by other models.

2.4.2 Topological Connectivity of Components

We analyzed topological connectivity of the components via cliquishness value. Given a com-

ponent group C with n enzymes and an underlying biological network O, the cliquishness is

the ratio of the number of edges present between the enzymes to the total number of possible

edges, n∗(n−1)
2 .

The underlying biological network O is the organism specific functional association network

from STRING [80]. Each enzyme in the component group C can be mapped to one or more

genes in V (O), and so the component group C is represented as a set of genes G. The induced

subgraph over G from O is used to calculate the cliquishness of C. Our assumption is that a

high cliquishness value indicates a possible interplay.

We used the biological networks of two dark fermentative hydrogen producing organisms,

Clostridium perfringens ATCC 13124 (cpf) and Clostridium acetobutylicum ATCC 824 (cac).

Out of the 65 statistically significant components that were enumerated for the dark fermen-

tative hydrogen producing phenotype, we only considered those component group C with the

corresponding gene set G of size > 1. Using the Clostridium perfringens network, nearly 50% of

the components were statistically significant (p-value ≤ 0.05) in terms of connectivity (cliquish-

ness). Using the Clostridium acetobutylicum network, nearly 56% were statistically significant.

2.4.3 Functional Enrichment of Component Interplays

We also performed a functional enrichment analysis on the discovered components, i.e, to test

if the enzymes identified as part of a component group C are also functionally related. As
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a first step, we mapped the enzymes in C to organism specific gene set G from Clostridium

perfringens. Each G and the Clostridium perfringens functional annotation from the JCVI

comprehensive microbial resource [119] were given as input to the GO TERM FINDER [13], a

functional enrichment analysis tool. Nearly 54% of the components were functionally coherent

(p-value ≤ 0.05).

Some components had zero cliquishness but were found to be significant via functional

enrichment analysis. Also, there were components that had statistically significant connectivity

but poor functional enrichment. Hence, topological connectivity and functional enrichment

analysis are complementary evidences. Thus, we could provide evidence for a possible interplay

if one of these clues predicts the component to be significant. Under this assumption nearly

65% of the components were significant (p-value ≤ 0.05).

We did not perform functional enrichment using Clostridium acetobutylicum, since only a

small percentage of genes from this organism had any annotation.

2.4.4 Predictive Skill of System’s States

Data: Eight publicly available multi-phenotype-genotype datasets are used in this study. Table

2.3 and Table 2.4 summarize some characteristics of these datasets, their sources, and the best-

to-date performance reported in literature. For comparison purposes, the last column indicates

SPICE’s performance.

Table 2.3: Microarray data sets

Dataset Features Samples Classes

Leukemia 7129 72 2

Colon cancer 2000 62 2

B-cell lymphoma 4026 96 2

Prostate 6033 102 2

Lymphoma 3class 4026 62 3

SRBCT 2308 63 4

CNS∗ 74 60 2

Prostate outcome∗ 208 21 2

Notes: ∗: Discretized data.

Evaluation Methodology : For two-class, 10-fold cross-validation are employed. 10-fold cross

validation has been proved by Witten and Frank [169] to be a good way to evaluate the per-

formance of a classifier. In 10-fold cross-validation, the original data is partitioned into 10
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Table 2.4: Performance comparison on microarray data sets

Data Dataset Source CV Acc.r (%) Acc.[ (%) SPICE (%)

Leukemia [148] 10-fold 91.2 97.14 [114] 98.6

Colon cancer [41] 2:1 RP 87.14 87 [182] 89

B-cell lymphoma [167] 5:3 RP 92.1 93.55 [165] 94.7

Prostate [148] 10-fold 73.5 87 [77] 93.1

Lymphoma 3class [41] 2:1 RP 99.05 97.36 [147] 100

SRBCT [41] 2:1 RP 98.7 98.7 [182] 98.7

CNS∗ [148] 10-fold 88.3 75 [36] 96.7

Prostate outcome∗ [148] 10-fold 85.7 90 [38] 100

Notes: CV: Cross-validation; RP: Random partition;
r: Accuracy from source reference; [: Accuracy reported in a recent literature.

different subsets. Each of the 10 subsets is used as the test set, and nine other subsets are

used as training set. For multi-class datasets, 3-fold cross validation is used to ensure that each

subset can have all different classes of samples.

Bootstrapping validation, via commonly used bootstrap estimators, e0 bootstrap and .632

bootstrap [48], is also applied. In e0 bootstrap, the training data consists of n instances by

re-sampling with replacement from the original data of the same size of n. And the test data

is the set difference between original data and training data. Thus, if the training data has j

unique instances, then the test data will be the other n− j instances on the original data. The

error rate on the test data is treated as the e0 estimator, while the .632 bootstrap also takes

the training error into consideration, and uses the linear combination of 0.368 ∗ ε+ 0.632 ∗ e0 as

the estimated error rate, where ε is the training error. For good error estimation, we use ≈ 200

iterations [48] and report the average error rate.

Bagging [14], boosting [51], random forest [15], nearest shrunken centroid method (PAM) [165],

and random forest variable selection (varSelRF) [43] ensemble learning techniques are employed

as benchmark methods. The ensemble size used for these methods is the same as the one used

for SPICE.

We utilize different skill metrics including accuracy, sensitivity, specificity, precision, F1-

measure, variance, Heidke Skill Score (HSS) [83], Peirce Skill Score (PSS) [83], and Gerrity

Skill Score (GSS) [83]. Accuracy is defined as the ratio of the number of correctly classified

data points to the total number of data points in the test set. The HSS measures how well a

forecast did as to a randomly selected forecast. PSS, also called “true skill statistic,” is another

popularly skill score computed by the difference between the hit rate and the false alarm rate.

GSS, also known as “threat” score or critical success index, is a particular useful measure of skill
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for situations where the occurrences of the event to be forecast are substantially less frequent

than the non-occurences [83].

Skill Metrics Evaluation: Fig. 2.5 shows cross validation accuracy of SPICE compared
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Figure 2.5: Comparison of prediction accuracy of SPICE to other ensemble classifiers on ten
datasets

to bagging, boosting, random forest, PAM, and varSelRF ensemble methods. We report the

accurate results of bagging, boosting, random forest, PAM, and varSelRF by using the default

parameters. CART decision tree is used as the base classifier for bagging, boosting, and SPICE.

To be consistent, we use 11 iterations as the stopping criterion (or the maximum ensemble size)

for all the methods. SPICE outperforms bagging, boosting, random forest, PAM and varSelRF

by up to 33%, 13%, 18%, 10%, and 24%, respectively. Table 2.5 summarizes SPICE’s skill on

two-class microarray data using five metrics: accuracy and its variance, sensitivity, specificity,

precision, and F1-measure; it also reports an average number of features per model. Table 5

summarizes SPICE’s skill on multi-class microarray data using five metrics: accuracy and its

variance, HSS, PSS, and GSS.

Different Weighting Schemes’ Test : One factor that may influence the results of SPICE
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Table 2.5: Performance on two-class data sets

Metric Leukemia Colon B-cell lymphoma Prostate

Accuracy 0.99 0.87 0.95 0.93

Variance 0.001 0.001 0.000 0.000

Sensitivity 0.98 0.90 1 0.9

Specificity 1 0.82 0.85 0.96

Precision 1 0.90 0.92 0.95

F1-measure 0.99 0.90 0.96 0.93

Features 2.23 2.61 2.52 3.33

Table 2.6: Performance on multi-class data sets

Metric Lymphoma 3class SRBCT

Accuracy 1.0 0.98

Variance 0.000 0.005

HSS 1 0.98

PSS 1 0.981

GSS 1 0.98

method is the weights assigned to different candidate classifiers in the ensemble for determining

the phenotype. Here, we test three different weighting schemes described in Section 4.3.5: ma-

jority voting, training accuracy-based voting, and internal cross-validation-based voting. The

experimental results show that there is no bearing on prediction accuracy by choosing different

weighting schemes for a majority of microarray datasets, although the training accuracy-based

voting and internal cross-validation-based voting performed slightly better (3–5%) than the ma-

jority voting scheme on few datasets like the B-cell lymphoma dataset. However, all weighting

schemes highly outperformed any single classifier in the ensemble.

Robustness Assessment : To assess robustness, we applied bootstrapping using both e0 and

.632 bootstrap estimators with 200 bootstrapping trials. Bootstrapping is applied to all three

categories of data sets. Leukemia data is the original 2-class data without any preprocessing,

CNS data is the discretized data, and Lymphoma 3class data is multi-class data with logarith-

mic transformation and standardization. Table 6 shows that SPICE provides bootstrap error

rates comparable with cross-validation results.

Generalization: SPICE can be considered one of meta-learning ensemble algorithms [105],

because SPICE can employ an arbitrary base classifier. Table 2.8 shows its effectiveness com-

pared to a single classifier using different base classifiers on the Colon cancer dataset with the

10-fold cross-validation. SPICE improves the prediction accuracy of a single classifier, namely

by about 30%, 14%, and 7% for Näıve Bayes, CART decision tree, and linear SVM, respectively.
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Table 2.7: Bootstrapping performance

Data e0 ε .632 10-fold cross validation

Leukemia 0.037 0 0.024 0.014

CNS 0.044 0.031 0.007 0.030

Lymphoma 3class 0.027 0 0.017 0.000

Thus, SPICE can be applied to improve some base classifiers other than decision tree, which

makes SPICE more useful.

Table 2.8: Accuracy improvement over a single base classifier

Classifier Single classifier SPICE

Decision Tree (CART) 0.73 0.87

Näıve Bayes 0.57 0.87

Linear SVM 0.82 0.89

2.5 Conclusion

In this chapter, we addressed the important and challenging problem of enumerating statisti-

cally significant and application-relevant component interplays that are key contributors to the

system’s phases or states. We presented SPICE, an effective, iterative feature subsets enumera-

tion method that discriminates between different systems’ states. SPICE successfully identified

cancer-related genes from various microarray data sets and found enzymes or COGs associat-

ed with biohydrogen production and motility phenotype by microbial organisms. SPICE also

improved the predictive skill of the system’s state determination by up to 10% relative to in-

dividual classifiers and/or other ensemble methods, such as bagging, boosting, random forest,

nearest shrunken centroid, and random forest variable selection method.
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Chapter 3

Discovery of Community Dynamics

in Evolutionary Networks

3.1 Introduction

Networks of dynamic systems can be highly clustered [166]. A community, defined as a collection

of individual objects that interact unusually frequently, is a very common substructure in many

networks [55], including social networks, metabolic and protein interaction networks, financial

market networks, and even climate networks. In social networks, a community is a real social

grouping sharing the same interests or background [55]. In biological networks, a community

might represent a set of proteins that perform a distinct function together. Communities

in financial market networks might denote groups of investors that own the same stocks, and

communities in climate networks might indicate regions with a similar climate or climate indices.

Many algorithms have been developed for detecting community structures in static graph-

s. Girvan and Newman [55] proposed a community discovery algorithm based on the itera-

tive removal of edges with high betweenness scores. To reduce the computational cost of the

betweenness-based algorithm, Clauset et al. [34] proposed a modularity-based algorithm. In

contrast, Palla and Derenyi [112] did not focus on detecting separate communities, but on find-

ing overlapping communities. Defining communities as maximal cliques, Schmidt et al. [129]

proposed a parallel, scalable, and memory-efficient algorithm for their enumeration.

In addition, some work has been done on detecting conserved or stable communities in

evolutionary networks. Hopcroft and Khan [74] proposed a method that utilizes a “nature

community” to track stable clusters over time. A framework for identifying communities in

dynamic social networks, proposed by Tantipathananandh et al. [149], makes explicit use of

temporal changes. Using the Clique Percolation Method to locate communities, Palla et al. [113]
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defined auto-correlation and stationarity to characterize a community. From an application

perspective, Steinhaeuser et al. [141] provided a method to identify climate regions by detecting

communities in time-varying climate networks.

Communities in real networks change over time, and being able to detect small community

deviations can help us understand and exploit these networks more effectively. For example,

in biological networks, a small variation in a gene-gene association community may represent

an event, such as gene fusion [137], gene fission [137], gene gain [23], gene decay [99], or gene

duplication [180], that would change the properties of the gene products (e.g., proteins) and,

consequently, affect the phenotype of the organism. Interesting community deviation patterns

in Food Web and social networks are discussed in Section 3.3.

Thus, in contrast to the previous work on identifying communities or tracking conserved

communities, we focus on detecting community-based dynamics, a new type of “in-disguise”

anomalies, in time-evolving networks. Specifically, our work proposes the novel problem of

detecting these “in-disguise” anomalies across multiple dynamically evolving graphs, or evolu-

tionary networks, for short. Our approach follows from the need to address the following four

challenges:

• How do we define community dynamics, and how many types of community dynamics are

possible in evolutionary networks? Community dynamics would reveal latent behaviors of

the network, as opposed to conserved communities or communities in a single snapshot.

For example, is there any community in snapshot t that splits into smaller communities

or merges with others in snapshot k? Does any community in snapshot t disappear in

snapshot k, or does any new community appear in snapshot k? Do the sizes of the

communities change over time?

• Most real networks are dynamic and characterized by overlapping communities [112].

Detecting community dynamics from networks characterized by overlapping communities

is more challenging than discovering communities in static networks.

• How do we detect community dynamics across multiple dynamically evolving networks?

As we mentioned earlier, real-world networks change over time, requiring us to adopt

evolutionary analysis techniques to detect such dynamics.

• Since there may be hundreds or even thousands of communities in each real-world network,

how to scale a community dynamic detection algorithm to large graphs?

In this chapter, we propose solutions to all four of these problems. Our algorithm is based

on the proposed notion of graph representatives and community representatives. Graph rep-

resentatives helps us reduce the expensive computational cost of enumerating communities,
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which we model as maximal cliques, whereas community representatives is utilized to identify

community dynamics.

The contributions of our work are:

1. Our work tackles the unexplored question of detecting community dynamics across mul-

tiple graphs.

2. We prove that there are only six possible types of community dynamics in dynamic simple

undirected graphs.

3. We develop a community dynamic detection algorithm based on graph representatives

and community representatives.

4. We evaluate our method on real datasets to confirm its applicability in practice.

The rest of the chapter is organized as follows: Section 3.2 introduces some necessary

definitions and formally defines the problem. In Section 3.3, we show application of community

dynamic detection to two real-world dynamic networks, Food Web and Enron Email. Section

3.4 presents the community dynamic detection algorithm. In Section 3.5, we evaluate the

algorithm with synthetic data. Finally, Section 3.7 concludes the chapter.

3.2 Problem Statement

In this chapter, the ultimate goal is to find community dynamics in dynamic graphs, and our

algorithm is based on graph representatives and community representatives. Thus, the following

terms and problems need to be addressed. The symbols used in the chapter are listed in Table

3.1.

Problem 1 (Community dynamic detection). Given a time-varying sequence of undirected

simple graphs G = {G1, G2, G3, ...}, where the nodes in each graph can belong to differen-

t communities, detect the community dynamics between consecutive graphs, including grown,

shrunken, merged, split, born, and vanished communities (see Definition 7).

Definition 1 (Community). Communities are the maximal cliques in a graph.

There is no formal definition for the community structure in a network [55]. The simplest

and the most conservative definition of a community is a clique, a set of vertices that are

pairwise adjacent to one another. Another definition used by Newman [55] is a dense subgraph,

a group of vertices within which the connections are denser than between different groups [55].
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Table 3.1: Symbol table

Symbol Description

Gi A simple undirected labeled graph
G A sequence of graphs
Cit The community of index i in graph Gt
Rep(Gi) The representative node set of graph Gi
Cit → Cjt+1 Cit is a predecessor of Cjt+1, or Cjt+1 is a successor of Cit
V (Cit) The node set of community Cit
SV (Gi) Common nodes between graphs Gi and Gi+1

|C| The size of community C
T The number of timestamps in the sequence
|V (C)| The number of vertices in community C
vj A vertex j in a graph
CGi The list of communities in Gi
V C

vj
i The list of communities that contain node vj in graph Gi

Checked(Gi) The list of nodes in Gi that have been checked
∅ The empty set

As our goal is to detect abnormal, changing communities, we propose to use the more

specific community definition, namely clique. From an application perspective, we could lose

important information if we shifted to dense subgraphs as communities. For example, consider

protein functional modules (biological communities) in protein-protein interaction networks.

Across different organisms, such evolutionary networks might have undergone small changes, or

perturbations, due to evolutionary events such as gene fusion, gene fission, gene gain, gene decay,

or gene duplication. Relatively small perturbations to the network structure due to the genotype

variation may induce phenotype variations, such as organism’s capability to produce hydrogen

or ethanol, to resist high temperature, to fix nitrogen, etc. Since network perturbations could

be infinitesimal, considering communities as dense subgraphs with respect to some density

parameter, may arguably be insufficient for capturing such fine-grain changes to the network

structure. Therefore, we propose to use the simplest, the most stringent, and parameter-free

definition of a community—a clique. We use the maximal clique, i.e., a clique that can’t be

extended by adding any more vertices in order to decrease the space of putative community-

based dynamics to evaluate and thus to reduce the overall computational cost.

Definition 2 (Community size). The community size, |C|, is the number of vertices in the

community, so |C| = |V (C)|.

Definition 3 (Graph representative). Representatives of graph Gi are the nodes that also appear

in Gi−1, Gi+1, or both. Thus, Rep(Gi) = {vi | vi ∈ V (Gi) ∩ (V (Gi−1) ∪ V (Gi+1))}.
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Nodes that only appear in one graph are called graph-specific nodes or vertices.

Definition 4 (Graph-specific community). A graph-specific community is a community that

does not contain any graph representative.

Since our goal is to detect community dynamics, we do not try to discover graph-specific

communities. Thus, by using graph representatives as seeds, we do not need to enumerate all

communities in the graphs, only those communities that contain graph representatives, and

thus potentially reducing computational time (see Section 3.4 for details).

Definition 5 (Community predecessor and successor). If community Cit at snapshot t is a

subset or superset of community Cjt+1 at snapshot t+1, then the community Cit is a predecessor

of Cjt+1, and Cjt+1 is a successor of Cit . This relationship is denoted by Cit → Cjt+1.

Definition 6 (Community representative). A community representative of Cit is a node in Cit

that has the minimum number of appearances in other communities of the same graph. If there

is more than one node that satisfies this condition, we choose one at random.

The rationale for our definition of a community representative follows from the observation

that the community Cit can be represented by a node that only appears in community Cit .

However, since the communities in our networks may be highly overlapping, we cannot guarantee

that such a node exists, so we look for a node in Cit that has the minimum number of appearances

in other communities to use as its representative. In this way, we limit the nodes that belong

to more than one community from being a community representative, which helps to establish

the relationships between the communities (see Section 3.4 for details).

Definition 7 (Community dynamics). In contrast to [113], which focuses on the stability/stationarity

of the communities, our goal is to detect community dynamics. As there are six basic events

that may occur to a community [113], we can define six possible types of community dynamics

in evolutionary networks (see Figure 3.1).

1. Grown community

In real-world networks, some “big” communities, like community 2, can be grown from

previous “smaller” communities by adding some new members. These “big” communities

are called grown communities.

2. Shrunken community

On the other hand, shrunken communities, like community 4, are communities caused by

previous “bigger” communities losing some members.
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Figure 3.1: Possible types of community dynamics in evolutionary networks
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3. Merged community

In addition, two or more “small” communities at snapshot t often join together to form

one merged community, like community 7, at snapshot t+ 1.

4. Split community

Meanwhile, a split community at snapshot t, like community 8, may break up into multiple

communities at snapshot t+ 1.

5. Born community

What’s more, some “new” communities, like community 11, may appear in some snap-

shots, but born communities should contain at least one graph representative in order to

avoid considering graph-specific communities as dynamic communities.

6. Vanished community

Alternatively, some “old” communities, like community 12, may disappear. Similar to

born communities, vanished communities should contain at least one graph representative

to exclude graph-specific communities.

Evolutionary network conservation, which is often manifested with stable communities that

do not change over time, is a well-recognized property of many real-world complex dynamic

networks. For example, in climate networks, such communities may correspond to well-known

climate indicies. Likewise, in biological networks, such stable communities may correspond to

protein complexes, such as ATP synthase or ribosomal machinery, and metabolic pathways,

such as TCA cycle. In contrast to stable communities, an anomalous community is often highly

hidden among an enormous number of stable communities in evolutionary networks. In real-

world networks, like social networks, a majority of people’s friendship communities tend to be

stable despite frequently occuring changes in individuals’ activities and communication patterns

[113].

It is often the case, especially if ∆t is small, that only very few communities might slighly

change due to some anomalous events. For example, resignation of the CEO in a company may

induce changes to community composition, if community membership is defined by email com-

munication traffic between a sender and a receiver. Likewise, in climate networks, the seasons

of unusually high hurricane activity are likely induced by changes in climate communities found

in the climate networks for the seasons with low hurricane activity. Thus, rare and anomolous

events are likely caused by or induce structural changes in the communities, and result in the

appearance of anomalous communities. Such anomalous communities often overlap with other

“normal” (or stable) communities, which makes it even more difficult to distinguish between

normal and anomolous communities. Thus, dynamic community can be seen as a new type of

“in-disguise” anomaly.
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3.3 Application of Community Dynamic Detection to Real-world

Dynamic Networks

In addition to the more controlled experiments using synthetic graph data sets, as described

in Section 3.5, we applied our algorithm to two real-world dynamic networks, Food Web and

Enron Email. In this section, we consider only communities of size three or more.

Food Web dataset : The Food Web dataset, which was originally compiled by Baird and

Ulanowicz [6], consists of marine organisms living in the Chesapeake Bay, containing 33 ver-

tices that represent the ecosystem’s most prominent taxa. Edges between taxa denote trophic

relationships—one taxon feeding on another. Here, we ignore directionality and consider the

network as an undirected graph. Newman [55] has used this dataset as a static graph to detect

the communities, while we construct the networks on a seasonal basis from spring to winter to

discover community dynamics in the dynamic network.

Table 3.2: Food Web communities

Season Number of Communities Abnormal Communities

Spring 15 None

Summer 15 Four grown communities, one born
community, four communities will s-
plit in fall, one vanished community,
and one merged community

Fall 19 Two shrunken communities and four
vanished communities (will disappear
in winter)

Winter 9 Four merged communities

By applying our algorithm to the Food Web networks, we find instances of all six types

of community dynamics (see Table 3.2). Summer is the most active community changing

season: four communities grow because microzooplankton, which cannot be found in Spring,

become involved in the energy flow network. Four communities split because bacteria do not

feed on microzooplankton in Fall. The disappearance of sea nettle in the Fall results in a

vanished community (zooplankton, ctenophore, and sea nettle). This community was a born

community in Summer, indicating that it is unstable. Due to a lack of food in Winter, four

communities merge in order to benefit from more members with food energy. Typical dynamic

community examples discovered in Food Web are shown in Figures 3.2–3.4. Note that the
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different circles represent different communities at the same time stamp—we can see that Food

Web is characterized by overlapping communities.
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Figure 3.2: Example of a grown community and a shrunken community in Food Web.

ENRON dataset : This data set consists of approximately 1.5 million email communications

sent or received by employees in Enron, Inc. It is much more complex than the Food Web

dataset. We take a subset containing only messages between Enron employees from January

to December of 2001 and construct sender-to-recipient undirected graphs on a monthly basis.

The graphs have 151 nodes (Enron employees), with low edge density and short average dis-

tance between vertices, which shows a “small-world” effect and indicates that the graphs have

community structure. The properties of each graph are shown in Table 3.3.

The community dynamics in each month discovered by our algorithm are shown in Table

3.4. We can see that there are more abnormal communities in October than in any other month.

The most likely trigger of this event is the fact that Enron announced a third quarter loss of

$618 million on October 16 of 2001, which is also thought to be the trigger of the Enron scandal.
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Figure 3.3: Example of a split community and a merged community in Food Web.
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Figure 3.5: Abnormal communities containing Louise Kitchen in October.
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Table 3.3: Enron email dataset properties

Month Number of Edges Number of Communities

Jan. 126 21
Feb. 190 56
Mar. 199 54
Apr. 240 66
May 273 90
Jun. 218 49
Jul. 240 68
Aug. 371 120
Sep. 343 110
Oct. 531 196
Nov. 438 143
Dec. 290 93

In order to see the details of the community dynamics in October, let us consider one

of the most important nodes—Louise Kitchen, the former President of Enron. There are 20

abnormal communities containing Louise Kitchen in October: 16 born communities, 4 grown

communities, 1 split community, and 1 shrunken community. From Figure 3.5, we can see

that some employees like Sally Beck, Chief Operating Officer, joined the senior management

communication groups, probably to discuss the serious issues or suggest strategies, while only

one person—Phillip Allen—left the groups. Confusion among the Enron employees may be why

Louise Kitchen’s communication groups grew rather than shrank during the turbulent times. As

a second example, take Jeff Skilling, the former CEO of Enron. There are 19 email communities

contain Jeff Skilling in August, but among these, 3 communities shrank in September (see Figure

3.6), while the other 16 communities disappeared after Jeff Skilling resigned as CEO in August,

perhaps because many employees quit or joined other work groups after Skilling’s resignation.

3.4 Community Dynamic Detection Algorithm

In this section, we discuss the proposed algorithm for solving the problem presented above. We

prove some necessary lemmas and theorems in Section 3.4.1. Then, based on the abnormal

community decision rules described in Section 3.4.2, we illustrate how to detect community

dynamics in Section 3.4.3.
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Table 3.4: Community dynamics in Enron email dataset

Month Grown Shrunken Merged Split Born Vanished

Jan. 0 0 0 0 0 14
Feb. 3 1 0 1 48 32
Mar. 3 2 4 1 33 39
Apr. 6 1 0 2 42 43
May 3 4 0 1 75 76
Jun. 3 3 0 1 34 38
Jul. 1 0 2 0 58 54
Aug. 9 4 2 2 97 89
Sep. 8 9 3 1 79 56
Oct. 30 5 10 8 136 160
Nov. 7 13 0 9 102 97
Dec. 2 17 2 0 54 14

3.4.1 Lemmas and Theorems

We present the following theorems and lemmas to provide a sound theoretical basis for our

community dynamic detection.

Lemma 3.4.1. If community Cit has more than one predecessor (or successor), the sizes of its

predecessors (or successors) are either all larger than
∣∣Cit ∣∣ or all smaller than

∣∣Cit ∣∣.
Proof. Suppose otherwise, that C1

t has a predecessor with smaller size, as well as one with a

larger size. Let C1
t−1, C2

t−1,. . . , Cnt−1 (where n ≥ 2) be all predecessors of Cit , and suppose that∣∣∣Cjt−1

∣∣∣ < ∣∣Cit ∣∣ and
∣∣Ckt−1

∣∣ > ∣∣Cit ∣∣ for some 1 ≤ j, k ≤ n, j 6= k. From Definition 5 and the sizes

of the three communities, we know that Cjt−1 ⊂ Cit and Cit ⊂ Ckt−1, so Cjt−1 ⊂ Ckt−1. However,

Cjt−1 and Ckt−1 are both maximal cliques in the same graph, and Cjt−1 ⊂ Ckt−1 contradicts the

definition of a maximal clique. Therefore, it is impossible to have the size of one predecessor

be larger than the size of the community and the size of another predecessor be smaller than

the size of the community.

Similarly, if a community Cit has more than one successor, then the sizes of its successors are

either all larger than
∣∣Cit ∣∣ or all smaller than

∣∣Cit ∣∣. This lemma is used to prove the following

completeness result:

Theorem 3.4.1. Let Gt and Gt+1 both be simple, undirected graphs, where communities are

defined as maximal cliques. If Gt+1 is the perturbed graph formed by either adding edges/nodes

to or removing edges/nodes from the baseline graph Gt, then there are only six possible types of
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community dynamics between Gt and Gt+1: grown communities, shrunken communities, merged

communities, split communities, born communities, and vanished communities, as defined in

Definition 7.

Proof. Assume that C1
t , C

2
t , . . . , C

m
t are all communities in Gt and that V 1

t , V
2
t , . . . , V

m
t are the

node sets of the communities, respectively. Also assume that C1
t+1, C

2
t+1, . . . , C

n
t are all commu-

nities in Gt+1 and that V 1
t+1, V

2
t+1, . . . , V

n
t+1 are the node sets of the communities, respectively.

Here, we define V i
t = V j

t+1 to mean that V i
t only contains all the nodes in V j

t+1.

To determine the type of a specific community, we only need to compare the node sets of

communities in Gt+1 with the node sets of communities in Gt. If V j
t+1 = V i

t , where 1 ≤ i ≤ m

and 1 ≤ j ≤ n, then community Cjt+1 contains exactly those nodes in community Cit , which

means that Cjt+1 is a conserved community and not a dynamic community.

In the following, we consider all possible community dynamics by analyzing all possible

mappings between predecessors and successors. In particular, when deciding if community

Cit is a dynamic community, we do not need to consider the situation where Cit has a single

successor as long as we have covered all cases for the predecessors of Cjt+1. If the community

Cit has only one successor Cjt+1, then the community Cjt+1 should have either one predecessor

or more than one predecessor, both of which can be covered by using predecessor conditions.

The same reasoning applies for not considering the case where a community has more than one

successor of larger size. In other words, we need to consider all cases for predecessors, but only

two cases for successors: when a community has no successor and when a community has more

than one successor of smaller size.

1. For a specific j (where 1 ≤ j ≤ n), there is at least one i (where 1 ≤ i ≤ m) that satisfies

V j
t+1 ⊂ V i

t . Then, by Definition 5, community Cjt+1 has at least one predecessor, including

Cit , with larger size than Cjt+1. Let I = {i | V j
t+1 ⊂ V i

t }. There are two non-exclusive

sub-cases here:

(a) For ` ∈ I, if there is some k (where 1 ≤ k ≤ n) other than j that satisfies V k
t+1 ⊂ V `

t ,

then C`t has more than one smaller-size successor (Cjt+1 and Ckt+1). Additionally, by

Lemma 3.4.1, we know that C`t cannot have a successor with larger size than Cjt .

Thus, C`t is a split community, and Cjt+1 is one of its products.

(b) For ` ∈ I, if there is no k (where 1 ≤ k ≤ n) other than j that satisfies V k
t+1 ⊂

V `
t , then C`t has only one smaller-size successor Cjt+1, and Cjt+1 has at least one

predecessor, including C`t , with larger size. Also, by Lemma 3.4.1, we know that Cjt+1

cannot have a predecessor with smaller size than Cjt+1. Thus, Cjt+1 is a shrunken

community.
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2. For a specific j (where 1 ≤ j ≤ n), there is only one i (where 1 ≤ i ≤ m) that satisfies

V j
t+1 ⊃ V i

t . Then, community Cjt+1 has one predecessor Cit with smaller size than Cjt+1.

Additionally, by Lemma 3.4.1, we know that Cjt+1 cannot have a predecessor with larger

size than Cjt+1. Thus, community Cjt+1 is a grown community.

3. For a specific j (where 1 ≤ j ≤ n), there is more than one i (where 1 ≤ i ≤ m) that

satisfies V j
t+1 ⊃ V i

t . Then, community Cjt+1 has more than one predecessor with smaller

size. Also, by Lemma 3.4.1, we know that Cjt+1 cannot have a predecessor with larger

size than Cjt+1. Thus, community Cjt+1 is a merged community.

4. For a specific j (where 1 ≤ j ≤ n), there is no i (where 1 ≤ i ≤ m) that satisfies V j
t+1 ⊃ V i

t

or V j
t+1 ⊂ V i

t , which means that community Cjt+1 has no predecessor. Thus, Cjt+1 is a

born community.

5. For a specific i (where 1 ≤ i ≤ m), there is at least one j (where 1 ≤ j ≤ n) that satisfies

V j
t+1 ⊂ V i

t . Let J = {j | V j
t+1 ⊂ V i

t }. Then, for each k ∈ J , there is at least one i (where

1 ≤ i ≤ m) that satisfies V k
t+1 ⊂ V i

t , which is case 1. Thus, this case can be converted to

case 1.

6. For a specific i (where 1 ≤ i ≤ m), there is at least one j (where 1 ≤ j ≤ n) that satisfies

V j
t+1 ⊃ V i

t . Let J = {j | V j
t+1 ⊃ V i

t }. Then, for each k ∈ J , there is at least one i (where

1 ≤ i ≤ m) that satisfies V k
t+1 ⊃ V i

t , which is case 2 or 3. Thus, this case can be converted

to case 2 or 3.

7. For a specific i (where 1 ≤ i ≤ m), there is no j (where 1 ≤ j ≤ n) that satisfies V j
t+1 ⊃ V i

t

or V j
t+1 ⊂ V i

t , which means that community Cit has no successor. Thus, Cit is a vanished

community.

Since all relationships between V j
t+1 (where 1 ≤ j ≤ n) and V i

t (where 1 ≤ i ≤ m) have

been covered, there are only six possible different types of community dynamics.

Lastly, we present a theorem that will allow us to reduce the computational complexity of

identifying the community dynamics.

Theorem 3.4.2. If community Cit is represented by vertex vi ∈ Cit , and community Cjt+1 is

represented by vertex vj ∈ Cjt+1, where Cit → Cjt+1, then vi ∈ Cjt+1 or vj ∈ Cit .

Proof. By Definition 5, Cit → Cjt+1 implies that Cit ⊆ Cjt+1 or Cjt+1 ⊆ Cit . If Cit ⊆ Cjt+1, then

vi ∈ Cjt+1, and if Cjt+1 ⊆ Cit , then vj ∈ Cit .
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From Theorem 3.4.2, if there is more than one node in community Cmt and Cnt+1 that satisfies

the condition of community representative, then we can randomly choose vm to represent Cmt

and vn to represent Cnt+1 to help check the relationship between Cmt and Cnt+1 as follows:

1. If vm ∈ Cnt+1, then Cnt+1 can be detected as a potential successor to Cit . By Definition 5,

the relationship Cmt → Cnt+1 would be established if Cnt+1 also satisfies Cmt ⊆ Cnt+1 or

Cnt+1 ⊆ Cmt .

2. If vm /∈ Cnt+1, then by Theorem 3.4.2, vn ∈ Cmt if Cmt → Cnt+1. In this case, we can detect

the relationship Cmt → Cnt+1 through vn and check whether Cmt ⊃ Cnt+1.

Thus, random selection of the community representative will not affect our detection results.

3.4.2 Decision Rules for Community Dynamic Detection

Based on our result from Theorem 3.4.1, we can identify community dynamics using the fol-

lowing rules:

1. If community Cit has only one predecessor Cjt−1:

(a) If the size of the predecessor is smaller than
∣∣Cit ∣∣, then Cit is a grown community.

(b) If the size of the predecessor is larger than
∣∣Cit ∣∣ and Cit is the only successor of Cjt−1,

then Cit is a shrunken community.

(c) If the size of the predecessor is larger than
∣∣Cit ∣∣ and Cit is not the only successor of

Cjt−1, then Cit is a product of the split community Cjt−1.

2. If community Cit has more than one predecessor:

(a) If the sizes of the predecessors are all smaller than
∣∣Cit ∣∣, then Cit is a merged com-

munity.

(b) If the sizes of the predecessors are all larger than
∣∣Cit ∣∣ and Cit is the only successor

of one of its predecessors, then Cit is a shrunken community.

(c) If the sizes of the predecessors are all larger than
∣∣Cit ∣∣ and Cit is not the only successor

of one of its predecessors, then that community is a split community and Cit is one

of its products.

3. If community Cit has no predecessor, then Cit is a born community.

4. If community Cit has no successor, then Cit is a vanished community.
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3.4.3 Algorithm Description

In this section, we describe our method for detecting and tracking anomalous communities

based on the proposed notion of graph representatives and community representatives.

To the best of our knowledge, the proposed problem of detecting and tracking community

dynamics in evolutionary networks has not been addressed in literature. Thus, for comparison

purposes, we first briefly describe a brute-force solution that does not use graph representatives

and community representatives. Then, we provide details on how graph representatives can

help reduce the expensive computational cost caused by community enumeration, and how

community representatives can be utilized to effectively identify community dynamics.

Non-representative-based Method:

A brute-force solution that does not use graph or community representatives is to first

enumerate all communities in each graph, and then compare all possible pairs of communities

belonging to consecutive timestamps. For example, to find the successors of community A in

Figure 3.7, we need to compare community A with communities D, E, F , and K at snapshot

t + 1; that is, we compare community A with all communities at snapshot t + 1, although

only community F is the successor of A. This two-stage approach is infeasible and impractical,

because of a possibly enormous number of communities to search. Among those, there are many

redundant communities (e.g., graph-specific communities (see Definition 4)) in each graph, and

it does not make much sense to compare pairs of communities that contain no common members

or few members.
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Figure 3.7: Example for tracking community dynamics using the non–representative-based
method.

Representative-based Method:
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Figure 3.8: Workflow of the community dynamic detection algorithm.
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To reduce the computational cost, we designed an algorithm based on the graph represen-

tatives and community representatives (see Definition 3 and 6 in Section 3.2). The workflow

of the algorithm is shown in Figure 3.8. For each graph, we first find graph representatives

(see Step 1 in Figure 3.8) and enumerate the communities that are seeded by the graph rep-

resentatives to avoid generating graph-specific communities (see Step 2 in Figure 3.8). We

call these communities seed-communities. In every seed-community, we select only one node

as a community representative (see Step 3 in Figure 3.8) and use community representatives

to establish predecessor–successor relationships between a pair of seed-communities from two

consecutive graphs (see Step 4 in Figure 3.8). Once all the predecessors and successors of the

community Cit have been found, we apply the abnormal community decision rules in Section

3.4.2 to determine the type of dynamic community present, if any (see Step 5 in Figure 3.8).

Let us apply the representative-based algorithm to the same example in Figure 3.7. Instead

of enumerating all communities, the algorithm first identifies the set of graph representatives,

which are the filled triangle or rectangle nodes highlighted in Figure 3.9. Using graph rep-

resentatives as seeds to generate communities, graph-specific communities (see Definition 4),

like communities K and L in Figure 3.7, now disappear (see Figure 3.9). This strategy could

possibly save a lot of computational cost on community enumeration. Once, we generate the

seed-communities in each graph, the algorithm searches for community representatives (tri-

angular nodes in Figure 3.9) by selecting the vertices that appear in the fewest number of

communities.
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Figure 3.9: Example for tracking community dynamics using the representative-based method.
Triangles: community representatives; Filled shapes: graph representatives; Empty shapes:
graph-specific vertices; Circles: communities; Dashed lines: predecessor-successor community
relationships.

Taking advantage of community representatives, the algorithm can establish the predecessor–

successor community relationships much more efficiently. Let us take community A at times-
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tamp t, for example. To find the successor(s) of community A, the algorithm first finds all the

communities that contain the community representative of A at timestamp t+ 1. In this case,

only community F contains the community representative. Then, the algorithm checks whether

community F is a subset or superset of A (see Definition 5). Only if one of these two conditions

holds true does the algorithm establish the predecessor–successor relationship between A and

F . When there are only grown, merged, born, or vanished communities, the algorithm does

not need to consider commmunities earlier in the sequence of graphs. For example, community

A grows into community F, communities B and C merge into E, community D emerges, and

community F disappears. However, in cases of shrunken or split communities, the algorithm

may need to “backtrack” by using the representative of community C(i)t to look for its prede-

cessors at timestamp t− 1. For example, community D shrinks into I with the disappearance

of representative 12 at timestamp t+ 2, and community E splits into H and G with represen-

tative 3 ∈ H but 3 /∈ G. To detect these community dynamics, the algorithm needs to connect

communities G and I at timestamp t+ 2 to communities E and D, respectively, at timestamp

t+ 1 by “backtracking” the community representatives of G and I (6 and 10).

From Figure 3.9, we can also see that if there is more than one node in the same community

with the minimum number of appearances in other communities, then randomly choosing one

node as a community representative would not affect the detection results. For example, if we

choose 9 instead of 1 as representative of community A or 8 instead of 3 as representative of

B, we will still identify F as successor of A and E as the successor of B, since all nodes in the

predecessors of the grown (or merged) community will also appear in the grown (or merged)

community. Namely, if the representative of Cit appears in the successors of Cit , then we will

find all such successors for Cit , because we check all communities that contain the representative

of Cit at timestamp t+ 1. Even if the representative of Cit disappears in some successors of Cit ,

we can still establish the relationship between Cit and its successors by “backtracking” from

the representatives of its successors, like the example of communities G, I, E, and D shown

previously.

Once the community relationship is established, the algorithm uses the decision rules (see

Section 3.4.2) to determine whether a community is a dynamic community, based on the num-

bers and sizes of its predecessors and successors:

• A grown community, like community F in Figure 3.9, can be detected by comparing the

communities at the prior timestamp that contain the community representative 1 of F

(community A, in this case). Because community F is larger than its predecessor A and

has no other predecessors, based on decision rule 1a, community F is a grown community.

• A shrunken community, like community J in Figure 3.9, can be detected by decision rule
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1b, since it has only one larger predecessor.

• A community, such as community E that has two smaller successors–community H and

G is identified as a split community (see decision rule 1c).

• A community, such as community E, is also detected as a merged community by the

algorithm, because it has two smaller predecessors, community B and C, at timestamp t

(see decision rule 2a).

• A community, like community M that has no predecessor (see decision rule 3), is detected

as a born community.

• A community, like community J that has no successor (see decision rule 4), is identified

as a vanished community.

We give a pseudocode description for our representative-based community dynamic detec-

tion algorithm in Algorithm 3. The input to the Algorithm 3 is a sequence of undirected graphs.

Lines 1–1 are concerned with finding the graph representatives for each graph in the sequence

and enumerating all the communities in each graph using the graph representatives as seeds.

In lines 10–10, the algorithm calculates the number of times each node in each seedcommunity

appears in each graph. It chooses one node with the fewest occurence in each community as

the community representative (line 16). In line 17 through line 18, the algorithm establishes

predecessor–successor community relationships. Since some community representatives may

disappear in the successors of the community, lines 21 through 21 backtrack to establish com-

munity relationships between communities in the preceding timestep. This way, the algorithm

can establish all community relationships. Finally, lines 25 through 25 apply the abnormal

community decision rules to these relationships to identify the community dynamics. Thus, if

any community in each graph belongs to one of six possible types of community dynamics, the

algorithm will detect this dynamic community and return its type.

3.5 Effectiveness of Representative-based Methodology

In this section, we evaluate the community dynamic detection algorithm on synthetic graph

datasets to have a more controlled settings for assessing alogirthmic performance. These ex-

periments complement the discoveries and insights offered by our algorithm when applied to

real-world network data, Food Web and Enron Email datasets, as described in Section 3.3.

Specifically, we focus on answering the following two questions:

1. What is the performance of the community dynamic detection algorithm using our representative-

based technique?
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Algorithm 3: Community dynamic detection algorithm

Input : A sequence of undirected graphs: {G1, G2, ... GT }
Output: Community dynamics and the discovery timestamps

1 for every graph Gi in the sequence do
/* Detect graph representatives */

2 Rep(Gi) = SV (Gi−1)
3 SV (Gi) = ∅
4 for every node vj ∈ Gi do
5 if vj ∈ Gi+1 then
6 add vj to Rep(Gi)
7 add vj to SV (Gi)

/* Enumerate communities */

8 CommunityEnumeration(Rep(Gi))
9 Create community list CGi
/* Detect community representatives */

10 for every graph Gi in the sequence do
11 for every community Cit do
12 if vj ∈ Cit then
13 Add i to the list V C

vj
t

14 NC
vj
t = NC

vj
t + 1

/* Establish community relationship */

15 for every community Cit ∈ CGt do
16 Choose one node vj ∈ Cit with minimum NC

vj
t value

17 Add vj to Checked(Gt)

18 for every k, where k ∈ V Cvjt+1 do
19 if (V (Cit) ⊆ V (Ckt+1)) OR (V (Cit) ⊃ V (Ckt+1)) then
20 Establish the relationship Cit → Ckt−1
21 for every k, where k ∈ V Cvjt−1 do
22 if ((Ckt−1 → Cit) = FALSE) AND (

∣∣Ckt−1∣∣ > ∣∣Cit ∣∣) AND (vj /∈ Checked(Gt−1)) then
23 if V (Cit) ⊂ V (Ckt−1) then
24 Establish the relationship Ckt−1 → Cit

/* Use decision rules to detect the community dynamics */

25 for every community Cit in graph sequence do
26 if Cit is a dynamic community based on decision rules then
27 Output the community Cit with its type and discovery time t
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2. Is our algorithm scalable to large graphs?

We study the performance of the community dynamic detection algorithm relative to the

non–representative-based algorithm on synthetic networks of increasing size. Our experiments

were conducted on a PC with an Intel Core 2 Duo CPU (2.1GHz) and 4GB of RAM. Our

algorithm was implemented in the C programming language, and is available upon request.

We measure the improvement in the runtime of our algorithm versus the non-representative-

based algorithm in terms of speedup, which we calculate by dividing the runtime of non–

representative-based algorithm to the runtime of our algorithm.

In this experiment, we study the effectiveness of the proposed representative-based tech-

nique. All the graphs in the synthetic datasets are generated by GTgraph [101] and follow the

Recursive Matrix Graph model (R-MAT) [37] so that they have a small-world nature. The

parameters for the synthetic graphs, which appear in Table 3.5, are defined as follows: |V | is

the number of vertices in a graph, Numgv is the number of graph-specific vertices in a graph,

and Ei is the number of edges in a graph Gi. On all graphs, we use default values of 0.45, 0.15,

0.15 and 0.25 for the R-MAT parameters a, b, c, d, with a : b and a : c ratios of 3:1, as in many

real world graphs [37]. After graph enumeration, we use a program to re-label some of the

vertices according to the parameter Numgv, so that we can have some graph-specific vertices

in each graph when we build the sequence of graphs. For example, in the dataset syn 500, we

can relabel the vertices vj ∈ [451, 500] in graph Gi as vj + 50 ∗ (i − 1). Other graph-specific

vertices in other datasets can be similarly re-labeled.

Table 3.5: Summary of synthetic datasets

Dataset |V | Numgv E1 E2 E3 E4 E5

syn 500 500 50 8,000 11,000 9,000 12,000 10,000

syn 1000 1 1,000 100
400,000 550,000 45,0000 60,0000 50,0000syn 1000 2 1,000 200

syn 1000 3 1,000 300

syn 1500 1,500 150 64,0000 880,000 720,000 96,0000 800,000

syn 2000 2,000 200 80,0000 1,100,000 900,000 1,200,000 1,000,000

syn 3000 3,000 300 160,0000 2,200,000 1,800,000 2,400,000 200,0000

In the first experiment, we try to test the collective effectiveness of graph representa-

tives and community representatives in our algorithm. We measure the entire runtime of

the representative-based algorithm and the non–representative-based algorithm in each of the
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synthetic datasets. The result of the experiments on the datasets syn 500, syn 1000 1, syn -

1500, syn 2000, and syn 3000 are shown in Table 3.6, where Tnon is the runtime of the non–

representative algorithm, Trep is the runtime of representative algorithm, and the last six

columns are the counts of the six types of community dynamics detected by the algorithm.

From Figure 3.10, we can see that the representative-based algorithm achieves a speedup of

11–46 times with respect to the non–representative-based algorithm. Additionally, the experi-

mental results show that our algorithm is scalable to large graphs.

Table 3.6: Performance comparison on synthetic data

Dataset Tnon(ms) Trep(ms) B
or

n
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syn 500 265 25 3,425 3,482 87 79 18 23

syn 1000 1 1132 87 8,702 8,569 154 119 42 33

syn 1500 6,442 329 23,482 23,621 401 295 71 86

syn 2000 16,182 489 23,111 23,178 333 278 71 83

syn 3000 61,912 1,354 59,261 59,220 813 718 465 313
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Figure 3.10: Runtime speedup of the representative-based algorithm over the non–
representative-based algorithm. The time to perform I/O operations is excluded.

56



In the second experiment, we try to test the sole effectiveness of graph representatives in the

community enumeration step. We use our in-house parallel MCE algorithm [129] (available upon

request) to enumerate the communities in each graph for both algorithms. However, as discussed

in Section 3.4.3, we enumerate all the communities in each graph for the non–representative-

based method, but in the representative-based algorithm, we use the graph representatives as

seeds to avoid graph-specific community enumeration.

The results are shown in Table 3.7, where NCnon is the number of cliques enumerat-

ed by the non–representative-based method, NCrep is the number of cliques enumerated by

the representative-based method, TCnon is the runtime of community enumeration using the

non–representative-based method, and TCrep is the runtime of community enumeration using

representative-based method.

Table 3.7: Effectiveness of graph representatives

Dataset Ei NCnon NCrep TCnon(ms) TCrep(ms) Speedup

syn 1000 1

400,000 2,505 2,214 9 7.9 1.14
550,000 2,541 2,299 9.4 8.4 1.12
450,000 2,721 2,336 9.8 8.4 1.17
600,000 2,564 2,303 9.3 8.3 1.12
500,000 2,661 2,341 9.7 8.4 1.15

syn 1000 2

400,000 2,505 1,773 9 6.3 1.43
550,000 2,541 1,878 9.4 6.9 1.36
450,000 2,721 1,882 9.8 6.7 1.46
600,000 2,564 1,880 9.3 6.7 1.39
500,000 2,661 1,871 9.7 6.7 1.45

syn 1000 3

400,000 2,505 1,197 9 4.3 2.09
550,000 2,541 1,382 9.4 5 1.83
450,000 2,721 1,158 9.8 4.1 2.39
600,000 2,564 1,221 9.3 4.4 2.11
500,000 2,661 1,278 9.7 4.6 2.11

As shown in Table 3.7, the representative-based method achieves speedups of more than 1.1

in community enumeration on the dataset syn 1000 1, in which 10 percent of the vertices are

graph-specific vertices; speedups of around 1.4 on the dataset syn 1000 2, in which 20 percent

of the vertices are graph-specific vertices; and speedups of around 2 on the dataset syn 1000 3,

in which 30 percent of the vertices are graph-specific vertices. The experiments on the datasets

syn 500, syn 1500, syn 2000, and syn 3000 also show that the representative-based method can
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achieve a speedup of at least 1.1 in the community enumeration step, when the dataset has 10

percent graph-specific vertices.

3.6 Related Work

Our work is related to the graph-based anomaly detection. As opposed to most research in

anomaly detection, which is based on strings or attribute-value data as the medium, graph-

based anomaly detection focuses on data that can be represented as a graph [110]. It has

provided new approaches for handling data that can’t be easily analyzed with traditional non–

graph-based data mining approaches [110] and has found applications in several domains. One

of the most important of these areas is intrusion detection. GrIDS, a graph-based intrusion

detection system, was developed by Cheung et al. [139]. Padmanabh et al. [111] proposed a

random walk-based approach to detect outliers in Wireless Sensor Networks. Eberle and Holder

[46] focused on detecting anomalies in cargo shipments. Noble and Cook [110] used anomaly

detection techniques to discover incidents of credit card fraud [47].

Graph-based anomaly detection has been studied from two major perspectives: “white crow”

and “in-disguise” anomalies. Intuitively, a “white crow” anomaly (also called an “outlier” in

many papers) is an observation that deviates substantially from the other observations [106],

while an “in-disguise” anomaly is only a minor deviation from the normal pattern [47], as shown

in Figure 3.11. For example, if we are analyzing the voters list and we come across a person

whose age is 322, then we can take that as a “white crow” anomaly, because the age of a voter will

typically lie between 18 and 100. On the other hand, anyone who is attempting to commit credit

card fraud would not want to be caught—a criminal would want his or her activities to look as

normal as possible, which represents an “in-disguise” anomaly. Anomalies classified as “white

crow” are usually detected as nodes, edges, or subgraphs, while “in-disguise” anomalies are

now only identified through unusual patterns, including uncommon nodes or entity alterations.

A summary of the various research directions in this area is shown in Figure 3.12.

Research on “white crow” anomaly detection has traditionally focused on exploring three

different types of anomalies. Aiming to identify anomalous nodes, Moonesinghe and Tan [106]

proposed a random walk–based approach that represents the dataset as a weighted undirected

graph. Similarly, an algorithm based on random walks with restarts was used by Sun and

Faloutsos [144] for relevance search in an unweighted bipartite graph, in which vertices with low

normality scores were treated as anomalies. Hautamaki et al. [64] took a different approach and

applied two density-based outlier detection methods to discover novelty vertices in a k-nearest

neighbour graph. To identify unusual edges, Chakrabarti [21] used the minimum description

length principle to identify outlier edges, or the edges whose removal would best compress the
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Figure 3.11: “White crow” and “in-disguise” anomalies.

graph. With the purpose of finding abnormal patterns, Noble and Cook [110] used a variant

of the minimum description length principle to deal with both anomalous substructures and

anomalous subgraphs, based on their Subdue system. In contrast to Noble and Cook [110], Lin

and Chalupsk [40] applied rarity measurements to discover unusually linked entities within a

labeled directed graph.

Unlike the previously mentioned single graph algorithms, Cheng and Tan [29] provided a

robust algorithm for discovery of anomalies in noisy multivariate time series data. To deal with

higher order data, Sun and Faloutsos [145] introduced a tensor-based approach. Other related

work on “white crow” anomaly detection can be found in Chan et al. [22], Sun et al. [143],

Keogh et al. [87], and others.

“In-disguise” anomalies are more difficult to detect because they are highly hidden in the

graph, and less work has been reported on detecting such anomalies. Eberle and Holder [47]

introduced three algorithms based on the minimum description length principle for the purpose

of detecting three categories of anomalies that closely resemble normal behavior, including label

modifications, vertex/edge insertions, and vertex/edge deletions. In addition, Shetty and Adibi

[132] exploited an event-based entropy model that combines information theory with statistical

techniques to discover hidden prominent people in an Enron e-mail dataset. However, none

of these work is focused on detecting “in-disguise” anomalies in multiple graphs. Meanwhile,

neither “white crow” nor “in-disguise” anomaly detection approaches have considered one of the
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Figure 3.12: A summary of the various research directions in graph-based anomaly detection.

important properties of evolutionary networks: their community structure, which is sometimes

referred to as clustering [55].

3.7 Conclusion

In this chapter, we have defined a new type of “in-disguise” anomaly, the dynamic community.

In addition, we have proven that there are only six possible types of community dynamics in

evolutionary networks: grown, shrunken, merged, split, born, and vanished communities. We

have proposed a new method based on graph representatives and community representatives to

reduce the computational cost. Based on the abnormal community decision rules, our algorithm
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can discover meaningful results in evolutionary networks that cannot be detected by other

graph-based anomaly detection algorithms. The main properties of our algorithm are as follows:

• it is parameter-free and automatic by nature;

• it is applicable to evolutionary networks characterized by overlapping communities; and

• it is scalable to large networks.

We have demonstrated the effectiveness of our algorithm over a number of synthetic as well

as practical examples. Experimental results on real-world networks show that our algorithm

can detect meaningful community abnormalities.
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Chapter 4

Discovery of Anomalous

Communities in Contrasting Groups

of Networks

4.1 Introduction

Recent studies of the structure, dynamics, and function of complex networks have witnessed

a growing interest. Such complex networks model a variety of systems including societies,

ecosystems, the Internet, and others [108]. In particular, climate networks have lately emerged

as a promising approach for modeling spatio-temporal dynamics of the climate system [58, 142,

157, 160]. In these climate networks, nodes (or oscillators) represent spatial grid points, and

the edges between pairs of nodes exist depending on the degree of statistical interdependence

between the corresponding pairs of time series taken from the climate data set [155].

Complex networks have enabled hypothesis-driven insights about the intricate interplay

between the topology and dynamics of the physical system at different scales. For example,

on the global scale, climate networks exhibit “small-world” properties due to teleconnections

(i.e., edges linking geographically distant nodes), such as those in El Niño and La Niña climate

networks [157, 58], that stabilize the climate system and enhance the energy and information

transfer within the system [158, 159]. Likewise, the collective behavior of interacting subsystems

in a network of different climate indices has explained the great climate shifts of the 20th

century as synchronized transitions between different equilibria of oscillators representing the

earth system [156].

To complement these fruitful hypothesis-driven studies, data-driven approaches to discovery

of predictive insights from complex networks have emerged [141, 52]. A representative example
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of such approaches focuses on detecting and characterizing the community structure, in which

nodes are grouped into communities with more interactions (i.e., edges) within communities

and fewer interactions between communities. A community is a common structure in many real-

world networks [55, 160], including social networks, biological networks, and climate networks.

However, the enormous size and the intrinsic complexity of the system data used for network

construction challenge existing graph-based approaches and call for a paradigm shift in how

the networks are analyzed.

Comparative analysis of multiple networks is a promising strategy. It can be performed

at multiple levels for the purpose of (a) understanding climate dynamics over different time

periods, (b) comparing multiple climate simulation models, (c) quantifying the agreement be-

tween climate simulation and observation data, or (d) correlating networks derived for different

climate variables. Such analyses could translate to different problems on graphs, such as finding

conserved network motifs to detect and track climate regions of similar behavior, or communi-

ties, over subsequent time windows [141], or graph-based anomaly detection to identify which

communities have grown/contracted, merged/split, or born/vanished [27].

It is often the case that such multiple networks could be partitioned into different groups,

such as those corresponding to different system phases; it is a known fact that a dynamic

physical system often undergoes phase transitions in response to fluctuations induced on system

parameters [71]. For example, in a tropical cyclone (TC) prediction system, one can build three

different groups of climate networks, with one corresponding to high TC years, and another

corresponding to medium TC years, and the other one for low TC years. Different groups of

networks may exhibit different properties of the community structure. The question is how

one could discover network motifs that could contribute to our understanding of the system’s

behavior for a given phase.

In this chapter, we hypothesize that anomalous communities, or dense subnetworks that

are conserved within one group of networks but undergo statistically significant structural

transformation in the other groups of networks, could be candidate structures for explaining

physical basis underlying the group-related extreme events. For example, if an anomalous

community corresponding to the El Niño/La Niña–Southern Oscillation (ENSO) climate index

is identified, then the changes in such a community structure would explain why a particular

season would enjoy low tropical cyclone activity or would be affected by the severity of the

abnormally high number of hurricanes [135]. It is thus important to find effective means for

detecting anomalous communities in contrasting (or system phase-related) groups of networks.

To the best of our knowledge, such a problem has not been addressed before in literature.

It is worth noticing that performing such analyses for larger-scale, high-resolution physical

models and over multiple heterogeneous data sources is a challenging problem not only compu-
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tationally but also methodologically. For example, current algorithms for identifying conserved

network motifs are limited in either the size [12, 171] or the number [84, 131] of networks they

can effectively compare; plus they are not particularly designed for contrasting groups of net-

works. To detect the differences, one may want to find those communities that are conserved

across dynamic networks derived from one data source but not conserved for the other data

source. However, most algorithms do not support such contrast-based detection and tend to

require that the motif be conserved in every one of the input networks [84, 131]. While some

comparative techniques have been designed for the biological networks [54, 178], they only con-

sider the structural or topological differences between pairs of networks. Similarly, previous

work has been done on finding dense subgraphs that are present in a majority [176] or every

member of a set of graphs [117], but neither of these are applicable to contrasting groups of

networks, nor can they identify anomalous communities. Likewise, graph-based anomaly de-

tection has been mainly focused on identifying anomalous nodes [106, 144], unusual edges [21],

or small abnormal patterns [47] in a single graph, with few exceptions focusing on graph-based

discovery of anomalies in noisy multivariate time series data [29], for multiple data sources

[145], and across multiple graphs [22, 27, 143]. However, none of these approaches provides a

means for detecting anomalous communities in contrasting groups of graphs.

Our approach follows from the need to address the graph classification problem of detecting

predictive and phase-biased anomalous communities in contrasting groups of networks. We

build groups of networks corresponding to different system phases, detect system phase-related

components as seeds to help prune the search space in community generation, and use the

proposed contrast-based techniques to discover abnormal communities that are further used to

build the ensemble of classifiers for predicting the system states/phases.

4.2 Problem Statement

In this chapter, the ultimate goal is to detect and track phase-biased communities in contrasting

groups of networks. Thus, in this section, we provide some formal definitions related to the

community structure of a network. A weighted undirected graph is used to represent a complex

network.

Definition 8 (Community). A community is a dense subgraph or a group of vertices within

which the connections are denser than between different groups [55].

In other words, a community is a “fuzzy cluster,” or a quasi-clique, but not necessarily a

“formal clique” with a set of vertices that are all adjacent to one another.

To be more specific, the community structure can be defined:
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Definition 9 (γ-dense Community). Given a labeled graph G and a real value γ ∈ [0.5, 1], a

subgraph S of G is a γ-dense community, if and only if every vertex of S is adjacent to at least

γ(|S| − 1) of the other vertices of S [118, 175].

The advantage of this community definition is two-fold. First, it corresponds nicely with the

typical use of the term “density” in that it forces a certain fraction of the possible edges in the

subgraph to exist. The second advantage is that our definition must be satisfied by every vertex

of the community, ensuring that each vertex “belongs” to the community. One disadvantage of

this definition is that it is not monotone; that is, a superset or subset of a γ-dense community

does not need to be γ-dense, though basing our definition on the density of the subgraph rather

than a maximum number of disconnections (as in a k-plex [7, 130]) gives us more flexibility in

finding large subgraphs.

If a γ-dense-community contains a number of vertices in a seed or query set, we call it

µ-enriched γ-dense community:

Definition 10 ((µ, γ)-community). Given a labeled graph G, a “seed” set of vertices Q, a real

value γ ∈ [0.5, 1], and a real value µ ∈ [0, 1], a γ-dense community S is µ-enriched with respect

to Q, if and only if at least µ|S| vertices of S are contained in Q.

The “seed” set Q can be used to incorporate the domain scientists’ knowledge. For example,

we can take in a biologist’s prior knowledge as a set of “seed” proteins and identify all the

communities in a biological network that contain some part of the “seed” proteins.

Fig. 4.1 shows an example of (µ, γ)-communities. If we set µ = 0.2 and γ = 0.75, then

only C1 and C2 in Fig. 4.1 can be considered (0.2, 0.75)-communities. Subgraph C3 is not a

(0.2, 0.75)-community, because it does not contain any “seed” node. Although subgraph C4 has

two “seed” nodes, not all of the vertices in C4 are adjacent to at least three (i.e. 0.75∗(5−1)) of

the other nodes. Thus, it is also not a (0.2, 0.75)-community. But if we relax the requirements

to be µ = 0 and γ = 0.5, then all four subgraphs can be considered as communities.

One of the main ways in which (µ, γ)-communities differ from traditional communities, such

as those produced by modularity-based clustering algorithms (e.g., [34, 164]) is that (µ, γ)-

communities are allowed to overlap. As climatological factors in a particular region may con-

tribute to multiple system events, this is a very desirable feature for a community detection

algorithm to have in the climate domain, as well as other scientific domains like biological net-

works, where pathways or gene modules work in a cross-talking manner. While such algorithms

may have other advantages, such as the parameter-free nature of clustering algorithms that

maximizes modularity, and might work better for other domains like social networks, these

algorithms are partitional by nature and typically heuristic, giving no guarantees of global

optimality or the quality of individual communities.
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Figure 4.1: An example of (µ, γ)-communities. Filled nodes: seed nodes; Empty nodes: normal
nodes.

Definition 11 (Corresponding Community). Given two communities Ci,m and Cj,n belong to

networks Gm and Gn, Cj,n is a corresponding community to Ci,m if and only if
|Ci,m

⋂
Cj,n|

|Ci,m
⋃
Cj,n| > α,

where α ∈ (0, 1] and m 6= n, and |C| is the number of vertices in the community.

For example, in Fig. 4.2, community {V1, V2, V3, V4, V6} of graph G2 and community

{V2, V3, V4} of graph G4 are both corresponding communities to community {V1, V2, V3, V4}
in graph G1, if we set α = 0.6, µ = 0.1, and γ = 0.75. Thus, each community can have multi-

ple corresponding communities, and each corresponding community can correspond to several

communities.

Definition 12 (Conserved Community). Given a set of k different networks {G1, G2, ..., Gk},
a community Ci,m of graph Gm, where 1 ≤ m ≤ k, is an (α, β)-conserved community, if and

only if Ci,m has an α-corresponding community in more than β × k networks, where α ∈ (0, 1]

and β ∈ [0.5, 1]. If both α and β are larger than or equal to 0.5, we call this community a stable

community in a group of networks.

For example, community {V1, V2, V3, V4} in graph G1 (Fig. 4.2) can be considered as a

conserved community, if α, β, µ and γ are set to be 0.6, 0.75, 0.1, and 0.75, respectively.

Although community {V1, V2, V3, V4} does not have any corresponding community in graph

G3, it still meets the requirement of a conserved community, because it has corresponding

communities in the other two graphs.

Definition 13 (Anomalous Community). Given τ different groups of networks {U1, U2, ..., Uτ},
a community C is an anomalous community if and only if C is an (α, β)-conserved community

in one group of networks Uj, where 1 ≤ j ≤ τ , α ∈ [0.5, 1] and β ∈ [0.5, 1], but C has no

ω-corresponding community among the (α, β)-conserved communities of all the other groups of

networks, where ω ∈ (0, α).

Fig. 4.3 shows an example of anomalous communities, where ω is set to be 0.4, and we

assume that C11, C12, C21, and C22 are conserved communities detected from two different
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Figure 4.2: An example of corresponding communities and conserved communities. Filled
nodes: seed nodes; Empty nodes: normal nodes; Dashed circles: communities.

groups of networks, U1 and U2 with α = 0.6 and β = 0.75. C12 and C22 are anomalous

communities, because they do not have any ω-corresponding community among the conserved

communities of the other group.

Figure 4.3: An example of anomalous communities. C11 and C12 are conserved communities
from the network group U1, and C21 and C22 are conserved communities from the network
group U2. Filled nodes: seed nodes; Empty nodes: normal nodes.

Problem 2 (Detecting Predictive and Phase-biased Communities in Contrasting Groups of

Complex Networks). Given a multi-phase system that can be characterized by different groups of

networks, the problem is to detect all the anomalous communities that are biased toward a target

system phase from the training networks, and utilize all the detected phase-biased communities

as the features to build an ensemble of classifiers to predict the unknown system phases on the
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testing data.

According to the statement of Problem 2, the main goal of our technique is to create an

ensemble classifier for determining the phase-state of a network based on the phase-biased

communities detected in the training set. Given a set of networks, we form this ensemble

by: (1) identifying phase-related system components, (2) enumerating the (µ, γ)-communities

enriched by these phase-related components, (3) identifying phase-biased communities, and (4)

forming a classifier ensemble, where each member predicts the phase-state of a network based

on the features in these phase-biased communities.

4.3 Method

Given the definitions and theorems, in this section we address the aforementioned technical

challenges through some key innovative steps underlying the methodology. The methodology

is summarized in Fig. 4.4.

4.3.1 Step 1: Abstracting the Dynamic System

We first define the mathematical form for the dynamic system using climate spatio-temporal

data as an example. Formally, let F be a set of variables (or factors) that characterize the

system over spatial locations L over time period T . For example, the climate system could be

characterized by its climatological factors, such as Sea Surface Temperature (SST), Sea Level

Pressure (SLP), and Vertical Wind Shear (VWS) defined over spatial (latitude, longitude,

altitude) grid points over a time period of 1950-2010 with monthly mean values.

We divide T into disjoint segments T1, T2, . . . , Tm (say, calendar years), where each Tj can

be further split into an observable time period Tj,o and a forecasting time period Tj,f , according

to time frame of the extreme event.

In the context of hurricane extreme events, for example, each time interval Tj may corre-

spond to a calendar year that is further divided into a hurricane season Tj,f = {July-November},
for which hurricane activity, say in the North Atlantic region, is being forecasted based on the

observed or simulated monthly means for climatological factors defined over the entire globe L

during the hurricane pre-season, Tj,o = {November-June}.
We consider the problem of classifying the climate system’s state P over these time intervals

according to some event-specific taxonomy. For example, according to paper [31], seasonal

hurricane activity of Taiwan region could be broadly categorized as “above normal” (say, more

than four hurricanes during the hurricane season), “normal,” or “below normal” (say, less than

three hurricanes in a season).
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Figure 4.4: The overview of our methodology.
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Based on the aforementioned notations, the mathematical form can then be defined as

follows (Step 1, Fig. 4.4). Let each row of the matrix correspond to each time interval Tj ,

j ∈ {1, 2, ...,m}, and let each column of the matrix correspond to a 3-tuple defined over F =

F×L×T∗,o, where T∗,o is replaced with Tj,o for the corresponding row Tj . Thus, each (row, col)

cell of the matrix is filled in with the value of the corresponding variable in F for column col

defined at the corresponding spatial point in L and the corresponding time Trow,o.

Furthermore, let us assume that a set of known extreme events E is defined over some

spatial region Le, and the class label from P is assigned to each time interval Tj based on the

accumulative statistics of the observed events over Tj,f time period in region Le.

Fig. 4.5 illustrates this mathematical abstraction using SST as variable, or predictand,

defined over T = (1970 − 1972) during the months of T∗,o = {May, June} over (latitude,

longitude) spatial grid points for the sea-level altitude. The class label is inferred based on

the historical record of observed hurricanes in North America during T∗,f = (July-November)

hurricane season.

Features, F: Variable_Latitude_Longitude_Time

Year SST _ 0̇N_ 
0̇E_June

SST _ 2̇N_ 
0̇E_June

È VWS _ 0̇N_ 
0̇E_June

È Class

ぐ ぐ

ぐ ぐ

ぐ ぐ

Instance ID Class C

SST spatio-temoral data

È

VWS spatio-temoral data

Figure 4.5: Our proposed mathematical form for classification of spatio-temporal data.

4.3.2 Step 2: Data Preprocessing

Given the aforementioned mathematical form of the original system data, the next step of our

algorithm is data preprocessing designed to help us identify phase-related community seeds
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in Step 3 (see Section 4.3.3). While the choice of which data preprocessing techniques to

employ may be dependent on the type of data under consideration, for preprocessing spatio-

temporal data, we use two techniques including spatio-temporal deseasoning and discretization-

based denoising.

Spatio-temporal deseasoning : If temporal data can exhibit seasonality, such as winter,

spring, summer, and fall, each variable’s time series at each spatial location is first trans-

formed into the time series with zero mean and unit variance per season. This technique avoids

learning a strong seasonality signal and also enables multiple variables with different scales of

measurement to be combined into different columns of the same matrix.

Discretization-based denoising : Dynamic system data like the climate data contains a lot

of “noise” or irrelevant signals, so another important preprocessing step is to perform data

cleaning or data denoising. We use a discretization method by Fayyad and Irani [50] to filter

out noise or irrelevant features in the data. This technique has been found to be effective in

some domains like microarray analysis [148], where non-discriminatory genes are filtered out

before performing actual learning process on the gene expression data.

4.3.3 Step 3: Identifying Phase-related System Components

In this section, we aim to detect the phase-related system components or features, which can

be used as seeds to generate (µ, γ)-communities in a network (see Step 5).

Given the mathematical classification form (Step 1) and the preprocessed spatio-temporal

data (Step 2), we deploy decision tree based procedure for identifying the candidate system

phase-related components or features.

There are multiple reasons for why we use a methodology based on decision trees for our

feature space partitioning, including (a) their efficiency in processing many features (unlike

Bayesian Belief Networks (BBNs), which have exponential complexity relative to the number of

features), (b) support for multi-class data sets (unlike Support Vector Machines (SVMs), which

are inherently binary classifiers), (c) the ability to handle continuous and multi-variate types of

features (unlike Neural Networks (NNs), for which distance metrics are poorly defined for mixed

data types), among others. We use the Classification and Regression Trees (CART)-decision

tree algorithm [16] to select a set of discriminatory features from the available feature space.

Basically, CART builds a decision tree by choosing the locally best discriminatory feature at

each split step based on the Gini Index Impurity Function. To avoid overfitting, CART employs

backward pruning to build smaller, more general decision trees. CART chooses features in a

multivariate fashion, which allows the feature selection process to find a set of discriminatory

features instead of considering one feature at a time.

More importantly, especially in the context of underdetermined or unconstrained problems,
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CART’s inherent feature pruning capability often leads to a smaller number of features. Also,

decision boundaries themselves could result in rules that are more interpretable and could

provide additional insights to domain scientists on how much the identified features affect the

system’s state. Not only is it important to know what group of features contributes to the

system’s state, but also to what extent the feature values influence the system’s state.

Algorithm 4: Phase-related component enumerator

Input:
F : a set of features
D: a set of training data over F
P : a set of system states over D
A : basic classification algorithms

: (e.g., decision tree, SVM, Näıve Bayes, etc.)
Output:

CIG: identified community seeds
1 CIG← ∅
2 while stopping criterion is not met do

/* Run CART-decision tree to get a set of candidate features */

3 Run decision tree algorithm on D with feature set F to get a pruned decision tree M
4 Let FM be a set of all features that belong to the internal nodes of M
5 DFM

← Extract the data from D only with the features in FM
6 Predictive skill score εM ← applying A to train DFM

7 if εM meets the training accuracy criterion then
8 Add FM to CIG
9 Remove features in FM from F

10 return CIG

Specifically, we identify a candidate set of discriminatory features by building a decision

tree model M using CART and extract the features that correspond to the internal nodes of M

(Lines 3–5 in Algorithm 4). The candidate system’s features are then assessed in terms of their

ability to contribute to the system’s states. Basically, the goal is to define a scoring function

that measures how well each group of features discriminates between system states. We define a

scoring function in terms of classification accuracy (training accuracy in our experiments) pro-

vided by multivariate discriminant methods, such as SVMs, BBNs, neural networks, or decision

trees. Specifically, we ask a question: if we used only the given set of candidate features to

determine the system’s state, how much predictive ability would this set have? Since individual

features within the candidate group could be related to each other in a complex manner, we

first let a proper classifier (e.g., kernel SVM or BBN) learn these complex relationships from

the candidate features and predict the state of the system by using the candidate features only
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(see Lines 5–6 in Algorithm 4). If the training accuracy of the candidate feature set is above

the threshold we set, the features are added to the community seed set.

The combinatorial nature of this task necessitates heuristic approaches. Our strategy is

inspired by the way biologists often conduct their mutagenesis studies. Namely, they knock-

out a group of genes (e.g., via gene deletion) and observe the mutant system’s response. By

analogy, our methodology knocks-out the selected candidate feature sets and proceeds in an

iterative fashion until some stopping criterion is met (see Line 2 in Algorithm 4). Under this

approach, each iteration produces a subset of features out of the current feature set (see Line 4

in Algorithm 4), then removes these features from the set so that they can’t be selected again

(see Line 9 in Algorithm 4). The maximum number of iterations is set as our stopping criterion.

A set of phase-related features or components is output, when the stopping criterion is met.

4.3.4 Step 4: Constructing Contrast-based Groups of Networks

There are several steps to construct climate networks, including constructing nodes of a network,

calculating anomaly value, building edges of a network, and partitioning the networks into

different groups.

The nodes (or oscillators [155]) of a climate network are identified with the physical locations

or spatial grid points, which correspond to the time series of gridded climate data (see Fig. 4.6).

Year Month Day (0°N, 0°E) (0°N, 2°E) … (90°N, 180°E)

1970 1 1 3 6 … 7

1970 1 2 3 7 … 6

… … … … … … …
1970 12 31 12 10 … 22

Time Series 

Figure 4.6: A table-view of spatio-temporal data.

At each grid point, we calculate for each month m = 1, ..., 12 (i.e., separately for all Jan-

uaries, Februaries, Marches, etc.) the mean θm = 1
Y

∑
zm,y and standard deviation σm =√

1
Y−1

∑
(zm,y − θm)2, where y is the year, Y is the total number of years in the dataset, and

zm,y is the value of series Z at month m and year y. Each data point is then transformed by

using z-score transformation, that is each data point is (zm,y =
zm,y−θm

σm
) subtracted the mean

and divided by the standard deviation of the corresponding month.

The edges between pairs of nodes exist depending on the degree of statistical interdepen-
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dence between the corresponding pairs of time series taken from the climate data set. The

Pearson correlation coefficient is chosen as a measure of link strength [155]. For two series Z

and X the correlation r is computed as r(Z,X) =
∑

(zi−z̄)(xi−x̄)√∑
(zi−z̄)2

∑
(xi−x̄)2

, where zi is the ith value

in Z and z̄ is the mean of all values in the series. Note that the correlation coefficient has a

range of [-1, 1], where 1 denotes perfect agreement and -1 perfect disagreement, with values

near 0 indicating no correlation. Since an inverse relationship is equally relevant in the present

application, we set the correlation score to |r|, the absolute value of the correlation coefficient.

Although nonlinear relationships are known to exist in climatological systems, the observed

similarity of Pearson correlation still can be considered statistically significant, as concluded by

Donges et al. [44]. Thus, we use Pearson correlation to measure the similarity between a pair

of nodes in this work.

A correlation-based pruning is applied to the networks to prune the edges, that is only the

pairs of nodes with the correlation scores above some threshold would be considered connected.

To avoid the multiple comparison problem, the Monte Carlo method is used. Specifically, for

each network, we randomly sample N sets (say, N = 1, 000) from the entire edge set of the

tenth size as the original network, and compute the corresponding correlation threshold with

p-value = 0.05 from each sample set. The selected threshold for the target network is the one

that meets 95% confidence level within the threshold distribution for N samples.

Because the networks change over time, we build a network according to a calendar year

per climate variable. For example, for a time period over 1950-2009 with two climate variables

(e.g., SLP, SST), up to 120 different networks can be built with one network per year for each

variable.

The complex networks of a dynamic system can be partitioned into different groups cor-

responding to different system’s states (i.e., class P in Fig. 4.5). For example, in a tropical

cyclone (TC) prediction system, we can build three different groups of climate networks, with

one corresponding to strong TC years, one with normal TC years, and another with low TC

years, based on the distribution of historical data.Different groups of networks may exhibit

different properties of the community structure.

4.3.5 Step 5: Enumerating (µ, γ)-communities

We hypothesize that if the system feature or component is key to defining the system’s state

then its value distributions will be separable between the observations from different states.

If the separation is strong, then such a feature, alone, is likely able to discriminate system

states. And almost any method, like entropy-based, would likely succeed in detecting those

features. However, with real data sets such a strong separation is less likely. There are different

reasons for such an assumption. For example, the evolution of system behavior may induce non-
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functional changes to the system features. Thus, the effective analysis should not only include

an individual feature with a strong discriminatory signal, but also extend to a group(s) of

interplaying features out of a set of thousands of features. This creates a multiplicity of possible

combinatorial interplays to search for and excludes a possibility for a brute-force enumeration.

In some cases, the domain knowledge may assist with constraining the search space of

possible interplays. For example, climate index El Niño/La Niña–Southern Oscillation (ENSO)

has been found to be highly correlated with hurricane activities [135]. For a more general and

domain-independent solution, however, the issue of properly constraining the search space still

remains.

Standard algorithms would attempt to find all dense subgraphs throughout the networks.

However, in real-world dynamic system data, there are a lot of irrelevant features or “noises.”

Including all features including the “noises” to generate the dense subgraphs would retrieve

a huge number of results irrelevant to the system phases or states. We hope to reduce the

problems of high algorithmic complexity and the number of irrelevant results by integrating

the system phase-related components or features into the search in the form of a “seed set” of

vertices. For example, given a phenotype-expressing organism, a biologist might have known a

set of proteins that are related to the target phenotype. By using those proteins as the “seed”

set, we can identify all the dense functional modules in a biological network that contain some

part of the “seed” vertices.

Thus, Dense and Enriched Subgraph Enumeration algorithm (DENSE ) [70] is used in this

work to generate (µ, γ)-communities. Specifically, given the set of phase-related system com-

ponents as seeds (Step 3) and a constructed network (Step 4), the basic premise of DENSE

algorithm is that we will build the (µ, γ)-communities one vertex at a time, starting with a

single query vertex v0 and backtracking as we find maximal (µ, γ)-communities or subgraphs

that cannot be contained in a (µ, γ)-community. The details of the DENSE algorithm can be

found in paper [70].

4.3.6 Step 6: Detecting and Tracking Anomalous Communities in Contrast-

ing Groups of Networks

The anomalous communities in the contrasting groups of networks are more “biased” towards

the target system phases than the communities in a single network, or conserved (or stable)

communities in a group of time-varying networks.Thus, in this section, our goal is to extract only

the anomalous communities from all communities generated from different groups of networks.

Based on the Definition 13, in order to identify anomalous communities, we first need to

detect all (α, β)-conserved communities in each group of networks, where 1 ≤ j ≤ i, α ∈ [0.5, 1]

and β ∈ [0.5, 1]. A stable community should have at least one α-corresponding community in
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Algorithm 5: Anomalous community detection algorithm, continued in Algorithm 6.

Input: C: All communities generated from all graphs
in contrasting groups {U1, U2, ..., Uτ}
β, ω, α: Parameters
Output: χ: A set of anomalous communities
/* Detecting stable communities in each group of networks */

1 for i = 1 : τ do
2 anomaly indicator = 0
3 SCi= call Detecting

/* Using the τ sets of SC as inputs for detecting anomalous communities */

4 anomaly indicator = 1
5 α = ω
6 χ= call Detecting

majority of the networks of the same group. That is the size of overlapping parts between the

stable community and its “strict” corresponding community should be larger than half (at a

minimum) the size of any of them. Algorithm 6 summarizes the aforementioned stable com-

munity detection procedure. After detecting stable communities from all groups of networks,

each stable community is examined to see if it has any “looser” corresponding community (with

minimum intersection factor ω, where ω ∈ (0, α]) in the set of stable communities of all the

other groups. Only those communities that do not have any “looser” corresponding community

will be considered as anomalous communities.

The anomalous community detection between the different sets of stable communities (with

each set generated from each group of networks) only requires a little change with regard to

the input variables (see Lines 1 to 6 in Algorithm 5) and the output process (see Lines 14 to

16 in Algorithm 6).

4.3.7 Step 7: Building an Ensemble of Classifiers from Anomalous Commu-

nities

While the enumerated set of anomalous communities is important in its own right (as illustrated

in Section 4.4), here we combine them altogether by building an ensemble of classifier models.

For each of the anomalous communities χ identified, we specifically distinguish between

treating it as a binary feature (i.e., the community is present or absent in a graph) or continuous

features, that is we form a new data set Dχ by restricting the original data to include only the

features (or spatial grid points) Fχ in χ. We then train a separate base classification algorithm

A (e.g., decision tree, SVM, Näıve Bayes, etc.) on the binary data set or the restricted data

set to construct a candidate classifier model ζ. The candidate classifier model ζ will only be

included into the ensemble of classifiers if it meets the model selection criterion. The resulting
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Algorithm 6: Detecting function

Input: α, β: Parameters for conserved community
C: All communities in k graphs,
or stable communities from k groups
anomaly indicator: An indicator for anomalous community detection
Output:

η: A set of detected communities
1 Initialize count
2 for snapshot s = 1 : (k − 1) do
3 for snapshot n = s+ 1 : k do
4 indicator =0
5 for each community Cs,i in Gs do
6 for each community Cn,j in Gn do
7 overlap part = |Cs,i

⋂
Cn,j |

8 if overlap part/|Cs,i
⋃
Cn,j | > α then

9 counts,i = counts,i + 1
10 if indicator=0 then
11 countn,j = countn,j + 1
12 indicator =1

13 break

14 if anomaly indicator = 0 then

15 [I J]=find(count > β ∗ k)
16 else
17 [I J]=find(count < β ∗ k)
18 Add CI,J to η for each pair of I and J at the same row
19 Delete duplicate communities in η
20 Output η
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class prediction for the event with the unknown class label is based on the majority voting of

the selected classifiers ζ’s.

Some of the key characteristics for building a robust classifier ensemble include (a) the

diversity among the classifier models in the ensemble and (b) the reasonably high accuracy of

the individual members in the ensemble. In our case, the former is ensured due to our feature

set knock-out strategy (Step 4) and the latter is guaranteed by a combination of the scoring

function (Step 2) and the statistical significance assessment (Step 3) that, in combination, also

reduce possible redundancy among the models and thus reduce the possible bias (e.g., due to a

significantly large portion of highly similar models).

Finally, in the last step (Step 7 in Fig. 4.4), we need to combine the predictions of all the

classifiers that pass statistical significance criterion (Step 3) to come up with the final prediction

value. In order for the ensemble to make a prediction, each classifier is given a weighted vote,

and the class with the most votes is the prediction of the ensemble. We tested three possible

weighting schemes [150]: a simple majority voting scheme, in which every classifier is given

equal weight; a training error-based method, in which every classifier is weighted based on

its training error; and a confidence-based method, in which each classifier is weighted by that

model’s associated confidence value. Due to space limitations, we present results for a simple

case, majority voting.

4.4 Experimental Results

The nature of the proposed methodology suggests that detected anomalous communities from

contrasting groups of networks (Steps 1-7) (1) could play an important role in defining the

system’s state(s) and (2) collectively, could improve the predictive skill of the system’s states

(Step 7). We also demonstrate the efficiency of our algorithm by applying it to the synthetic

datasets.

4.4.1 Data and Tasks

Two real-world extreme event prediction tasks are considered:

1. Seasonal tropical cyclone prediction: The first task is to predict the seasonal tropical

cyclone (TC) count in some spatial region [57, 89]. TCs, especially hurricanes, have

become a serious issue of our era because they result in enormous loss of life and property.

2. African Sahel rainfall prediction: The second task is to predict the seasonal rainfall in

North Africa, especially, in the Sahel area [172]. Rainfall in this area is highly related
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to meningitis epidemics that affects more than 200,000 people throughout the region

annually.

We use the North Atlantic tropical cyclone (TC) count series from 1950 to 2009 from the

seasonal (July through November) Atlantic hurricane database (HURDAT) at the National

Climatic Data Center to form the class labels. We also utilize the North Pacific seasonal

(June through October) TC count series from 1970 to 2006 provided by the Central Weather

Bureau [31]. Monthly rainfall data is obtained from the Climate Research Unit at a 0.5◦× 0.5◦

latitude and longitude resolution for the period of 1950–1998. East Sahel rainfall indices are

obtained by averaging seasonal (July through September) mean precipitation data over (10-

20◦N, 15–30◦E).

The monthly mean sea level pressure (SLP), precipitable water (PW), sea surface temper-

ature (SST), and tropospheric vertical wind shear (VWS) data are used for the North Atlantic

TC, North Pacific TC and Sahel rainfall class prediction. SLP and PW are NCEP/NCAR

reanalysis datasets. They are available at a 2.5◦ × 2.5◦ latitude and longitude resolution. SST

is from the NOAA Climate Diagnostic Center in Boulder, Colorado, at a resolution of 2◦ × 2◦

latitude and longitude. VWS is calculated by computing the square root of the sum of the

square of the difference in zonal wind component between 850 and 200 hPa levels and the

square of the difference in meridional wind component between 850 and 200 hPa levels [33]

from NCEP/NCAR reanalysis data.

The observed extreme event count series of the target system are classified into three classes:

below normal, normal, and above normal, with a distribution of 40% as normal and 30% each as

below normal and above normal. For instance, in the case of Taiwan region TC prediction [31],

years with fewer than three seasonal TCs are classified as below normal, and years with at least

five TCs are classified as above normal.

We use parameters γ = 0.75 and µ = 0.001, which correspond to searching for dense but not

necessarily complete subgraphs as communities that contain at least one of system phase-related

components. We use parameters α = 0.6, ω = 0.4, and β = 0.6 for defining the anomalous

communities.

4.4.2 State Determining Communities

Climate Indices Associated with Hurricane Activities:

Table 4.1 shows four different anomalous communities, representing functionally associated

or synchronized groups of oscillators (or spatial grid points), detected by our algorithm for North

Atlantic tropical cyclone prediction. In each community, our algorithm is able to identify at

least one oscillator corresponding to a known climate index related to tropical cyclone activity.
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For example, for the first anomalous community detected from the SST networks, we can see

that one oscillator is located in the Niño 3 region. Niño 3 SST has a strong correlation with

Atlantic hurricane activity [57, 89]. Another oscillator belongs to the El Niño/La Niña-Southern

Oscillation (ENSO) region, which has been found to modulate the tropical systems and strongly

influences North Atlantic tropical cyclones [135].

The second anomalous community identified oscillators in the hurricane main development

region (MDR) and North Atlantic Oscillation (NAO). The MDR index has been shown to

contribute to the hurricanes generated in the MDR region [127, 170]. And the NAO index,

especially the June NAO, has been found to be correlated with North Atlantic hurricane tracks

of the incoming hurricane season [49, 170]. The Pacific Decadal Oscillation (PDO) index was

identified in our third community. Shifts in the PDO phase can have significant implications for

Atlantic hurricane activity, and significant differences are shown in hurricane intensity between

El Niño and La Niño years when the PDO is in the warm phase [153]. The PDO index

is also identified in the fourth anomalous community. Our algorithm also finds some other

anomalous communities, which correspond to other climate indices like Atlantic multidecadal

Oscillation (AMO) and Artic Oscillation (AO) that might affect the North Atlantic tropical

cyclone activities too, though this has not been reported in the literature. There are other 342

anomalous communities detected by our algorithm.

Table 4.1: Identified climate indices related to hurricane activities
Community ID Variable Spatial location Climate indices

1 SST

(4◦N, 114◦W) Niño 3
(2◦S, 168◦W) ENSO
(42◦N, 30◦W)
(32◦S, 16◦W)

2 VWS

(27.5◦N, 65◦W) MDR
(52.5◦N, 37.5◦W) NAO
(7.5◦N, 122.5◦W) Niño 3

(10◦S, 60◦W)
(27.5◦N, 55◦E)

3 PW
(52.5◦N, 135◦E) PDO
(82.5◦N, 15◦W) AO
(37.5◦N, 40◦E)

4 SLP

(57.5◦N, 22.5◦W) NAO
(60◦N, 155◦E) PDO

(37.5◦N, 162.5◦W)
(12.5◦N, 122.5◦E)

African Sahel Rainfall-related Teleconnection Patterns: For the African Sahel region rainfall
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prediction case, our algorithm also detected some anomalous communities with one shown in

Fig. 4.7.

NAO

ENSO

Atlantic 

Dipole
Indian 

Ocean 

Dipole

Figure 4.7: One anomalous community detected for African Sahel rainfall prediction.

Climate variability in the tropical Atlantic involves complex but interacting processes that

actively or passively exert their influences on rainfall and relative humidity variability over

West Africa [146]. Moisture supply over West Africa primarily emanates from the eastern e-

quatorial and South Atlantic, determined from the strength of the meridional and the zonal

modes. However, other teleconnection patterns such as ENSO, NAO, and Indian Ocean dipole

are competitively engaged to dictate the rainfall and relative humidity variability at differen-

t scales. The equatorward extension of the extratropical NAO pattern influences the West

African climate by weakening the northeasterly trades, whose presence is a prerequisite to the

formation of large-scale convergence over the continent to reinforce convective development.

NAO also influences the region’s climate through a modification of the northern lobe of the

meridional mode. Thus, the detected anomaly community shown in Fig. 4.7 appears to sup-

port the hypothesis proposed by our climate scientists (our co-authors), which is being further

investigated, that the NAO modulates meridional moisture transport over the tropical Atlantic,

mediated mainly through the zonal equatorial trades.

81



4.4.3 Predictive Skill of System’s States

Performance Evaluation Method: Because of the small sample size of the spatio-temporal data,

leave-one-out cross validation (LOOCV) is employed to evaluate the robustness of our method-

ology. We utilize several metrics to evaluate the performances: accuracy, Heidke Skill Score

(HSS) [83], and Peirce Skill Score (PSS) [83]. Accuracy is defined as the ratio of the number

of correctly classified data points to the total number of data points in the test set. The HSS

measures how well a forecast performs compared to a randomly selected forecast [83]. And

PSS, also called “true skill statistic,” is another popular skill score computed by the difference

between the hit rate and the false alarm rate [83].

Performance Comparison:

Figure 4.8 compares our algorithm performance to seasonal tropical cyclone predictions

by Chu et al. [31], Kim et al. [90], Kim and Webster [89], and three benchmark ensemble

classification methods: random forest, bagging, and boosting. The same basic classifier–CART

decision tree, and the same data including four variables (SST, SLP, VWS, and PW) with all

features are used for all methods. For the North Pacific region, there is a roughly 8% increase

over the 65.5% reported by Kim et al. [90]. For the North Atlantic region, our method achieves

an increase of at least 16% in accuracy and 20% in HSS and PSS over the four benchmark

methods.

To estimate the contributions of each module in our algorithm to the performance improve-

ment, we implemented different versions of our algorithm: the original -continuous version

(OC) includes all the algorithm modules by using the continuous community features (see Sec-

tion 4.3.7); the original-binary version (OB) also includes all the algorithm modules but uses

the binary community features; the brute-force (BF) version uses all original features without

detecting the anomalous communities, but it builds the classifiers by using our ensemble method

(see Step 7 in Fig. 4.4); the all-community (AC) version enumerates all γ-dense communities

without using the phase-related components as the query set (see Step 3 in Fig. 4.4), while keep-

ing the other steps in the original-continuous algorithm unchanged; and the random forest with

anomalous community detection (RFC) version changes only one step in the original-continuous

algorithm by using the random forest instead of our ensemble method to build the ensemble of

classifiers. Among those, AC is the most time-consuming version because it generates all pos-

sible γ-dense communities without using any query vertex. Irrelevant communities containing

all “noises” can be generated as well, which would affect the prediction performance.

Table 4.2 compares the performances of different versions on seasonal North Atlantic tropi-

cal cyclone prediction. The original-continuous version outperforms the original-binary version

by 2% using the binary community features. The accuracy decreases by 10% if we did not use

the anomalous communities as the features, and decreases by 7% if we used γ-dense communi-

82



 0

 20

 40

 60

 80

 100

Accuracy HSS PSS

P
er

ce
nt

ag
e 

(%
)

Random Forest
Bagging
Boosting
Webster

Ours

(a) North Atlantic TC prediction

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Accuracy HSS PSS

P
er

ce
nt

ag
e 

(%
)

Random Forest
Bagging
Boosting

Chu
Kim

Ours

(b) North Pacific TC prediction

Figure 4.8: LOOCV performance for seasonal TC prediction.
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ties instead of (γ, µ)-communities. And our ensemble method outperforms the random forest

method by 9% using the same selected anomalous community features.

Table 4.2: Different modules’ contributions on performance

Metric OC OB BF AC RFC

Accuracy 0.82 0.8 0.72 0.75 0.73

HSS 0.72 0.69 0.58 0.60 0.58

PSS 0.72 0.68 0.59 0.62 0.60

GSS 0.71 0.68 0.55 0.63 0.60

4.5 Discussion

4.5.1 Parameter Selection

Our algorithm requires five parameters: the enrichment (µ) and the density (γ) for defining

the communities, and parameters ω, α, and β for defining the anomalous communities. The

description of these parameters (in Section 4.2) suggests that higher values of γ will produce

more connected (clique-like) subgraphs. Similarly, higher values of the enrichment (µ ≥ 0.5)

will produce subgraphs that are primarily composed of the “query” vertices, whereas a very low

value (µ ≤ 0.001) will result in enumeration of all the subgraphs that satisfy the γ threshold

and contain at least one query vertex. And higher values of α and β will produce fewer con-

served communities in each group of networks, whereas higher ω will result in more anomalous

communities.

Parameter thresholds depend on the application. In this work, we are interested in identify-

ing phase-biased communities in contrasting groups of climate networks, given a set of extreme

event-related climatological oscillators as a “seed” set. Setting µ value to 0.001 will result in

finding all the communities containing at least one “seed” vertex that could potentially be

related to the spatio-temporal extreme events. Since climate networks are prone to missing

information (edges), the value of γ = 1 could be too stringent, and the algorithm may miss

some of the extreme event-related communities. Hence, we chose a γ value of 0.75 (midpoint

of 0.5 and 1) to identify highly connected (but not fully connected) subgraphs as most proba-

ble communities that are teleconnected (i.e., edges linking geographically distant nodes) with

extreme event-related “seed” oscillators. And due to the dynamics of climatological systems,

we set the value of α = 0.6 and β = 0.6 to find all possible but highly phase-related conserved
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communities in each group of networks. Finally, a relatively small value of ω = 0.4 (smaller

than α) is chosen to make sure that the anomalous communities are only conserved within one

group of networks, not in the other groups of networks.

Fig. 4.9 shows the sensitivity analysis results of the five parameters on North Atlantic TC

prediction. The default values for the five parameters are: µ ≤ 0.001, γ = 0.75, α = β = 0.6,

and ω = 0.4. We only change the value of one parameter at a time to test the sensitivity. The

results shown in Fig. 4.9 agree with the aforementioned parameter analysis.

4.5.2 Generalization: Detecting Biologically Relevant Functional Modules

through Biological Networks

Thus far, we have presented how to detect phase-biased communities from climate networks.

But our algorithm can be applied to other domains as well. Here, we provide a general idea on

how our algorithm can be used to detect functional modules through biological networks.

The biological networks like gene functional association networks can be obtained from the

STRING database [80]. The nodes in the networks are genes. And a pair of nodes is connected

with an edge if the corresponding genes are considered to be functionally associated by some

evidence. The edge weights are assigned by the STRING database based on the evidence that

support the functional association [80].

For a set of networks corresponding to phenotype-expressing organisms, we hypothesize that

the conserved α-corresponding communities across the group of networks are the phenotype-

associated functional modules. After generating all communities from each biological network,

we first detect the α-corresponding communities across two networks, and then check if the

α-corresponding communities detected in the previous two networks are conserved in the third

network. This procedure is continued until all networks in the group are examined.

We can take it one step further and use a group of contrast biological networks (i.e., networks

of organisms that do not express the phenotype) to filter and obtain communities that are not

only identified as conserved in the previous step but are also “biased” towards the target

phenotype. Here, by biased, we mean occurring in phenotype expressing organisms but not

occurring in the phenotype non-expressing organisms. To achieve this goal, first, the networks

are partitioned into different groups according to the phenotype(s), and then the conserved

community detection algorithm is applied to each group of networks. After getting all the

conserved communities from all groups, we remove all the common conserved communities

appearing in at least two groups of networks. The remaining anomalous communities are the

phenotype-associate functional modules, which can be used to improve the predictive skill of

the system’s phenotypes.
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Figure 4.9: Sensitivity analysis for seasonal North Atlantic TC prediction.

4.5.3 Comparison to the Modularity-based Community Detection

Since there is no existing algorithm that is specifically designed for solving our problem (see

Problem 2), here we only compare the community detection module in our algorithm with

the modularity-based approach [34]. Both algorithms are applied on the SLP network of the

year 1950. The known pressure dipoles shown in paper [86] were used as a validation set.
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Dipoles are one class of teleconnection phenomena that are characterized by recurring patterns

of climate anomalies related to each other at long distances. Such teleconnections are important

for understanding and interpreting climate variabilities.

Table 4.3 shows the dipole detection results by the modularity-based method and our (µ, γ)-

community generation algorithm. Only if the opposite polarities of a dipole appearing at two

different locations were both detected in a single community, the dipole was marked as “found”

by the algorithm. Among the five known dipoles, only AO dipole was found by the modularity-

based method, while all five dipoles were found by our algorithm. Thus, although modularity-

based method might work better for some application domains like social networks, we may

lose important teleconnection information by using the modularity-based community definition.

Also, our algorithm detected many overlapping communities, which are not shown in the table,

while the modularity-based method could only generate the non-overlapping communities. As

mentioned earlier, climate communities (or biological functional modules) often work in a cross–

talking manner. Ignoring the correlation and interaction between communities is not a good

modeling for some complex systems like climatological ocean-atmosphere system.

Another advantage of our (µ, γ)-community generation algorithm is that a set of query

nodes can be directly incorporated into the community search to improve the complexity and

the quality of the results. For example, a climatologist might wish to search an El Niño or La

Niña climate network for those communities associated with El Niño or La Niña events using

some of his/her known climate indices as “prior knowledge.”

Table 4.3: Dipole detection results

Dipole Modularity Our method

North Atlantic Oscillation (NAO) Found

Southern Oscillation Index (SOI) Found

Pacific/North American Index (PNA) Found

Arctic Oscillation (AO) Found Found

Western Pacific (WP) Found

4.6 Conclusions

In this chapter, we introduced the important and challenging problem of detecting predictive

and phase-biased communities in contrasting groups of networks. We presented an efficient and

effective method that partitions physical system networks into different groups according to
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the system’s phases, discovers phase-related system components, and uses these components as

seeds to identify the phase-biased communities across different groups. Our method successfully

identified climate indices associated with hurricane activities and found teleconnection patterns

related to rainfall in the Africa Sahel region. Our method also improved the predictive skill of

the system’s state by 8-16% relative to state-of-the-art approaches and other ensemble methods,

such as bagging, boosting, and random forest.
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Chapter 5

Conclusion and Future Work

This thesis has proposed four computational approaches to address several novel yet challeng-

ing problems in mining informative and predictive patterns within complex data of dynamic

systems. In Chapter 2, an iterative, classification-based algorithm, called SPICE, has been de-

veloped for enumerating statistically significant and application-relevant component interplays

that are key contributors to the system’s state. SPICE is inspired by the modularity principle

of complex systems, and utilizes information–theoretic selection process and knock–out strategy

to ensure the predictability and diversity of the members in the classifier ensemble. SPICE suc-

cessfully solves the highly underdetermined problem in high–dimensional instance–based data.

In Chapter 3, a novel method based on graph representatives and community representatives

has been proposed for detecting and tracking six types of community dynamics in evolutionary

networks. We have presented empirical and theoretical results demonstrating the efficiency and

applicability of community dynamic detection algorithm. Additionally, in Chapter 4, we have

proposed and implemented an algorithm to detect predictive and phase–biased communities in

contrasting groups of networks. We use the phase–related components detected by SPICE as

“seeds” to generate the communities and thus reducing the computational cost of the algorithm.

We empirically show that the detected anomalous community patterns can be used to improve

the predictive skill of the dynamic system’s state. To continue this work, we would like to point

out a few possible directions of research.

Although SPICE is able to address the underdetermined and non-linear relationship prob-

lems, SPICE relies on the decision tree algorithm to select the candidate set of discriminatory

features from the available feature space. Thus, SPICE inherits limitations of decision tree

algorithms. One of major disadvantages of the decision tree algorithms is its inadequacy to ap-

ply regression and predict continuous values. Therefore, SPICE is limited to the classification

tasks. One interesting idea for future work is to extend SPICE to regression tasks. We could
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first use SPICE to detect the particular phase the system is in, and then based on that specific

state, build an ensemble of regression models tuned for this state to predict the magnitude of

the system’s response. The classifier-regressor ensemble would be one of the possible ways to

solve the non-linear dynamic system response prediction problem.

The community dynamic detection algorithm is an efficient and parameter free algorithm

for detecting changing communities in time-evolving networks. However, our method considers

only the dynamic communities between two consecutive networks, while it ignores the dynamic

communities between two networks within a time-window larger than one. Therefore, a time

window-based algorithm could be considered in the future work.

Further, the definition of community structure is not limited to maximal cliques used in our

work. Although modeling a community as a maximal clique has some advantages in domains

like biology, other community definitions such as quasi-clique or modularity might work better

for some other application domains like social networks. Thus, another idea for future work is

to extend this algorithm by using other community definitions.

In contrast to the community dynamic detection algorithm, the anomalous community

detection algorithm for contrasting groups of networks requires several parameters including the

enrichment (µ) and the density (γ) for defining the communities, and parameters ω, α, and β

for defining the anomalous communities. There are some disadvantages of the non–parameter–

free algorithm, such as sensitivity of the parameters. One important area for future work is to

design a parameter-free algorithm.
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[126] Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioinfor-
matics. Bioinformatics (Oxford, England), 23(19):2507–2517, 2007.

[127] M. A. Saunders and A. R. Harris. Statistical evidence links exceptional 1995 Atlantic
hurricane season to record sea warming. JGRL, 24:1255–1258, 1997.

[128] M. C. Schmidt and N. F. Samatova. An algorithm for the discovery of phenotype related
metabolic pathways. In BIBM, pages 60–65, 2009.

[129] M. C. Schmidt, N. F. Samatova, K. Thomas, and B. Park. A scalable, parallel algorithm
for maximal clique enumeration. J. Parallel Distrib. Comput., 69(4):417–428, 2009.

[130] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique concept.
Journal of Mathematical Sociology, 6:139–154, 1978.

[131] R. Sharan, T. Ideker, B. Kelley, R. Shamir, R. M. Karp 2004, and R. M. Karp. Identifica-
tion of protein complexes by comparative analysis of yeast and bacterial protein interaction
data. Journal of computational biology, 12(6):835–846, July 2005.

[132] J. Shetty and J. Adibi. Discovering important nodes through graph entropy the case of
enron email database. In LinkKDD ’05: Proceedings of the 3rd international workshop on
Link discovery, pages 74–81, New York, NY, USA, 2005. ACM.

99



[133] Y. Shomura, H. Komori, N. Miyabe, M. Tomiyama, N. Shibata, and Y. Higuchi. Crystal
structures of hydrogenase maturation protein hype in the apo and atp-bound forms. J Mol
Biol., 372:1045–1054, 2007.

[134] A. H. Singh, D. M. Wolf, P. Wang, and A. P. Arkin. Modularity of stress response
evolution. Proceedings of the National Academy of Sciences, 105(21):7500–7505, May 2008.

[135] J. P. Kossin S. J. Camargo and M. Sitkowski. Climate modulation of North Atlantic
hurricane tracks. Journal of Climate, 23:3057–3076, 2010.

[136] N. Slonim, O. Elemento, and S. Tavazoie. Ab initio genotype-phenotype association
reveals intrinsic modularity in genetic networks. Mol. Syst. Biol., 2, 2006.

[137] B. Snel, P. Bork, and M. Huynen. Genome evolution. Gene fusion versus gene fission.
Trends Genet, 16(1):9–11, 2000.

[138] V. Spirin and L. A. Mirny. Protein complexes and functional modules in molecular
networks. Proceedings of the National Academy of Sciences of the United States of America,
100(21):12123 –12128, October 2003.

[139] S. Staniford-chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagl, K. Levitt,
C. Wee, R. Yip, and D. Zerkle. Grids-a graph based intrusion detection system for large
networks. In In Proceedings of the 19th National Information Systems Security Conference,
pages 361–370, 1996.

[140] C. Steffes, J. Ellis, J. Wu, and B. Rosen. The lysp gene encodes the lysine-specific
permease. J. Bacteriol., 174:3242–3249, 1992.

[141] K. Steinhaeuser, N. V. Chawla, and A. R. Ganguly. An exploration of climate data using
complex networks. In SensorKDD, pages 23–31, 2009.

[142] K. Steinhaeuser, N. V. Chawla, and A. R. Ganguly. Complex networks as a unified
framework for descriptive analysis and predictive modeling in climate science. Statistical
Analysis and Data Mining, 4(5):497–511, 2011.

[143] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. GraphScope: parameter-free mining
of large time-evolving graphs. In KDD, pages 687–696, 2007.

[144] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood formation and anomaly
detection in bipartite graphs. In The Fifth IEEE ICDM, pages 418–425, 2005.

[145] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic tensor analysis.
In KDD ’06, pages 374–383, 2006.

[146] R. T. Sutton, S. P. Jewson, and D. P. Rowell. The elements of climate variability in the
tropical atlantic region. J. Climate, 13:3261– 3284, 2000.

[147] N. Tajunisha, and V. Saravanan. An improved method of unsupervised sample clustering
based on information genes for microarray cancer data sets. IJCB, 2(1):24–31, 2011.

100



[148] A. C. Tan and D. Gilbert. Ensemble machine learning on gene expression data for cancer
classification. Applied bioinformatics, 2(3 Suppl), 2003.

[149] C. Tantipathananandh, T. B. Wolf, and D. Kempe. A framework for community identi-
fication in dynamic social networks. In KDD ’07, pages 717–726. ACM, 2007.

[150] D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging and random subspace for
support vector machines-based relevance feedback in image retrieval. IEEE T. Pattern
Anal., 28(7):1088–1099, July 2006.

[151] R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin, E. V. Koonin,
D. M. Krylov, R. Mazumder, S. L. Mekhedov, A. N. Nikolskaya, B. S. Rao, S. Smirnov,
A. V. Sverdlov, S. Vasudevan, Y. I. Wolf, J. J. Yin, and D. A. Natale. The COG database:
an updated version includes eukaryotes. BMC bioinformatics, 4(1):41+, September 2003.

[152] W. R. Taylor and K. Hatrick. Compensating changes in protein multiple sequence align-
ments. Protein Eng., 7:341–348, 1994.

[153] C. J. Melick, A. R. Lupo, T. K. Latham, T. H. Magill, J. V. Christopher, and P. S.
Market. The interannual variability of hurricane activity in the art. National Weather
Digest, 32:1–15, 2008.

[154] J. G. Thomas, J. M. Olson, S. J. Tapscott, and L. P. Zhao. An efficient and robust statis-
tical modeling approach to discover differentially expressed genes using genomic expression
profiles. Genome Research, 11(7):1227–1236, 2001.

[155] A. A. Tsonis and P. Roebber. The architecture of the climate network. Physica A,
333:497–504, February 2004.

[156] A. A. Tsonis, K. Swanson, and S. Kravtsov. A new dynamical mechanism for major
climate shifts. GRL, 34:L13705+, 2007.

[157] A. A. Tsonis and K. L. Swanson. Topology and predictability of el niño and la niña
networks. Physical Review Letters, 100(22), 2008.

[158] A. A. Tsonis, K. L. Swanson, and P. J. Roebber. What do networks have to do with
climate? BAMS, 87(5):585–595, May 2006.

[159] A. A. Tsonis, K. L. Swanson, and G. Wang. On the role of atmospheric teleconnections
in climate. J. Climate, 21:2990–3001, 2008.

[160] A. Tsonis, G. Wang, K. Swanson, F. Rodrigues, and L. Costa. Community structure and
dynamics in climate networks. Climate Dynamics, pages 1–8, July 2010.

[161] A. Veit, M. Akhtar, T. Mizutani, and P. Jones. Constructing and testing the thermody-
namic limits of synthetic NAD(P)H:H2 pathways. Microb Biotechnol, 1(5):382–94, 2008.

[162] P. M. Vignais, B. Billoud, and J. Meyer. Classification and phylogeny of hydrogenases.
FEMS Microbiol Rev, 25:455–501, 2001.

101



[163] P. M. Vignais and A. Colbeau. Molecular biology of microbial hydrogenases. Curr Issues
Mol Biol., 6:159–188, 2004.

[164] K. Wakita and T. Tsurumi. Finding community structure in mega-scale social networks.
CoRR, abs/cs/0702048, 2007.

[165] L. Wang, F. Chu, and W. Xie. Accurate cancer classification using expressions of very
few genes. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 4:40–53, January 2007.

[166] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393(6684):440–442, June 1998.

[167] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping. Use of the zero-norm with linear
models and kernel methods. Journal of Machine Learning Research, 3:1439–1461, 2003.

[168] D. White. The physiology and biochemistry of prokaryotes. Oxford University Press, New
York, 2007.

[169] I. H. Witten and E. Frank. Data mining: practical machine learning tools and techniques
with Java implementations. ACM SIGMOD Record, 31(1):76–77, 2002.

[170] L. Xie, T. Yan, and L. Pietrafesa. The effect of Atlantic sea surface temperature dipole
mode on hurricanes: Implications for the 2004 Atlantic hurricane season. JGRL, 32:3701+,
February 2005.

[171] J. Peng, L. Yang, J. Wang, Z. Liu, and M. Li. An efficient algorithm for detecting closed
frequent subgraphs in biological networks. In BMEI, pages 677–681, 2008.

[172] A. Yeshanew and M. R. Jury North african climate variability. part 3: Resource predic-
tion. Theoretical and Applied Climatology, 89(1-2):51–62, 2007.

[173] M. Yousef, M. Ketany, L. M. Manevitz, L. C. Showe, and M. K. Showe. Classification and
biomarker identification using gene network modules and support vector machines. BMC
Bioinformatics, 10:337, 2009.

[174] Z. Chen, K. Padmanabhan, A. Rocha, Y. Shpanskaya, J. R. Mihelcic, K. Scott, and
N. F. Samatova. SPICE: Discovery of phenotype-determining component interplays. BMC
Systems Biology, 6(1):40, 2012.

[175] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-clique discovery from
large dense graph databases. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’06, pages 797–802, New York,
NY, USA, 2006. ACM.

[176] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Out-of-core coherent closed quasi-clique
mining from large dense graph databases. ACM Trans. Database Syst., 32(2):13, 2007.

[177] B. Zhang, B. Park, T. Karpinets, and N. F. Samatova. From pull-down data to protein
interaction networks and complexes with biological relevance. Bioinformatics, 24:979–986,
April 2008.

102



[178] B. Zhang, H. Li, R. B. Riggins, M. Zhan, J. Xuan, Z. Zhang, E. P. Hoffman, R. Clarke,
and Y. Wang. Differential dependency network analysis to identify condition-specific topo-
logical changes in biological networks. Bioinformatics, 25(4):526–532, February 2009.

[179] B. Zhang, B. Park, T. Karpinets, and N. F. Samatova. From pull-down data to protein
interaction networks and complexes with biological relevance. Bioinformatics (Oxford,
England), 24(7):979–86, 2008.

[180] J. Zhang. Evolution by gene duplication: an update. Trends in Ecology & Evolution,
18(6):292–298, June 2003.

[181] R. Zhang, C. E. Andersson, A. Savchenko, T. Skarina, E. Evdokimova, S. Beasley, C. H.
Arrowsmith, A. M. Edwards, A. Joachimiak, and S. L. Mowbray. Structure of escherichia
coli ribose-5-phosphate isomerase: A ubiquitous enzyme of the pentose phosphate pathway
and the calvin cycle. Structure, 11(1):31–42, 2003.

[182] Q. Zhou, W. Hong, L. Luo, and F. Yang. Gene selection using random forest and proximity
differences criterion on dna microarray data. JCIT, 5(6):161–170, 2010.

103


